JP2000240481A - Vehicle control device - Google Patents

Vehicle control device

Info

Publication number
JP2000240481A
JP2000240481A JP11045734A JP4573499A JP2000240481A JP 2000240481 A JP2000240481 A JP 2000240481A JP 11045734 A JP11045734 A JP 11045734A JP 4573499 A JP4573499 A JP 4573499A JP 2000240481 A JP2000240481 A JP 2000240481A
Authority
JP
Japan
Prior art keywords
failure
self
state
diagnosis
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11045734A
Other languages
Japanese (ja)
Inventor
Tsutomu Hatano
勉 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11045734A priority Critical patent/JP2000240481A/en
Publication of JP2000240481A publication Critical patent/JP2000240481A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

PROBLEM TO BE SOLVED: To actively perform a failure diagnosis to perform the diagnosis of all components by providing, within a self-diagnostic means, a self-diagnostic vehicle property changing means for determining the manipulated variable of the actuator of a drive source so as to be actively detectable of failure and transmitting it to a controlled variable output means. SOLUTION: This device comprises a vehicle property input means 101 for inputting the signal from each part sensor, a driving force control means 102 for controlling and requesting the driving force distribution to a plurality of drive sources, a controlled variable arithmetic means 103 for calculating the actuator manipulated variable and a controlled variable output means 104, and a self-diagnostic means 105 for detecting the failure of a system. The self- diagnostic means 105 is provided with a self-diagnostic condition judgment means 106 and failure judgment means 108 for judging whether it is detectable of failure at present or not, and a failure memory means 109. Further, it is also provided with a self-diagnostic vehicle property changing means 107 for determining the manipulated variable of the actuator of the drive source so as to be actively detectable of failure and transmitting it to the controlled variable output means 104.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は車両用制御装置に関
し、特に複数の駆動源を有し、適応的に駆動源を単独、
ないしは併用の選択・切り替えを行なう車両において、
駆動源の故障診断を行なう車両用制御装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a vehicle, and more particularly, to a control device for a vehicle, which has a plurality of drive sources and adaptively uses only one drive source.
Or in vehicles that select and switch between
The present invention relates to a vehicle control device that performs a failure diagnosis of a drive source.

【0002】[0002]

【従来の技術】従来の車両用制御装置におけるシステム
の自己診断としては、図3の従来のシステム概念図に示
すものがある。自己診断手段は、直接車両制御に関与せ
ず、別の制御手段、あるいは運転者によって操作された
結果で生じた車両状態、車両を取り巻く環境の影響で生
じた車両状態を基に、システムが正常に機能しているか
を判定する。システムの構成要素に故障が検知された場
合は、故障部位と故障内容が記憶され、指定のモニタ手
段を用いることで、車両修理時の情報として作業効率を
上げることと、最低限の部品交換で修理することができ
る。さらに、システムの構成要素に故障が検知され、シ
ステムの本来の制御性能が発揮できなくなった場合は、
本来のシステム制御に代わり、故障を補う別のシステム
制御を行ない、システム全体の安全性、安定性を維持し
つつ、性能低下を最小限に抑える。
2. Description of the Related Art As a self-diagnosis of a system in a conventional vehicle control device, there is one shown in the conventional system conceptual diagram of FIG. The self-diagnosis means is not directly involved in vehicle control, and the system performs normal operation based on the vehicle state resulting from the operation of another control means, the driver, or the environment surrounding the vehicle. Function is determined. When a failure is detected in a component of the system, the failure location and the content of the failure are stored, and by using the specified monitor means, the work efficiency can be improved as information at the time of vehicle repair, and minimal replacement of parts is required. Can be repaired. Furthermore, if a failure is detected in a component of the system and the original control performance of the system cannot be exhibited,
In place of the original system control, another system control to compensate for the failure is performed to maintain the safety and stability of the entire system and minimize the performance degradation.

