JP2000241391A - Method for diagnosing stress of steel pipe - Google Patents

Method for diagnosing stress of steel pipe

Info

Publication number
JP2000241391A
JP2000241391A JP11041810A JP4181099A JP2000241391A JP 2000241391 A JP2000241391 A JP 2000241391A JP 11041810 A JP11041810 A JP 11041810A JP 4181099 A JP4181099 A JP 4181099A JP 2000241391 A JP2000241391 A JP 2000241391A
Authority
JP
Japan
Prior art keywords
stress
steel pipe
barkhausen noise
effective value
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041810A
Other languages
Japanese (ja)
Other versions
JP4128297B2 (en
Inventor
Hiroaki Sakamoto
広明 坂本
Toru Inaguma
徹 稲熊
Shigehiko Yamana
成彦 山名
Takao Sasaki
孝雄 佐々木
Jun Tsujimoto
潤 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04181099A priority Critical patent/JP4128297B2/en
Publication of JP2000241391A publication Critical patent/JP2000241391A/en
Application granted granted Critical
Publication of JP4128297B2 publication Critical patent/JP4128297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately diagnose a stress to a steel pipe even when not only a stress in an elastic range, but an external stress exceeding a yield stress acts to the steel pipe. SOLUTION: A plurality of predetermined measurement points P in a circumferential direction of a surface of a steel pipe 4 having a compressive residual stress are excited with an a.c. with use of a magnetic head 1 consisting of an excitation head 2 and a detection head 3. One of planes intersecting the predetermined measurement points of the surface and including a center line of a pipe axis T of the steel pipe 4 is set as a reference face S, and each measurement point is displayed by an angle between the reference face and the plane including the measurement point. Measurement points Pa and Pb which are spaced by an interval of 180 deg. and show effective value voltages of minimal values (minimum values) are obtained from a relationship of the angles and an effective value voltage of Barkhausen noises. A maximum value of the effective value voltage of a central point Pc is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、埋設してある鋼管
に地盤沈下や地層変動、等によって発生した応力を、鋼
管から発生するバルクハウゼンノイズを利用して、非破
壊的に診断する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for non-destructively diagnosing a stress generated in a buried steel pipe due to land subsidence or stratum deformation by utilizing Barkhausen noise generated from the steel pipe. .

【0002】[0002]

【従来の技術】ガス供給管、水道管等の鋼管は地中に埋
設されているため、地盤沈下などが発生すると、沈下量
の異なる鋼管部位の間に曲げ応力が発生する。その応力
が鋼管に長期間に渡って作用すると応力腐食割れが発生
する危険が生じ、また、その応力が過大になると鋼管が
破損してしまう場合が出てくる。特に、ガス供給管でこ
のようなことが起こらないように、埋設管に作用してい
る応力を監視し、安全性を確認しなければならない。
2. Description of the Related Art Steel pipes such as gas supply pipes and water pipes are buried in the ground, and when land subsidence occurs, bending stress is generated between steel pipe portions having different settlement amounts. If the stress acts on the steel pipe for a long period of time, there is a risk that stress corrosion cracking will occur, and if the stress is excessive, the steel pipe may be damaged. In particular, in order to prevent this from occurring in the gas supply pipe, the stress acting on the buried pipe must be monitored to confirm safety.

【0003】このために、地表から鋼管表面へ細い抗を
開けて、その抗に沈下棒と呼ばれる棒を差込み、その棒
の沈下量から地中で生じている鋼管の変形を推定して曲
げ応力を求める方法が従来から実施されている。しかし
ながら、この方法では鋼管の水平方向の変位を測定でき
ないこと、沈下棒の数が制限されているために鋼管の変
形量の推定精度が不十分なこと、の理由から、応力診断
の精度に問題があった。そこで、磁歪を利用した磁歪セ
ンサ(磁気異方性センサ)を鋼管表面に直接あてて、そ
の出力値から鋼管に作用している応力を求める方法が提
案されている。
[0003] For this purpose, a thin bolt is opened from the ground surface to the surface of the steel pipe, a rod called a sinking rod is inserted into the steel pipe, and the deformation of the steel pipe generated in the ground is estimated from the amount of sinking of the rod to determine the bending stress. Has been conventionally implemented. However, this method cannot measure the displacement of the steel pipe in the horizontal direction, and the accuracy of estimating the amount of deformation of the steel pipe is insufficient due to the limited number of subsidence rods. was there. Therefore, a method has been proposed in which a magnetostrictive sensor (magnetic anisotropic sensor) utilizing magnetostriction is directly applied to the surface of a steel pipe, and the stress acting on the steel pipe is obtained from the output value.

【0004】この測定原理は、鉄などの鋼材では磁歪は
正であるため、鋼管表面に応力が作用すると、引っ張り
応力方向では透磁率が増加し、圧縮応力方向ではそれが
減少することを用いたものである。例えば、鋼管周囲で
測定した磁歪センサ出力をサイン曲線で近似して算出し
た値が保安上の基準値を越えない値、または、最小値と
なるように調整する応力解放方法(特開平3-176630号公
報)、2ヶ所の応力中立部近傍の磁歪センサ出力の角度
依存性を直線近似し、両者の傾きの平均値から曲げ応力
を推定する方法(特開平3-176626号公報)、磁歪センサ
出力とSINθ近似との差をSIN2θで近似し、その
振幅値から偏平応力を推定する方法(特開平3-176627号
公報)、電縫管を磁歪センサで測定する際に溶接部の測
定値を除去してCOSθ、COS2θで補正する方法
(特開平5-281058号公報)、磁歪センサ出力が最大とな
る位置、およびそこから90°ずれた位置の外径を実測
して偏平率を求めて、軸方向最大応力値を補正する方法
(特開平6-288842公報)、磁歪センサ等で部分的に測定
した応力を沈下量測定によるシミュレ−ションに取り入
れて埋設管全体の中の最大応力を求めて基準値を越えな
いようにする管理方法(特開平9-242933号公報)、等が
開示されている。
[0004] This measurement principle is based on the fact that magnetostriction is positive in a steel material such as iron, so that when a stress acts on the surface of a steel pipe, the magnetic permeability increases in a tensile stress direction and decreases in a compressive stress direction. Things. For example, a stress release method for adjusting a value obtained by approximating a magnetostrictive sensor output measured around a steel pipe with a sine curve to a value not exceeding a security reference value or a minimum value (JP-A-3-176630) Japanese Patent Application Laid-Open No. 3-176626 discloses a method of linearly approximating the angle dependence of the output of a magnetostrictive sensor near two stress-neutral portions and estimating a bending stress from an average value of the inclinations of the two. Of approximating the difference between the approximation and the SINθ approximation by SIN2θ, and estimating the flat stress from the amplitude value (Japanese Patent Laid-Open No. 3-176627), removing the measured value of the welded portion when measuring the ERW pipe with a magnetostrictive sensor (Refer to Japanese Patent Application Laid-Open No. 5-281058), measuring the outer diameter at the position where the output of the magnetostrictive sensor is maximum, and the outer diameter at a position shifted by 90 ° from the position, and calculating the flatness factor. Method for correcting the maximum stress value in the direction (JP-A-6-288842) Report), a management method that incorporates the stress partially measured by a magnetostrictive sensor or the like into the simulation by measuring the amount of settlement to determine the maximum stress in the entire buried pipe so that it does not exceed the reference value (Japanese Patent Application Laid-Open No. 9-1997). 242933), and the like.