【0003】[0003]

【発明が解決しようとする課題】しかしながらこのよう
な従来方式は、システム構成要素によって診断可能な条
件が揃いにくく、大規模で複雑なシステムをくまなく診
断することが難しい、という問題点がある。さらに、診
断可能な条件が車両運転中に、いつ成立するかわからな
いため、本来の車両制御中に逐次診断条件をモニタ・判
定し、条件成立時には本来の車両制御に影響しないよう
に診断する必要がある。この要件を満たそうとすると、
本来の制御システムと診断システムの個々の構成、両者
の関係が複雑になり、設計・作成・動作確認・保守が非
常に困難である、という製造上の問題点もある。
However, such a conventional system has a problem that it is difficult to make a condition that can be diagnosed by system components and it is difficult to diagnose a large-scale and complicated system. Furthermore, since it is not known when the conditions that can be diagnosed will be met during vehicle operation, it is necessary to monitor and determine the diagnostic conditions sequentially during the original vehicle control, and to make a diagnosis so as not to affect the original vehicle control when the conditions are met. is there. If you try to meet this requirement,
There is also a manufacturing problem that the original configuration of the control system and the diagnostic system and the relationship between the two become complicated, and that design, creation, operation confirmation, and maintenance are extremely difficult.

【0004】[0004]

【課題を解決するための手段】本発明は、このような従
来の問題点に着目してなされたもので、複数の駆動源を
有し、運転状態、車両状態に応じて、駆動源を単独、な
いしは併用運転する車両において、駆動に関与していな
い駆動源の運転状態を任意に変化させ、システム構成要
素の診断可能条件を能動的に作り出し、全ての構成要素
の診断を可能とすること、故障診断に関連するシステム
構成を整然とさせ、製造コスト低減、システム品質の安
定化を図ること、を目的とする。すなわち、車両の運転
状態、制御状態を、各部に取り付けられたセンサからの
信号を用いて入力する車両状態量入力手段と、複数の駆
動源を、車両状態に応じて適応的に単独、ないしは併用
して、駆動に関与させることと、各駆動源に対する駆動
力配分を管理・要求する駆動力管理手段と、車両の運転
状態、制御状態、駆動力要求、システムの故障状態に応
じて、駆動源に取り付けられたアクチュエータ操作量を
演算する制御量演算手段と、アクチュエータ操作量を実
際にアクチユエータへ出力する制御量出力手段と、シス
テムの故障を検知する自己診断手段と、を備え、自己診
断手段の内に、現在故障検知できる状況にあるかを、車
両状態、制御状態から判定する自己診断条件判定手段
と、車両状態、制御状態を照らし合わせて、システムが
故障していないかの判定と、故障していると判定された
場合には、故障部位の特定を行なう故障判定手段と、故
障していると判定された場合に、故障部位と故障内容を
記憶する故障記憶手段と、を含む車両用制御装置におい
て、前記自己診断手段の内に、能動的に故障検知できる
状況となるように、駆動源に取り付けられたアクチュエ
ータの操作量を決定して、前記制御量出力手段へ渡す自
己診断用車両状態量変更手段を設けた。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and has a plurality of drive sources, and a single drive source is provided according to a driving state and a vehicle state. Or, in a vehicle that is operated in combination, arbitrarily changing the operating state of a drive source that is not involved in driving, actively creating a diagnosable condition for system components, and enabling diagnosis of all components, An object of the present invention is to make a system configuration related to failure diagnosis orderly, reduce manufacturing costs, and stabilize system quality. That is, a vehicle state quantity input means for inputting a driving state and a control state of the vehicle using signals from sensors attached to the respective units, and a plurality of driving sources are adaptively used alone or in combination according to the vehicle state. Drive power management means for managing and requesting the drive power distribution to each drive source, and the drive source according to the vehicle operating condition, control condition, drive force request, and system failure condition. Control amount calculating means for calculating an actuator operation amount attached to the controller, control amount output means for actually outputting the actuator operation amount to the actuator, and self-diagnosis means for detecting a failure of the system. A self-diagnosis condition determining means for determining whether a failure can be detected from the vehicle state and the control state, and comparing the vehicle state and the control state with the system. Failure determination means for determining whether or not a failure has occurred and, if determined to have failed, for identifying a failure location, and storing the failure location and failure content when determined to have failed. A failure storage unit that performs the operation, the operation amount of an actuator attached to a drive source is determined in the self-diagnosis unit so that a failure can be actively detected. Self-diagnosis vehicle state quantity changing means to be passed to the control quantity output means is provided.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図2は、本発明の実施の形態1に
対応するシステム構成図である。図2において、駆動力
管理制御ユニット301は、エンジン319 、モータ
326の駆動力配分を判断・演算し、駆動力配分ユニッ
ト331を制御するとともに、エンジン制御ユニット3
07、モータ制御ユニット313に対して、駆動力要求
値を指令する。エンジン制御ユニット307は、駆動力
管理制御ユニット301からの駆動力要求値を出力する
ために、各種センサからの信号を基にアクチュエータ操
作量を演算し、アクチュエータへ出力する。モータ制御
ユニット313も同様に、駆動力要求を満たすように、
モータ326を駆動する。駆動力配分ユニツト331
は、駆動力管理制御ユニット301からの制御信号によ
り、ミッション336へ伝達させる駆動源を、エンジン
319のみ/モータ326のみ/エンジン319とモー
タ326の併用/いずれも伝達させない、の4パターン
から選択して、エンジン側クラッチ締結ソレノイド33
4、モータ側クラッチ締結ソレノイド335を操作す
る。エンジン制御ユニット307のROM310には、
エンジン319を制御するためのソフトウェアと、故障
診断するためのソフトウェアが格納されている。MPU
309は、入力回路308から入力された信号を、RO
M310のプログラムで指定された手続きに従って演算
処理する。演算結果はアクチュエータ操作量に変換さ
れ、出力回路312からアクチュエータへ出力される。
入力回路308へ入力させる信号を検出するセンサとし
て、ここでは、ISC (Idol Speed Contorol )バルブ開
度センサ320、クランク角センサ321、スロットル
バルブ開度センサ322を挙げた。出力回路312から
出力した信号を受けて操作されるアクチュエータとし
て、ISC バルブモータ323、インジェクタ324、
スロットルバルブモータ325を挙げた。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a system configuration diagram corresponding to the first embodiment of the present invention. In FIG. 2, a driving force management control unit 301 determines and calculates the driving force distribution of the engine 319 and the motor 326, controls the driving force distribution unit 331, and controls the engine control unit 3
07, instruct the motor control unit 313 on the required driving force value. The engine control unit 307 calculates an actuator operation amount based on signals from various sensors and outputs the operation amount to the actuator in order to output a driving force request value from the driving force management control unit 301. Similarly, the motor control unit 313 also satisfies the driving force demand.
The motor 326 is driven. Driving force distribution unit 331
Selects the drive source to be transmitted to the mission 336 from the four patterns of only the engine 319 / only the motor 326 / the combination of the engine 319 and the motor 326 / not transmit any according to the control signal from the driving force management control unit 301. And the engine-side clutch engagement solenoid 33
4. Operate the motor-side clutch engagement solenoid 335. In the ROM 310 of the engine control unit 307,
Software for controlling the engine 319 and software for diagnosing a failure are stored. MPU
Reference numeral 309 designates a signal input from the input circuit 308 as RO
The arithmetic processing is performed according to the procedure specified by the program of M310. The calculation result is converted into an actuator operation amount and output from the output circuit 312 to the actuator.
Here, as sensors for detecting a signal to be input to the input circuit 308, an ISC (Idol Speed Control) valve opening sensor 320, a crank angle sensor 321, and a throttle valve opening sensor 322 are mentioned. Actuators operated in response to signals output from the output circuit 312 include an ISC valve motor 323, an injector 324,
The throttle valve motor 325 was mentioned.