【0005】しかしながら、これらの方法は全て磁歪セ
ンサを用いているために、鋼管の降伏応力以下の弾性範
囲にある応力を求めるものであって、降伏応力以上の塑
性領域にある応力を求めることが困難である。さらに、
降伏応力に近づくにつれて、検量線の直線性が悪くなる
ために、補正を必要としていた。
However, since all of these methods use a magnetostrictive sensor, it is necessary to obtain a stress in the elastic range below the yield stress of the steel pipe, and to find a stress in the plastic region above the yield stress. Have difficulty. further,
Correction was necessary because the linearity of the calibration curve became worse as the yield stress was approached.

【0006】[0006]

【発明が解決しようとする課題】以上の如く、従来は、
鋼管に作用している応力を精度良く求めようとする場合
には、応力が降伏応力以下の弾性領域にある場合に制限
されていた。しかしながら、実際に埋設されている鋼管
に降伏応力以上の応力が作用している場合も多く存在す
ると予想され、このような塑性領域に入っている応力が
本来最も注意して監視し、場合によっては、直ちに応力
解放工事を実施しなければならないものである。
As described above, conventionally,
In order to accurately determine the stress acting on the steel pipe, it has been limited to the case where the stress is in an elastic region below the yield stress. However, it is expected that there are many cases where a stress higher than the yield stress is acting on the steel pipe actually buried, and the stress in such a plastic region should be monitored most carefully by nature. Therefore, the stress relief work must be immediately carried out.

【0007】本発明は、制御された圧縮応力が付与され
ている鋼管表面の周囲に渡る所定の測定部位のバルクハ
ウゼンノイズの実効値電圧を測定することによって、鋼
管に弾性範囲内にある応力のみならず、降伏応力を越え
た応力が作用している場合においても精度良く、応力診
断ができる方法を提供することを目的とする。
[0007] The present invention measures the effective value voltage of Barkhausen noise at a predetermined measurement site around the surface of a steel pipe to which a controlled compressive stress is applied, so that only the stress within the elastic range is applied to the steel pipe. It is another object of the present invention to provide a method capable of performing stress diagnosis with high accuracy even when a stress exceeding the yield stress is applied.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記の通りである。
The gist of the present invention is as follows.

【0009】(1)圧縮残留応力が付与されている鋼管
を診断対象とし、励磁ヘッドと検出ヘッドとを備えて構
成される磁気ヘッドを用いて、前記励磁ヘッドにより鋼
管の測定部位を交流励磁し、前記検出ヘッドに誘起され
る電圧信号を周波数分離してバルクハウゼンノイズを検
出する応力診断方法であって、鋼管表面の周方向に複数
の所定の測定部位を設定し、鋼管の管軸中心線を含み鋼
管表面の所定の測定部位と交わる平面を想定し、前記各
平面のうちの一枚を基準面として、各測定部位を前記基
準面と各測定部位を含む平面とのなす角度で表示し、そ
れらの角度とバルクハウゼンノイズの実効値電圧との関
係から、互いの位置がほぼ180°の角度の間隔を保
ち、且つ、バルクハウゼンノイズの実効値電圧がそれぞ
れ極小値又は最小値をとっている測定部位を2ヶ所求
め、それら2つの測定部位のほぼ中央の角度に位置して
いる測定部位のバルクハウゼンノイズの実効値電圧の最
大値を求め、前記実効値電圧の最大値から、同一部材を
使って予め求めておいた外部応力とバルクハウゼンノイ
ズの実効値電圧との関係を表している検量線を用いて、
軸方向の最大引っ張り応力値を求めることを特徴とする
鋼管の降伏応力以上の応力までの診断が可能な応力診断
方法。
(1) A steel pipe to which a compressive residual stress is applied is used as a diagnosis target, and a magnetic head including an excitation head and a detection head is used. A stress diagnosis method for detecting a Barkhausen noise by frequency-separating a voltage signal induced in the detection head, wherein a plurality of predetermined measurement parts are set in a circumferential direction of a steel pipe surface, and a pipe axis center line of the steel pipe is set. Assuming a plane that intersects with a predetermined measurement site on the surface of the steel pipe, one of the planes is used as a reference plane, and each measurement site is indicated by an angle between the reference plane and the plane that includes each measurement site. From the relationship between these angles and the effective value voltage of Barkhausen noise, the mutual positions are maintained at an angle of approximately 180 °, and the effective value voltage of Barkhausen noise is a minimum value or a minimum value, respectively. Two measurement sites are determined, the maximum value of the effective value voltage of Barkhausen noise of the measurement site located at the substantially central angle between the two measurement sites is determined, and from the maximum value of the effective value voltage, Using a calibration curve that represents the relationship between the external stress and the effective voltage of Barkhausen noise obtained in advance using the same member,
A stress diagnostic method capable of diagnosing stress up to a yield stress of a steel pipe, wherein a maximum tensile stress value in an axial direction is obtained.

【0010】(2)現場設置前の鋼管表面の周囲に渡っ
て、面内方向に圧縮残留応力を付与することによって鋼
管表面の周囲に渡るバルクハウゼンノイズの実効値電圧
を均一にした鋼管を用いることを特徴とする前項(1)
に記載の鋼管の応力診断方法。
(2) A steel pipe in which the effective value voltage of Barkhausen noise over the circumference of the steel pipe surface is made uniform by applying in-plane compressive residual stress over the circumference of the steel pipe surface before installation on the site. (1)
4. The method for diagnosing stress in a steel pipe according to item 1.

【0011】(3)残留応力が測定面内において等方的
に分布している鋼管を用いることを特徴とする前項
(1)又は(2)に記載の鋼管の応力診断方法。
(3) The method for diagnosing stress in a steel pipe according to the above (1) or (2), wherein a steel pipe in which residual stress is isotropically distributed in a measurement plane is used.

【0012】(4)バルクハウゼンノイズの検出深さを
dとした場合、圧縮残留応力を測定部位の表面から少な
くとも0.5dの深さまで付与することを特徴とする前
項(1)又は(2)に記載の鋼管の応力診断方法。
(4) When the depth of detection of Barkhausen noise is d, the compressive residual stress is applied to a depth of at least 0.5 d from the surface of the measurement site (1) or (2). 4. The method for diagnosing stress in a steel pipe according to item 1.

【0013】[0013]

【発明の実施の形態】鋼材のバルクハウゼンノイズは、
外部応力および結晶粒径、析出物や転位等の組織に応じ
て変化するため、外部応力を診断するためには組織を変
化させないことが必須であった。すなわち、鋼材に外部
応力が作用しても、それが弾性範囲内にあるときには、
組織変化がないためバルクハウゼンノイズは応力のみに
依存し、かつ、応力に対して可逆的に変化する。しか
し、鋼材に降伏応力以上の外部応力が作用し、それが塑
性領域に入ってしまうと転位の増殖や結晶回転などが起
こり組織が変わってしまうため、もはや外部応力のみを
診断をすることが不可能になってしまう。
DETAILED DESCRIPTION OF THE INVENTION Barkhausen noise of steel
Since the stress varies depending on the structure such as external stress and crystal grain size, precipitates and dislocations, it is essential that the structure is not changed in order to diagnose external stress. That is, even if external stress acts on the steel material, when it is within the elastic range,
Since there is no structural change, Barkhausen noise depends only on stress and changes reversibly with respect to stress. However, an external stress greater than the yield stress acts on the steel material, and when it enters the plastic region, dislocation multiplication and crystal rotation occur and the structure changes, so it is no longer possible to diagnose only the external stress. It will be possible.

【0014】本発明者らは、外部応力の大きさが降伏応
力より大きくなった場合においても組織変化をほとんど
生じさせなくするように、測定部位の残留応力の初期状
態を制御することを可能にし、さらに、そのような状態
において、応力とバルクハウゼンノイズの関係を詳細に
調べた結果、本発明に至ったものである。
The present inventors have made it possible to control the initial state of the residual stress at the measurement site so that the structural change hardly occurs even when the magnitude of the external stress becomes larger than the yield stress. Further, in such a state, a detailed investigation of the relationship between stress and Barkhausen noise resulted in the present invention.

【0015】すなわち、本発明者らは、弾性領域から塑
性領域に至るまで、さらに、塑性領域においては種々の
ひずみの大きさまで塑性変形させた場合における応力あ
るいはひずみとバルクハウゼンノイズの大きさの関係を
詳細に測定した。その結果、一端、測定部位を塑性変形
させて、その部位の面内方向に圧縮残留応力を付与した
試料に引っ張り応力を新たに負荷した場合には、応力あ
るいはひずみとバルクハウゼンノイズの実効値電圧の直
線相関が成り立つ応力あるいはひずみ範囲が、圧縮残留
応力が無い場合に比べて格段に広くなることを見出し
た。さらに、面内方向の圧縮残留応力を鋼管の降伏応力
とほぼ同じ大きさに制御した場合には、その部位に圧縮
応力を外部から負荷してもバルクハウゼンノイズはほと
んど変化しないか、わずかに大きくなる程度の変化を示
すことを見出した。
That is, the present inventors have determined the relationship between the stress or strain and the magnitude of Barkhausen noise when plastic deformation is performed from the elastic region to the plastic region, and further to various strains in the plastic region. Was measured in detail. As a result, when a tensile stress is newly applied to a sample to which a measurement site is plastically deformed at one end and a compressive residual stress is applied in the in-plane direction of the site, the effective value voltage of the stress or strain and the Barkhausen noise is obtained. It has been found that the range of stress or strain where the linear correlation holds is significantly wider than the case where there is no compressive residual stress. Furthermore, when the compressive residual stress in the in-plane direction is controlled to be approximately the same as the yield stress of the steel pipe, the Barkhausen noise hardly changes or slightly increases even if a compressive stress is externally applied to that part. It was found to show some change.

【0016】通常の電縫管やシ−ムレス管では鋼管表面
の各部位ごとに組織や残留応力が異なるために、実際に
バルクハウゼンノイズを測定してみると同じ鋼管でも測
定部位が数cm異なるだけでその実効値電圧は大きく異
なってしまう。したがって、各部位ごとの初期値の管理
が必要になり、管理する上で煩雑になってしまう。
Since the structure and residual stress of a normal electric resistance welded pipe or a seamless pipe are different for each part on the surface of the steel pipe, when the Barkhausen noise is actually measured, the measurement part differs by several cm even in the same steel pipe. Alone, the effective value voltage greatly differs. Therefore, it is necessary to manage the initial values for each part, and the management becomes complicated.

【0017】本発明者らは、電縫管やシ−ムレス管表面
の面内方向にほぼ同じ大きさの圧縮残留応力を付与する
ことによって鋼管表面のどの位置でバルクハウゼンノイ
ズを測定しても同じ大きさの実効値電圧が得られること
を見出した。この圧縮残留応力を面内に等方的に付与す
ることによって、初期値の値も等方的になって、どの方
向から外部応力が負荷されても応力の診断精度の低下を
防ぐことが可能になる。実際上、降伏応力に相当する圧
縮残留応力を付与することが均一な残留応力を付与する
点で容易である。
The inventor of the present invention has measured the Barkhausen noise at any position on the surface of a steel pipe by applying substantially the same amount of compressive residual stress in the in-plane direction of the surface of the ERW pipe or the seamless pipe. It has been found that an effective value voltage of the same magnitude can be obtained. By applying this compressive residual stress isotropically in the plane, the initial value is also isotropic, and it is possible to prevent the accuracy of stress diagnosis from lowering even if external stress is applied from any direction. become. In practice, it is easy to apply a compressive residual stress corresponding to the yield stress in that a uniform residual stress is applied.

【0018】さらに、降伏応力に相当する圧縮残留応力
を付与することによって、その部位に外部から圧縮応力
が負荷されても、バルクハウゼンノイズの実効値電圧が
ほとんど変化しないか、わずかに大きくなる程度の変化
をすることを見出した。鋼管に曲げモ−メントが作用す
る場合、中立点を境としてその両側でそれぞれ管軸方向
に圧縮応力と引っ張り応力が作用する。バルクハウゼン
ノイズの実効値電圧は、中立点では変化せず、圧縮応力
側でも引っ張り応力側でも大きくなり、それらの変化は
引っ張り応力側での変化が圧縮応力側での変化より大き
くなるため、中立点を容易に見つけることができ、さら
に、圧縮応力側と引っ張り応力側も容易に区別できる。
これに対して、従来の磁歪センサでは中立点を境にし
て、連続的に出力値が変化するため、中立点の判断に曖
昧さがあった。
Further, by applying a compressive residual stress corresponding to the yield stress, even if an external compressive stress is applied to the portion, the effective value voltage of Barkhausen noise hardly changes or slightly increases. To make a change. When bending moment acts on the steel pipe, compressive stress and tensile stress act on the steel pipe in the axial direction on both sides of the neutral point. The effective voltage of Barkhausen noise does not change at the neutral point, but increases on both the compressive and tensile stress sides.These changes are greater on the tensile stress side than on the compressive stress side. Points can be easily found, and the compressive stress side and the tensile stress side can be easily distinguished.
On the other hand, in the conventional magnetostrictive sensor, since the output value continuously changes from the neutral point as a boundary, there is ambiguity in determining the neutral point.

【0019】次に測定手順について図1及び図2を用い
て説明する。
Next, the measurement procedure will be described with reference to FIGS.

【0020】図1は、応力測定を使用する磁気ヘッドを
示す概略斜視図である。この磁気ヘッド1は、珪素鋼
板、アモルファス等の軟質磁性材料からなるU字型コア
11及びこのU字型コア11にエナメル線等の銅線が巻
回されてなる励磁コイル12を備えた励磁ヘッド2と、
例えば空心コイルである検出ヘッド3とから構成されて
いる。
FIG. 1 is a schematic perspective view showing a magnetic head using stress measurement. The magnetic head 1 includes a U-shaped core 11 made of a soft magnetic material such as a silicon steel plate or an amorphous material, and an exciting coil 12 formed by winding a copper wire such as an enamel wire around the U-shaped core 11. 2 and
For example, it comprises a detection head 3 which is an air-core coil.

【0021】このような磁気ヘッド1を用いて、制御さ
れた圧縮残留応力が付与された鋼管表面上の周方向の複
数の所定の場所で、管軸方向に励磁してバルクハウゼン
ノイズを測定する。その際、図2(鋼管4の管軸Tに直
交する断面図)に示すように、鋼管4の表面の管軸Tの
中心線を含み鋼管表面の所定の測定部位Pと交わる平面
を考え、各平面のうちの一枚を基準面Sとして、各測定
部位をその基準面Sと各測定部位を含む平面とのなす角
度θで表示する。どの面を基準面としても良い。それら
の角度とバルクハウゼンノイズの実効値電圧との関係を
グラフに表し、このグラフから互いの位置が180°の
角度の間隔を保ち、かつ、バルクハウゼンノイズの実効
値電圧がそれぞれ極小値もしくは最小値をとっている測
定部位を2ヶ所(図示の例ではPa,Pb)求める。こ
の2ヶ所の測定部位Pa,Pbが前記した中立点であ
る。
Using such a magnetic head 1, Barkhausen noise is measured by exciting in a pipe axis direction at a plurality of predetermined circumferential positions on the surface of a steel pipe to which a controlled compressive residual stress is applied. . At that time, as shown in FIG. 2 (a cross-sectional view orthogonal to the pipe axis T of the steel pipe 4), a plane including the center line of the pipe axis T on the surface of the steel pipe 4 and intersecting with a predetermined measurement site P on the steel pipe surface is considered. One of the planes is set as a reference plane S, and each measurement site is indicated by an angle θ between the reference plane S and a plane including each measurement site. Any surface may be used as the reference surface. The relationship between these angles and the effective value voltage of Barkhausen noise is shown in a graph. From this graph, the mutual positions are maintained at an interval of 180 °, and the effective value voltage of Barkhausen noise is a minimum value or a minimum value, respectively. Two measurement sites (Pa, Pb in the illustrated example) having a value are obtained. These two measurement sites Pa and Pb are the neutral points described above.