【0006】駆動力管理制御ユニット301で、モータ
326のみで車両を走行させることが決定された場合
を、想定する。駆動力管理制御ユニット301は、駆動
力配分ユニット331に対して、モータ326の駆動力
のみをミッション336へ伝達するように、走行状態に
なったら、モータ側クラッチ締結ソレノイド335を操
作して、モータ側クラッチを締結する。走行はモータ3
26の駆動力のみで行われるため、乗員に違和感を与え
ない範囲で、エンジン319の運転状態を任意に変化さ
せても、車両の走行に支障はない。ここでは、ISC バ
ルブモータ323の開閉故障診断を例に取る。ISC バ
ルブは、アイドリング時の吸入空気量を調節して、アイ
ドリング時のエンジン回転数を目標値に安定させるアク
チュエータである。吸入空気量が増加する方向に操作す
ると、吸入空気量に見合う燃料も供給されるため、エン
ジン回転数は上昇する。吸入空気量が減少する方向で
は、反対にエンジン回転数が下降する。吸入空気量を増
やす方向に操作する場合、エンジン回転数の上昇を抑え
ることとエンジン回転の安定性を保つため、燃料供給量
と点火時期を調節する。吸入空気量を減らす方向に操作
する場合、エンジン回転数が下がり過ぎて停止しないよ
うに、吸入空気量を一定に保つために、スロットルバル
ブモータ325を介して、スロットルバルブを開き側に
調節する。このように、ISC バルブモータ323を全
閉〜全開の間で操作して、ISC バルブモータ323の
開き度合を検出するISC バルブ開度センサ320の出
力信号を逐次読み込む。ISC バルブモータ323に対
する操作量とISC バルブ開度センサ320の信号との
関係が、仕様で決められた関係に沿っているかをチェッ
クすることで、ISC バルブモータ323の故障診断を
行なう。
[0006] It is assumed that the driving force management control unit 301 determines that the vehicle is run only by the motor 326. The driving force management control unit 301 operates the motor-side clutch engagement solenoid 335 so that the driving force distribution unit 331 transmits only the driving force of the motor 326 to the mission 336 when the vehicle is in a running state. Engage the side clutch. Running is motor 3
Since the driving is performed only with the driving force of 26, even if the operating state of the engine 319 is arbitrarily changed as long as the occupant does not feel uncomfortable, there is no hindrance to the running of the vehicle. Here, an open / close failure diagnosis of the ISC valve motor 323 is taken as an example. The ISC valve is an actuator that adjusts an intake air amount at idling to stabilize an engine speed at idling at a target value. When the operation is performed in a direction in which the intake air amount increases, the fuel corresponding to the intake air amount is also supplied, so that the engine speed increases. On the contrary, in the direction in which the intake air amount decreases, the engine speed decreases. When the operation is performed in the direction of increasing the intake air amount, the fuel supply amount and the ignition timing are adjusted in order to suppress the increase in the engine speed and maintain the stability of the engine speed. When the operation is performed in the direction of decreasing the intake air amount, the throttle valve is adjusted to the open side via the throttle valve motor 325 in order to keep the intake air amount constant so that the engine speed does not drop too much to stop. As described above, the ISC valve motor 323 is operated between fully closed and fully opened, and the output signal of the ISC valve opening sensor 320 for detecting the degree of opening of the ISC valve motor 323 is sequentially read. The failure diagnosis of the ISC valve motor 323 is performed by checking whether the relationship between the operation amount for the ISC valve motor 323 and the signal of the ISC valve opening sensor 320 is in accordance with the relationship determined by the specification.

【0007】以上説明してきたように、本発明の実施の
形態1によれば、複数の駆動源を有する車両において、
車両が走行中であっても、車両の駆動に関与していない
駆動源の運転状態を任意に変更できることを利用して、
駆動源の状態が変わってしまうような、従来は診断が難
しかった、あるいは診断しようとしてシステムを複雑に
していたシステム構成要素に対しても、能動的に故障診
断することで、故障診断を全てのシステム構成要素に対
して行なえる、故障診断システムの構成が簡単になる、
という効果がある。
As described above, according to the first embodiment of the present invention, in a vehicle having a plurality of driving sources,
By utilizing the ability to arbitrarily change the driving state of the drive source that is not involved in driving the vehicle, even while the vehicle is running,
In the past, it was difficult to diagnose, or the system components that would make the system complicated to diagnose were difficult to diagnose. The configuration of the fault diagnosis system that can be performed on system components is simplified.
This has the effect.