【0022】図3には、このようにして表した例を示し
た。但し、図3は鋼管に外部から曲げ応力を加えていっ
た場合の各応力段階におけるバルクハウゼンノイズの実
効値電圧のプロファイルを示したものである。ここで、
通常の測定点数は数点から数十点程度の有限数であるた
め、測定部位が必ずしも中立点の位置と一致するとは限
らない。このような場合には、前記した最小値をとって
いる2ヶ所の実効値電圧は必ずしも同一値ではなく異な
る値となる。中立点を決めることは測定点間を補完曲線
で近似することによって容易に行うことができる。
FIG. 3 shows an example represented in this manner. However, FIG. 3 shows the profile of the effective value voltage of Barkhausen noise at each stress stage when a bending stress is externally applied to the steel pipe. here,
Since the number of normal measurement points is a finite number of several to several tens, the measurement site does not always coincide with the position of the neutral point. In such a case, the effective value voltages at the two locations having the minimum value are not necessarily the same value but different values. The determination of the neutral point can be easily performed by approximating the interval between the measurement points with a complementary curve.

【0023】次に、それらの2つの測定部位のほぼ中央
の角度に位置している測定部位(図示の例ではPc)に
おけるバルクハウゼンノイズの実効値電圧の最大値を求
める。この部位は、通常、管軸方向に作用している引っ
張り応力が最大となるところである。中立点が、描いた
グラフの端部になって見にくい場合には、グラフの基準
面を変えて見やすくすればよい。この2ヶ所の中立点で
の実効値電圧は元の初期値であるから、初期値がわから
なくなってしまった場合でもそれを求めることが可能と
なる。実効値電圧の最大値から予め求めておいた検量線
を用いて軸方向の最大引っ張り応力値を求めることがで
きる。
Next, the maximum value of the effective value voltage of Barkhausen noise at a measurement site (Pc in the illustrated example) located at an approximately central angle between these two measurement sites is obtained. This part is where the tensile stress acting in the direction of the tube axis usually becomes maximum. If the neutral point is at the end of the drawn graph and is difficult to see, the reference plane of the graph may be changed to make it easier to see. Since the effective voltage at the two neutral points is the original initial value, even if the initial value is not known, it can be obtained. The maximum tensile stress value in the axial direction can be obtained using a calibration curve previously obtained from the maximum value of the effective voltage.

【0024】ここで、応力とバルクハウゼンノイズの関
係を表す検量線は、ひずみゲ−ジを貼り付けた同じ鋼種
の部材に応力を負荷していきながら、バルクハウゼンノ
イズを同時に測定することによって、容易に求めること
ができる。
Here, a calibration curve representing the relationship between stress and Barkhausen noise is obtained by simultaneously measuring Barkhausen noise while applying stress to members of the same steel type to which a strain gauge is attached. It can be easily obtained.

【0025】さらに、この最大引っ張り応力値をσmax
とすると、M=Z×σmax、(但し、Zは断面係数)か
ら曲げモ−メントMを求めることができる。また、降伏
応力に相当する圧縮残留応力を鋼管表面に付与すること
によって、降伏応力の約2倍に相当する外部引っ張り応
力までバルクハウゼンノイズで診断が可能になる。
Further, this maximum tensile stress value is defined as σmax
Then, the bending moment M can be obtained from M = Z × σmax (where Z is a section modulus). Further, by applying a compressive residual stress corresponding to the yield stress to the surface of the steel pipe, it is possible to make a diagnosis by Barkhausen noise up to an external tensile stress corresponding to about twice the yield stress.

【0026】電縫管では溶接部、およびその両側に熱影
響部があるが、これらの部位ではバルクハゼンノイズが
大きく変化してしまう場合がある。被覆や塗装が施され
ていない場合には目視でそれらの部位を確認できるた
め、予め測定部位から除くことができるが、被覆や塗装
があって目視で確認できない場合には、測定値からこれ
らの部位に相当する値を除外すればよい。溶接部や熱影
響部では,測定部位の角度とバルクハウゼンノイズの実
効値電圧との関係を表したグラフにおいて、実効値電圧
が不連続的に変化するため、それらの部位を容易に見つ
けることができる。公知の非接触式磁気ヘッド(特開平
7−174730号公報)を用いれば被覆材の上からで
も測定が可能となる。
In an ERW pipe, there are a weld zone and heat-affected zones on both sides of the weld zone. However, in these zones, the Barkhausen noise may greatly change. If the coating or coating is not applied, these parts can be visually checked, so they can be removed from the measurement site in advance. What is necessary is just to exclude the value corresponding to a site | part. In the graph showing the relationship between the angle of the measured part and the RMS voltage of Barkhausen noise in the weld and heat affected zone, the RMS voltage changes discontinuously, so it is easy to find those parts. it can. If a known non-contact magnetic head (JP-A-7-174730) is used, measurement can be performed even from above the coating material.

【0027】試料のより深い部位から発生するバルクハ
ウゼンノイズほど減衰が大きくなるため、検出コイルに
発生する電圧は小さくなる。これはスキンデプス(skin
depth)効果と呼ばれ、定量的に示すと次にようにな
る。試料表面においてバルクハウゼンノイズが1/eに
減衰する発生源の深さ、即ち検出深さをdとすると、d
=(ρ/πfμ)1/2 、(ρは電気抵抗、fはバルクハ
ウゼンノイズの検出周波数、μは透磁率)で表される。
残留応力を付与する深さは、少なくとも0.5d以上で
なければならない。それが0.5dより少ない場合に
は、バルクハウゼンノイズと応力あるいはひずみとの関
係において、両者の直線相関が成り立つ応力範囲が低下
するからである。
Since the attenuation increases as the Barkhausen noise generated from a deeper part of the sample decreases, the voltage generated in the detection coil decreases. This is skin depth
depth) effect, which is quantitatively expressed as follows. Assuming that the depth of the source at which Barkhausen noise attenuates to 1 / e on the sample surface, that is, the detection depth is d, d
= (Ρ / πfμ) 1/2 , where (ρ is the electrical resistance, f is the detection frequency of Barkhausen noise, and μ is the magnetic permeability).
The depth at which the residual stress is applied must be at least 0.5d or more. If it is less than 0.5 d, in the relationship between Barkhausen noise and stress or strain, the stress range in which a linear correlation between the two holds is reduced.

【0028】バルクハウゼンノイズの測定部位に圧縮残
留応力を付与する方法は、例えば、エア−ブラスト、シ
ョットブラストなどの小さな鋼球やセラミックス粒子を
試料表面に高速で衝突させる方法、サンダ−による研
磨、等があるが、試料表面に等方的に残留応力を付与す
るためには、エア−ブラスト、ショットブラストが適し
ている。サンダ−による場合でも等方的に研磨すること
によって残留応力を等方的に付与することが可能であ
る。
Examples of a method of applying a compressive residual stress to a measurement site of Barkhausen noise include a method of causing small steel balls such as air blast and shot blast or ceramic particles to collide with a sample surface at a high speed, polishing with a sander, Although air blast and shot blast are suitable for imparting isotropic residual stress to the sample surface. Even in the case of using a sander, the residual stress can be isotropically applied by isotropic polishing.

【0029】本実施形態の測定方法を実際に使う場合に
は、被測定部材における外部応力とバルクハウゼンノイ
ズの実効値電圧との関係を示す検量線を予め測定してお
き、実際に測定した実効値電圧の最大値を応力へ換算す
る場合に、この検量線を用いればよい。
When the measuring method of this embodiment is actually used, a calibration curve indicating the relationship between the external stress in the member to be measured and the effective voltage of Barkhausen noise is measured in advance, and the actually measured effective curve is measured. This calibration curve may be used when converting the maximum value of the value voltage into the stress.

【0030】[0030]

【実施例】以下、実施例をもって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0031】(実施例1)鋼管表面に制御された残留圧
縮応力がある場合と無い場合でバルクハウゼンノイズの
実効値電圧の初期値、すなわち、鋼管に曲げ応力等が働
いていない場合の実効値電圧、が測定部位によってどの
ような値をとるかについて調べた。供試鋼管は外径31
8mm、肉厚7.9mmのシ−ムレス鋼管である。残留
圧縮応力は鋼管表面の全面にわたって均一にスチ−ル系
研掃材を用いたショットブラスト処理を施すことによっ
て付与した。
(Example 1) The initial value of the effective value voltage of Barkhausen noise when there is a controlled residual compressive stress on the steel pipe surface and when it does not exist, that is, the effective value when no bending stress acts on the steel pipe The voltage was measured according to the measurement site. The test tube has an outer diameter of 31
It is a seamless steel pipe with a thickness of 8 mm and a thickness of 7.9 mm. The residual compressive stress was applied uniformly by performing shot blasting using a steel-based abrasive on the entire surface of the steel pipe surface.

【0032】バルクハウゼンノイズの測定は、以下のよ
うにして行った。珪素鋼板を積層したU字型励磁コアに
1000タ−ンのエナメル線を巻いた励磁ヘッド、およ
び断面積が2mm×8mmのアクリル製ボビンに500
タ−ンのエナメル線を巻いた検出ヘッドからなる磁気ヘ
ッドを圧縮残留応力がある鋼管とそれが無い鋼管の試料
表面にあててバルクハウゼンノイズの実効値電圧を測定
した。各測定部位における励磁方向は鋼管の軸方向と周
方向の2方向である。励磁周波数は100Hz、検出周
波数は10kHz〜100kHzである。今回の試験に
おいて、制御された圧縮残留応力がない鋼管とはショッ
トブラスト処理前の鋼管である。
The measurement of Barkhausen noise was performed as follows. An excitation head in which a 1000-turn enamel wire is wound on a U-shaped excitation core in which silicon steel sheets are laminated, and an acrylic bobbin having a cross-sectional area of 2 mm × 8 mm are 500
The effective value voltage of Barkhausen noise was measured by placing a magnetic head consisting of a detection head wound with an enameled wire on a sample surface of a steel tube having a compressive residual stress and a steel tube having no compressive residual stress. Excitation directions at each measurement site are two directions of the axial direction and the circumferential direction of the steel pipe. The excitation frequency is 100 Hz, and the detection frequency is 10 kHz to 100 kHz. In this test, a steel pipe without controlled compressive residual stress is a steel pipe before shot blasting.

【0033】鋼管の測定部位は管軸中心線を含み鋼管表
面の所定の測定部位と交わる平面を考え、その内の一枚
の平面を基準面とし、測定部位をその基準面と各測定部
位を含む平面とのなす角度で表示した。実際には、シ−
ムレス鋼管であるため任意の面を基準面として、22.
5°の間隔で16ヶ所を鋼管周囲にわたって一周分測定
した。
The measurement site of the steel pipe includes a plane including the center line of the pipe axis and intersecting with a predetermined measurement site on the surface of the steel pipe. One of the planes is used as a reference plane, and the measurement site is defined by the reference plane and each measurement site. Indicated by the angle between the plane and the plane. Actually,
22. Since any surface is used as a stainless steel tube,
Measurements were made for one round over the circumference of the steel pipe at 16 locations at 5 ° intervals.

【0034】ショットブラスト処理後の鋼管表面の残留
応力の大きさの深さ方向の分布は、表面から板厚方向へ
所定厚さだけエッチングした後、X線残留応力測定法に
よって求めた。その結果、表面から約150μmの深さ
まで同じ大きさの圧縮残留応力が面内で等方的に均一に
入っていることを確認した。スキンデプス(skin dept
h)の計算式d=(ρ/πfμ)1/2から求めたバルクハ
ウゼンノイズの検出深さは、約160μmである。
The distribution of the magnitude of the residual stress on the surface of the steel pipe after the shot blasting in the depth direction was determined by an X-ray residual stress measuring method after etching a predetermined thickness from the surface in the thickness direction. As a result, it was confirmed that the compressive residual stress of the same magnitude entered isotropically uniformly in the plane up to a depth of about 150 μm from the surface. Skin dept
The detection depth of Barkhausen noise obtained from the calculation formula d) of (h) = (ρ / πfμ) 1/2 is about 160 μm.

【0035】図6に、鋼管の軸方向と周方向に励磁して
測定した場合のバルクハウゼンノイズの実効値電圧(R
MS)のプロファイルを示した。制御された圧縮残留応
力がない場合の比較例の結果について見ると、軸方向の
実効値電圧は測定位置によって大きくばらついているこ
とがわかる。周方向についても同様である。さらに、同
じ測定部位でも軸方向の測定値と周方向の測定値が大き
く異なっている。これに対して、ショットブラスト処理
によって、鋼管表面に均一に圧縮残留応力を付与した本
発明例では、測定部位による実効値電圧のばらつきもほ
とんどなくなって均一化されていることがわかる。さら
に、軸方向と周方向の実効値電圧もほぼ同じ値になって
いる。
FIG. 6 shows the effective value voltage (R) of the Barkhausen noise measured when the steel pipe was excited in the axial and circumferential directions.
MS). Looking at the result of the comparative example in which there is no controlled compressive residual stress, it can be seen that the effective value voltage in the axial direction greatly varies depending on the measurement position. The same applies to the circumferential direction. Furthermore, the measured value in the axial direction and the measured value in the circumferential direction are significantly different even at the same measurement site. On the other hand, in the example of the present invention in which the compressive residual stress is uniformly applied to the surface of the steel pipe by the shot blast treatment, it can be seen that the variation in the effective value voltage between the measurement sites is almost eliminated and the steel tube is made uniform. Further, the effective value voltages in the axial direction and the circumferential direction are also substantially the same.

【0036】以上から、鋼管表面の周囲にわたって、面
内方向に圧縮残留応力を付与することによって、鋼管表
面の周囲にわたるバルクハウゼンノイズの実効値電圧を
均一にすることができる。
As described above, by applying a compressive residual stress in the in-plane direction around the surface of the steel pipe, the effective value voltage of Barkhausen noise over the circumference of the surface of the steel pipe can be made uniform.

【0037】(実施例2)降伏応力が24kgf/mm
2 の電縫管を用いてバルクハウゼンノイズと外部応力と
の関係を調べた。測定試料は外径318mm、肉厚6.
9mm、長さ6000mmの鋼管である。ただし、鋼管
表面にショットブラスト処理で圧縮残留応力を付与した
ものとしないものを用いた。それぞれの鋼管に曲げ試験
を実施しながらバルクハウゼンノイズを測定し、両者の
関係を調べた。曲げ試験は、200トン試験機を用いて
2点載荷で行った。載荷点間隔は700mm、支点間隔
は4800mmである。
(Example 2) Yield stress is 24 kgf / mm
The relationship between Barkhausen noise and external stress was investigated using the ERW tube of No. 2 . The measurement sample has an outer diameter of 318 mm and a thickness of 6.
It is a 9 mm, 6000 mm long steel pipe. However, a steel tube surface to which a compressive residual stress was applied by shot blasting or not was used. Barkhausen noise was measured while performing a bending test on each steel pipe, and the relationship between the two was examined. The bending test was performed at a two-point load using a 200-ton testing machine. The loading point interval is 700 mm, and the fulcrum interval is 4800 mm.