【0008】次に、実施の形態2を説明する。システム
構成図は、実施の形態1で用いた図2を用いる。駆動力
管理制御ユニット301で、モータ326のみで車両を
走行させることが決定された場合を想定する。駆動力管
理制御ユニット301は、駆動力配分ユニット331に
対して、モータ326の駆動力のみをミッション336
へ伝達するように、走行状態になったら、モータ側クラ
ッチ締結ソレノイド335を操作して、モータ側クラッ
チを締結する。走行は、モータ326の駆動力のみで行
われるため、乗員に違和感を与えない範囲で、エンジン
319の運転状態を任意に変化させても、車両の走行に
支障はない。ここでは、スロットルバルブモータ325
の開閉故障診断を例にとる。エンジン319のみを唯一
の駆動源とする車両においては、エンジン319の始動
直前/停止直後、かつアクチュエータに通電されている
時のみ、開閉故障診断を行なえる。複数の駆動源を有す
る車両においては、駆動に関与していない駆動源の運転
状態を任意に変更できることはもとより始動/停止も任
意に行なえる。スロットルバルブモータ325の開閉故
障診断は、スロットルバルブが全閉〜全開の間で動作で
きることを、実際にアクチュエータを作動させて確認す
る。エンジン回転中の状態で、スロットルバルブを全開
にすると、乗員に違和感を与えるほどエンジン回転が上
昇するため、エンジンを停止させてから診断を開始す
る。スロットルバルブモータ325に対して、スロット
ルバルブが全閉〜全開の間で動作するように、エンジン
制御ユニット307から制御信号を出力する。エンジン
制御ユニット307は、スロットルバルブ開度センサ3
22で検知された信号を読み込み、制御信号に対応する
目標スロットルバルブ開度が得られていることをチェッ
クすることで、スロットルバルブモータ325の故障診
断を行なう。故障診断が終了したら、あるいは終了して
いなくても、必要に応じて(制御上の要求、あるいは他
の故障診断からの要求に応じて)、再びエンジンを始動
する。
Next, a second embodiment will be described. The system configuration diagram uses FIG. 2 used in the first embodiment. It is assumed that the driving force management control unit 301 determines that the vehicle is run only by the motor 326. The driving force management control unit 301 transmits only the driving force of the motor 326 to the driving force distribution unit 331 in the transmission 336.
When the vehicle is in the running state, the motor-side clutch engagement solenoid 335 is operated to engage the motor-side clutch. Since the traveling is performed only by the driving force of the motor 326, even if the driving state of the engine 319 is arbitrarily changed as long as the occupant does not feel uncomfortable, the traveling of the vehicle is not affected. Here, the throttle valve motor 325
Take the open / close failure diagnosis as an example. In a vehicle using only the engine 319 as the sole drive source, open / close failure diagnosis can be performed only immediately before / after the engine 319 is started and only when the actuator is energized. In a vehicle having a plurality of driving sources, not only can the driving state of a driving source not involved in driving be arbitrarily changed, but also start / stop can be arbitrarily performed. The opening / closing failure diagnosis of the throttle valve motor 325 is performed by actually operating the actuator to confirm that the throttle valve can be operated between the fully closed state and the fully opened state. If the throttle valve is fully opened while the engine is running, the engine speed will increase enough to make the occupant feel uncomfortable, so the diagnosis is started after the engine is stopped. The engine control unit 307 outputs a control signal to the throttle valve motor 325 so that the throttle valve operates between fully closed and fully open. The engine control unit 307 includes the throttle valve opening sensor 3
The failure detection of the throttle valve motor 325 is performed by reading the signal detected at 22 and checking that the target throttle valve opening corresponding to the control signal is obtained. When the diagnosis is completed or not, the engine is started again as required (in response to a control request or a request from another diagnosis).