【0038】それぞれの鋼管の測定部位は周囲にわたっ
て22.5°間隔で、合計16ヶ所である。なお、33
7.5°の測定部位が溶接部になるように基準面を選ん
だ。測定部位に負荷される外部応力はその部位に隣接し
て貼り付けた塑性領域まで測定可能な3軸型ひずみゲ−
ジから求めた。バルクハウゼンノイズの測定は、実施例
1と同様である。ただし、励磁方向は管軸方向である。
The measurement sites of each steel pipe are 22.5 ° intervals around the circumference, for a total of 16 locations. Note that 33
The reference plane was selected so that the 7.5 ° measurement site was the weld. A three-axis strain gauge that can measure the external stress applied to the measurement site up to the plastic region attached adjacent to the site
I asked for it. The measurement of Barkhausen noise is the same as in the first embodiment. However, the excitation direction is the tube axis direction.

【0039】ショットブラスト処理後の鋼管表面の残留
応力の大きさの深さ方向の分布は、表面から板厚方向へ
所定厚さだけエッチングした後、X線残留応力測定法に
よって求めた。その結果、表面から約200μmの深さ
まで降伏応力と同じ大きさの圧縮残留応力(−24kg
f/mm2 )が面内で等方的に入っていることを確認し
た。skin depthの計算式d=(ρ/πfμ)1/2から求
めたバルクハウゼンノイズの検出深さは、約160μm
である。
The distribution of the magnitude of the residual stress on the surface of the steel pipe after the shot blasting in the depth direction was determined by an X-ray residual stress measurement method after etching a predetermined thickness from the surface in the thickness direction. As a result, a compressive residual stress (−24 kg) having the same magnitude as the yield stress from the surface to a depth of about 200 μm.
f / mm 2 ) was confirmed to be isotropic in the plane. The detection depth of Barkhausen noise calculated from the skin depth calculation formula d = (ρ / πfμ) 1/2 is about 160 μm
It is.

【0040】図7は、ショットブラスト処理材において
2点載荷の合計荷重を増加させていった場合の各測定部
位における軸方向のひずみのプロファイルを示した。図
中で合計荷重の単位をkNで表したが、1kgf=9.
8Nである。合計荷重が増加するにつれて90°と27
0°の間の部位では引っ張りひずみが増加し、その両側
の部位では圧縮ひずみが増加している。90°と270
°の部位が中立点である。図7の結果はショットブラス
ト処理無し材でも同様であった。
FIG. 7 shows the axial strain profile at each measurement site when the total load of the two-point loading was increased in the shot blasting material. Although the unit of the total load is represented by kN in the figure, 1 kgf = 9.
8N. 90 ° and 27 as total load increases
Tensile strain increases at a portion between 0 ° and compressive strain increases at portions on both sides thereof. 90 ° and 270
° is the neutral point. The results in FIG. 7 were the same for the material without shot blasting.

【0041】図7の測定点に隣接した場所で測定したバ
ルクハウゼンノイズの実効値電圧(RMS)のプロファ
イルを図3に示した。図3からわかるように、無負荷の
時の実効値電圧は溶接部を除いて均一な値になってい
る。実効値電圧は中立点である90°と270°の部位
ではほとんど変化せず、軸方向に引っ張り応力が負荷さ
れる中立点の間で大きく増加しているのがわかる。中立
点の両側の圧縮応力が負荷されている部位では実効値電
圧の増加はわずかである。337.5°の部位は溶接部
であるが、この部位の実効値電圧は不連続的に変化して
いるのがわかる。2つの中立点は低荷重の時は最小値を
示しているが(溶接部を除いて)、高荷重になると極小
値となることがわかる。最大の引っ張り応力は中立点の
2点間のほぼ中央の角度に位置している。
FIG. 3 shows a profile of an effective value voltage (RMS) of Barkhausen noise measured at a place adjacent to the measurement point in FIG. As can be seen from FIG. 3, the effective value voltage at the time of no load is a uniform value except for the welded portion. It can be seen that the effective value voltage hardly changes at the neutral points of 90 ° and 270 °, and greatly increases between the neutral points where the tensile stress is applied in the axial direction. The increase in the effective value voltage is small at the part where the compressive stress is applied on both sides of the neutral point. The portion at 337.5 ° is a welded portion, and it can be seen that the effective value voltage at this portion changes discontinuously. It can be seen that the two neutral points show a minimum value when the load is low (except for the welded portion), but have a minimum value when the load is high. The maximum tensile stress is located at a substantially central angle between the two neutral points.

【0042】図4は、今回の実験で求めた検量線であ
り、実効値電圧の最大値を示す180°の位置における
ひずみゲ−ジの値から求めた軸方向の引っ張り応力とバ
ルクハウゼンノイズの実効値電圧との関係を示したもの
である。なお、90°〜270°の間に位置する測定部
位でも同じ相関関係であった。両者の直線相関は降伏応
力の約2倍に相当する約47kgf/mm2 の応力範囲
まで成り立っていることがわかる。通常は、塑性領域で
はヤング率Eが変化するために、そのEを一定としてひ
ずみから応力を計算することはできないが、本発明例の
場合のように圧縮降伏応力状態から引っ張り降伏応力状
態に変化する間では、ヤング率E=σ/ε=21000
kg/mm2 (応力σ、ひずみε)がほぼ可逆的に成り
立つことから、ひずみから応力への計算が可能になる。
ただし、それ以上の応力範囲ではE=σ/εの関係が成
り立たなくなるため、ひずみから応力を求めることはで
きなくなる。
FIG. 4 is a calibration curve obtained in this experiment. The tensile stress in the axial direction and the Barkhausen noise obtained from the strain gage value at the position of 180 ° where the maximum value of the effective value voltage is obtained are shown. It shows the relationship with the effective value voltage. It should be noted that the same correlation was observed in the measurement site located between 90 ° and 270 °. It can be seen that the linear correlation between the two holds up to a stress range of about 47 kgf / mm 2 corresponding to about twice the yield stress. Normally, since Young's modulus E changes in the plastic region, it is not possible to calculate stress from strain with E being constant. However, as in the case of the present invention, the stress changes from the compressive yield stress state to the tensile yield stress state. The Young's modulus E = σ / ε = 21000
Since kg / mm 2 (stress σ, strain ε) holds almost reversibly, calculation from strain to stress becomes possible.
However, since the relationship of E = σ / ε does not hold in the stress range beyond that, it is impossible to obtain the stress from the strain.

【0043】図4の横軸ではそれを( )付きで示した。
図4を検量線として用いることによって、実効値電圧か
ら応力を求めることが可能となる。
The abscissa in FIG. 4 indicates the number in parentheses.
By using FIG. 4 as a calibration curve, it is possible to determine the stress from the effective value voltage.

【0044】比較として、ショットブラスト処理を施さ
なかった鋼管に対して、同様な実験を行った。最大引っ
張り応力が負荷される測定点、すなわち、図3の180
°に相当する部位での応力とバルクハウゼンノイズの実
効値電圧の関係を図5に示した。両者の直線関係はほと
んどなく、また、実効値電圧の応力依存性も小さいこと
がわかる。
As a comparison, a similar experiment was performed on a steel pipe that was not subjected to the shot blast treatment. The measurement point at which the maximum tensile stress is applied, that is, 180 in FIG.
FIG. 5 shows the relationship between the stress at a position corresponding to ° and the effective value voltage of Barkhausen noise. It can be seen that there is almost no linear relationship between the two, and the stress dependence of the effective value voltage is small.

【0045】(実施例3)バルクハウゼンノイズの検出
深さをd、圧縮残留応力の存在深さをDとした場合、D
/dが変化した時に外部応力とバルクハウゼンノイズの
実効値電圧の直線相関が成り立つ範囲を調べた。実際に
は、バルクハウゼンノイズの検出深さdを一定として、
ショットブラスト条件を変えることによって、Dを変え
た。バルクハウゼンノイズの測定法および残留応力の測
定法は実施例1と同様である。なお、ショットブラスト
条件を変えると残留応力の存在深さDとともに圧縮残留
応力の大きさ−σrも同時に変わってしまうため、直線
相関が成り立つ応力範囲の評価は、実測した直線相関範
囲をσlinerとした場合、σliner/(σr+σy)、σy
は降伏応力、で評価した。これは、直線相関が成り立つ
範囲σlinerは最大で(σr+σy)であり、このσliner
/(σr+σy)が大きい方が、直線相関が成り立つ範囲
が広いことを意味する。測定結果を以下の表1に示す。
(Embodiment 3) When the depth of detection of Barkhausen noise is d and the depth of existence of compressive residual stress is D,
The range in which a linear correlation between external stress and the effective value voltage of Barkhausen noise when / d changed was examined. Actually, assuming that the detection depth d of Barkhausen noise is constant,
D was changed by changing the shot blast conditions. The method of measuring Barkhausen noise and the method of measuring residual stress are the same as in Example 1. When the shot blast conditions are changed, the magnitude -σr of the compressive residual stress changes simultaneously with the depth D of the residual stress, so the evaluation of the stress range in which the linear correlation is established is based on the fact that the measured linear correlation range is σliner. In this case, σliner / (σr + σy), σy
Is the yield stress. This is because the range σliner where the linear correlation is established is (σr + σy) at the maximum, and this σliner
A larger value of / (σr + σy) means that the range in which the linear correlation is established is wider. The measurement results are shown in Table 1 below.

【0046】[0046]

【表1】 [Table 1]

【0047】以上からわかるように、バルクハウゼンノ
イズの検出深さをdとした場合、残留応力を測定部位の
表面から少なくとも0.5dの深さまで付与することに
よって、外部応力とバルクハウゼンノイズの実効値電圧
の直線相関がより広い応力範囲まで成り立つことがわか
る。
As can be seen from the above, when the detection depth of Barkhausen noise is d, the residual stress is applied at least to a depth of 0.5 d from the surface of the measurement site, so that the external stress and the Barkhausen noise can be effectively reduced. It can be seen that the linear correlation of the value voltage holds over a wider stress range.

【0048】(実施例4)実施例2で使用した鋼管と同
じ鋼管にショットブラスト処理を施して圧縮残留応力を
付与した。残留応力の大きさは実施例2の場合と同じで
あった。次に、この鋼管を曲げて任意量の外部応力を負
荷した状態で、本発明によって外部応力が診断できるか
否かを調べた。鋼管周囲の測定点数、およびバルクハウ
ゼンノイズの測定方法は実施例2と同様である。実測し
たバルクハウゼンノイズの実効値電圧の最大値を図4の
検量線を用いて応力に換算した値は32kgf/mm2
であった。この値は、曲げた鋼管の曲率を精度良く測定
して計算によって求めたひずみの値を応力に換算した値
とほぼ一致した。
Example 4 The same steel pipe as that used in Example 2 was subjected to a shot blast treatment to impart a compressive residual stress. The magnitude of the residual stress was the same as in Example 2. Next, it was investigated whether or not the present invention can diagnose the external stress in a state where the steel pipe is bent and an arbitrary amount of external stress is applied. The number of measurement points around the steel pipe and the method of measuring Barkhausen noise are the same as in Example 2. The value obtained by converting the actually measured maximum value of the effective value voltage of Barkhausen noise into stress using the calibration curve of FIG. 4 is 32 kgf / mm 2.
Met. This value almost coincided with the value obtained by measuring the curvature of the bent steel pipe with high accuracy and converting the value of strain obtained by calculation into stress.

【0049】したがって、本発明によって、降伏応力以
上の応力の診断が可能であることがわかる。
Therefore, it can be understood that the present invention makes it possible to diagnose a stress equal to or higher than the yield stress.

【0050】[0050]

【発明の効果】本発明によれば、表面に圧縮残留応力が
付与された鋼管のバルクハウゼンノイズを鋼管の周囲に
わたって、所定の部位で測定することによって、鋼管に
作用している応力が弾性領域のみならず、降伏応力を越
えた塑性領域にある応力までも精度良く診断することが
可能となる。本発明を用いることによって、埋設してあ
る鋼管に対して、本来最も注意して監視し、場合によっ
ては直ちに応力解放工事を実施しなければならないよう
な塑性領域にある応力の診断精度が格段に向上する。
According to the present invention, the Barkhausen noise of a steel pipe having a compressive residual stress applied to its surface is measured at a predetermined portion around the circumference of the steel pipe, so that the stress acting on the steel pipe is reduced to the elastic region. In addition, it is possible to accurately diagnose even stress in the plastic region exceeding the yield stress. By using the present invention, the accuracy of diagnosing stress in a plastic region where buried steel pipes should be monitored with the utmost care and where stress relief work must be immediately performed in some cases is significantly improved. improves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】応力測定に用いられる磁気ヘッドを示す概略斜
視図である。
FIG. 1 is a schematic perspective view showing a magnetic head used for stress measurement.

【図2】応力測定方法を簡易に示す模式図である。FIG. 2 is a schematic diagram simply showing a stress measurement method.

【図3】バルクハウゼンノイズの実効値電圧プロファイ
ルの変化を表す特性図である。
FIG. 3 is a characteristic diagram illustrating a change in an effective value voltage profile of Barkhausen noise.

【図4】応力とバルクハウゼンノイズの実効値電圧の関
係を表す検量線を表す特性図である。
FIG. 4 is a characteristic diagram showing a calibration curve representing a relationship between a stress and an effective value voltage of Barkhausen noise.

【図5】応力とバルクハウゼンノイズの実効値電圧の関
係を表す検量線を表す特性図である。
FIG. 5 is a characteristic diagram showing a calibration curve representing a relationship between stress and an effective value voltage of Barkhausen noise.

【図6】バルクハウゼンノイズの実効値電圧のプロファ
イルを表す特性図である。
FIG. 6 is a characteristic diagram illustrating a profile of an effective value voltage of Barkhausen noise.

【図7】鋼管のひずみプロファイルの変化を表す特性図
である。
FIG. 7 is a characteristic diagram showing a change in a strain profile of a steel pipe.