【0009】実施の形態2では、駆動に関与していない
駆動源を停止させないと、故障診断できないシステム構
成要素については、駆動源を停止させて故障診断を行な
う、ことを説明した。この他にも、駆動源が運転中でな
いと故障診断できないシステム構成要素、例えば吸気管
内の負圧を利用しているセンサ/アクチュエータ、オイ
ルポンプで発生している油圧を利用しているアクチュエ
ータ、エンジン回転中に発電される電力がないと所望の
動作が得られないアクチュエータ、ギア/プーリなどを
介して直接エンジン回転を利用しているアクチュエー
タ、に対しては、駆動源を運転させたまま、故障診断で
必要となる運転状態へ任意に変更させることで、乗員が
要求する車両の運転状態には影響を与えることなくシス
テム構成要素の故障診断を精度高く行なうことができ
る。エンジンの故障診断だけではなくエンジンのみで走
行している場合には、モータに対してもここまで説明し
てきたような手段で故障診断できる。
In the second embodiment, it has been described that, for a system component which cannot be diagnosed unless a drive source not involved in driving is stopped, the drive source is stopped to perform the fault diagnosis. Other system components that cannot be diagnosed unless the drive source is operating, such as sensors / actuators using negative pressure in the intake pipe, actuators using hydraulic pressure generated by an oil pump, and engines For actuators that do not achieve the desired operation without electric power generated during rotation, actuators that directly use engine rotation via gears / pulleys, etc. By arbitrarily changing the driving state required for the diagnosis, the failure diagnosis of the system components can be performed with high accuracy without affecting the driving state of the vehicle requested by the occupant. When the vehicle is running not only with the engine failure diagnosis but also with the engine alone, the failure diagnosis can be performed for the motor by the means described above.

【0010】[0010]

【発明の効果】以上説明してきたように、本発明によれ
ば、複数の駆動源を有する車両において、車両が走行中
であっても、車両の駆動に関与していない駆動源を任意
に始動/停止できることを利用して、駆動源を停止させ
ないと、診断のための動作をさせた時に乗員に違和感を
与えるシステム構成要素や、逆に駆動源が運転中でない
と診断のための作動をさせることができないシステム構
成要素に対して、駆動源を必要に応じて始動/停止させ
て故障診断することで、故障診断が全てのシステム構成
要素に対して行なえる、故障診断システムの構成が簡単
になる、という効果がある。
As described above, according to the present invention, in a vehicle having a plurality of driving sources, even when the vehicle is running, a driving source which is not involved in driving the vehicle is arbitrarily started. If the drive source is not stopped using the fact that the drive source can be stopped, a system component that gives an occupant a sense of incongruity when the operation for diagnosis is performed, or conversely, the operation for diagnosis is performed when the drive source is not operating. The failure diagnosis can be performed for all the system components by starting / stopping the drive source as necessary for the system components that cannot be performed, and the failure diagnosis system can be easily configured. Has the effect of becoming

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシステム概念図である。FIG. 1 is a conceptual diagram of a system according to the present invention.

【図2】本発明の構成を表すシステム構成図である。FIG. 2 is a system configuration diagram showing a configuration of the present invention.

【図3】従来のシステム概念図である。FIG. 3 is a conceptual diagram of a conventional system.

【符号の説明】[Explanation of symbols]

101 車両状態量入力手段 102 駆動力管理手段 103 制御量演算手段 104 制御量出力手段 105 自己診断手段 106 自己診断条件判定手段 107 自己診断用車両状態量変更手段 108 故障判定手段 109 故障記憶手段 201 車両状態量入力手段 202 駆動力管理手段 203 制御量演算手段 204 制御量出力手段 205 自己診断手段 206 自己診断条件判定手段 207 故障判定手段 208 故障記憶手段 301 駆動力管理制御ユニット 302 入力回路 303 MPU(演算装置) 304 ROM(不揮発メモリ) 305 RAM(揮発メモリ) 306 出力回路 307 エンジン制御ユニット 308 入力回路 309 MPU(演算装置) 310 ROM(不揮発メモリ) 311 RAM(揮発メモリ) 312 出力回路 313 モータ制御ユニット 314 入力回路 315 MPU(演算装置) 316 ROM(不揮発メモリ) 317 RAM(揮発メモリ) 318 出力回路 319 エンジン 320 ISC バルブ開度センサ 321 クランク角センサ 322 スロットルバルブ開度センサ 323 ISC バルブモータ 324 インジェクタ 325 スロットルバルブモータ 326 モータ 327 電流センサ 328 御度センサ 329 電流 330 位相 331 駆動力配分ユニット 332 エンジン側クラッチ締結センサ 333 モータ側クラッチ締結センサ 334 エンジン側クラッチ締結ソレノイド 335 モータ側クラッチ締結ソレノイド 336 ミッション 101 vehicle state quantity input means 102 driving force management means 103 control quantity calculation means 104 control quantity output means 105 self-diagnosis means 106 self-diagnosis condition judgment means 107 self-diagnosis vehicle state quantity change means 108 failure judgment means 109 failure storage means 201 vehicle State quantity input means 202 Driving force management means 203 Control quantity calculation means 204 Control quantity output means 205 Self-diagnosis means 206 Self-diagnosis condition judgment means 207 Failure judgment means 208 Failure storage means 301 Driving force management control unit 302 Input circuit 303 MPU (Calculation Apparatus) 304 ROM (non-volatile memory) 305 RAM (volatile memory) 306 Output circuit 307 Engine control unit 308 Input circuit 309 MPU (arithmetic unit) 310 ROM (non-volatile memory) 311 RAM (volatile memory) 312 output circuit 313 Motor control unit 314 Input circuit 315 MPU (arithmetic unit) 316 ROM (non-volatile memory) 317 RAM (volatile memory) 318 Output circuit 319 Engine 320 ISC Valve opening sensor 321 Crank angle sensor 322 Throttle valve opening sensor 323 ISC Valve motor 324 Injector 325 Throttle valve motor 326 Motor 327 Current sensor 328 Control sensor 329 Current 330 Phase 331 Drive power distribution unit 332 Engine side clutch engagement sensor 333 Motor side clutch engagement sensor 334 Engine side clutch engagement solenoid 335 Motor side clutch engagement solenoid 336 Transmission

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B60K 8/00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B60K 8/00

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 車両の運転状態、制御状態を、各部に取
り付けられたセンサからの信号を用いて入力する車両状
態量入力手段と、複数の駆動源を、車両状態に応じて適
応的に単独、ないしは併用して、駆動に関与させること
と、各駆動源に対する駆動力配分を管理・要求する駆動
力管理手段と、車両の運転状態、制御状態、駆動力要
求、システムの故障状態に応じて、駆動源に取り付けら
れたアクチュエータ操作量を演算する制御量演算手段
と、アクチュエータ操作量を実際にアクチュエータへ出
力する制御量出力手段と、システムの故障を検知する自
己診断手段と、を備え、該自己診断手段の内に、現在故
障検知できる状況にあるかを、車両状態、制御状態から
判定する自己診断条件判定手段と、車両状態、制御状態
を照らし合わせて、システムが故障していないかの判定
と、故障していると判定された場合には、故障部位の特
定を行なう故障判定手段と、故障していると判定された
場合に、故障部位と故障内容を記憶する故障記憶手段
と、を含む車両用制御装置において、前記自己診断手段
の内に、能動的に故障検知できる状況となるように、駆
動源に取り付けられたアクチュエータの操作量を決定し
て、前記制御量出力手段へ渡す自己診断用車両状態量変
更手段を備えることを特徴