【符号の説明】[Explanation of symbols]

1 磁気ヘッド 2 励磁ヘッド 3 検出ヘッド 4 鋼管 11 U字型コア 12 励磁コイル DESCRIPTION OF SYMBOLS 1 Magnetic head 2 Excitation head 3 Detection head 4 Steel pipe 11 U-shaped core 12 Excitation coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山名 成彦 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 佐々木 孝雄 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 辻本 潤 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 Fターム(参考) 2G053 AA12 AA19 AB20 BA12 BA26 BB05 BC02 BC14 CA03 CA18 CB21 DA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigehiko Yamana 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Takao Sasaki 2-6-3, Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Jun Tsujimoto 2-6-3 Otemachi, Chiyoda-ku, Tokyo F-term within Nippon Steel Corporation (reference) 2G053 AA12 AA19 AB20 BA12 BA26 BB05 BC02 BC14 CA03 CA18 CB21 DA01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮残留応力が付与されている鋼管を診
断対象とし、励磁ヘッドと検出ヘッドとを備えて構成さ
れる磁気ヘッドを用いて、前記励磁ヘッドにより鋼管の
測定部位を交流励磁し、前記検出ヘッドに誘起される電
圧信号を周波数分離してバルクハウゼンノイズを検出す
る応力診断方法であって、 鋼管表面の周方向に複数の所定の測定部位を設定し、鋼
管の管軸中心線を含み鋼管表面の所定の測定部位と交わ
る平面を想定し、前記各平面のうちの一枚を基準面とし
て、各測定部位を前記基準面と各測定部位を含む平面と
のなす角度で表示し、それらの角度とバルクハウゼンノ
イズの実効値電圧との関係から、互いの位置がほぼ18
0°の角度の間隔を保ち、且つ、バルクハウゼンノイズ
の実効値電圧がそれぞれ極小値又は最小値をとっている
測定部位を2ヶ所求め、それら2つの測定部位のほぼ中
央の角度に位置している測定部位のバルクハウゼンノイ
ズの実効値電圧の最大値を求め、前記実効値電圧の最大
値から、同一部材を使って予め求めておいた外部応力と
バルクハウゼンノイズの実効値電圧との関係を表してい
る検量線を用いて、軸方向の最大引っ張り応力値を求め
ることを特徴とする鋼管の応力診断方法。
1. A steel pipe to which a compressive residual stress has been applied is used as a diagnosis target, and a magnetic head including an excitation head and a detection head is used to perform AC excitation of a measurement portion of the steel pipe by the excitation head. A stress diagnosis method for detecting Barkhausen noise by frequency-separating a voltage signal induced in the detection head, wherein a plurality of predetermined measurement sites are set in a circumferential direction of a steel pipe surface, and a pipe axis center line of the steel pipe is set. Assuming a plane that intersects a predetermined measurement site on the surface of the steel pipe, including one of the planes as a reference plane, displaying each measurement site at an angle between the reference plane and a plane including each measurement site, From the relationship between those angles and the effective value voltage of Barkhausen noise, the mutual positions are approximately 18
Two intervals are measured at an angle of 0 °, and the effective value voltage of the Barkhausen noise has a minimum value or a minimum value. The maximum value of the effective value voltage of Barkhausen noise of the measurement site is determined, and from the maximum value of the effective value voltage, the relationship between the external stress previously obtained using the same member and the effective value voltage of Barkhausen noise is determined. A method for diagnosing stress in a steel pipe, wherein a maximum tensile stress value in an axial direction is obtained by using a represented calibration curve.
【請求項2】 現場設置前の鋼管表面の周囲に渡って、
面内方向に圧縮残留応力を付与することによって鋼管表
面の周囲に渡るバルクハウゼンノイズの実効値電圧を均
一にした鋼管を用いることを特徴とする請求項1に記載
の鋼管の応力診断方法。
2. Over the circumference of the steel pipe surface before installation on site,
The method for diagnosing stress in a steel pipe according to claim 1, wherein a steel pipe having a uniform effective value voltage of Barkhausen noise around the surface of the steel pipe by applying a compressive residual stress in an in-plane direction is used.
【請求項3】 残留応力が測定面内において等方的に分
布している鋼管を用いることを特徴とする請求項1又は
2に記載の鋼管の応力診断方法。
3. The method for diagnosing stress in a steel pipe according to claim 1, wherein a steel pipe having residual stress isotropically distributed in a measurement plane is used.
【請求項4】 バルクハウゼンノイズの検出深さをdと
した場合、圧縮残留応力を測定部位の表面から少なくと
も0.5dの深さまで付与することを特徴とする請求項
1又は2に記載の鋼管の応力診断方法。
4. The steel pipe according to claim 1, wherein, when the detection depth of Barkhausen noise is d, the compressive residual stress is applied to a depth of at least 0.5 d from the surface of the measurement site. Stress diagnosis method.
JP04181099A 1999-02-19 1999-02-19 Steel pipe stress diagnosis method Expired - Fee Related JP4128297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04181099A JP4128297B2 (en) 1999-02-19 1999-02-19 Steel pipe stress diagnosis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04181099A JP4128297B2 (en) 1999-02-19 1999-02-19 Steel pipe stress diagnosis method

Publications (2)

Publication Number Publication Date
JP2000241391A true JP2000241391A (en) 2000-09-08
JP4128297B2 JP4128297B2 (en) 2008-07-30

Family

ID=12618680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04181099A Expired - Fee Related JP4128297B2 (en) 1999-02-19 1999-02-19 Steel pipe stress diagnosis method

Country Status (1)

Country Link
JP (1) JP4128297B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507220A (en) * 2005-09-05 2009-02-19 スカニア シーブイ アクチボラグ(パブル) Method of processing cast iron components based on hardness estimation by magnetic Barkhausen noise
EP3730775A1 (en) * 2019-04-24 2020-10-28 Delphi Technologies IP Limited Method for detection of mechanical stress in a common rail body
JP2021043161A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
JP2021043163A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
CN114034415A (en) * 2021-10-26 2022-02-11 成都飞机工业(集团)有限责任公司 Stress detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009507220A (en) * 2005-09-05 2009-02-19 スカニア シーブイ アクチボラグ(パブル) Method of processing cast iron components based on hardness estimation by magnetic Barkhausen noise
EP3730775A1 (en) * 2019-04-24 2020-10-28 Delphi Technologies IP Limited Method for detection of mechanical stress in a common rail body
JP2021043161A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
JP2021043163A (en) * 2019-09-13 2021-03-18 日本製鉄株式会社 Hardness measuring device, hardness measuring method and program
CN114034415A (en) * 2021-10-26 2022-02-11 成都飞机工业(集团)有限责任公司 Stress detection method
CN114034415B (en) * 2021-10-26 2022-09-20 成都飞机工业(集团)有限责任公司 Stress detection method

Also Published As

Publication number Publication date
JP4128297B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US6964202B2 (en) Detection of rolling contact fatigue
EP2124043B1 (en) Eddy current inspection method and eddy current inspection device for carrying out the eddy current inspection method
EP1360467B1 (en) Measurement of stress in a ferromagnetic material
EP0699301B1 (en) Stress measurement
US7215117B2 (en) Measurement with a magnetic field
EP0703439B1 (en) Rail axial force measuring method and rail whose axial force can be measured
JP2000241391A (en) Method for diagnosing stress of steel pipe
US20100236339A1 (en) Biaxial stress management
JPH0466863A (en) Residual stress measuring method by steel working
JP4029119B2 (en) Steel pipe stress diagnosis method
JP4128294B2 (en) Stress diagnosis method
JP2771433B2 (en) Tube Magnetostrictive Stress Measurement Method
JP3130106B2 (en) Stress measurement method using magnetostrictive sensor
JP5614752B2 (en) Quenching state inspection device and quenching state inspection method
JP3159132B2 (en) Method for measuring stress in steel pipes
JP3759289B2 (en) Stress sensor plate and stress measurement method using the same
CN108917568B (en) Convergence monitoring device and monitoring method for supporting structure
JP3956207B2 (en) Stress evaluation method for curved pipes
Yamaguchi et al. New residual stress detector using angle resolved Barkhausen noise
SU970228A1 (en) Method of measuring axial residual stresses of the first kind in ferromagnetic articles
Vengrinovich et al. Advance in Stress Measurement via Barkhausen Noise
JPH0769229B2 (en) Tube stress relief method
Sadrtdinov et al. Studying the stressed state of a pipe wall with nonuniform residual stresses during bending
JP2005207800A (en) Method and apparatus for calibrating magnetostriction sensitivity
JPH068722B2 (en) Thickness measurement method for lining pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees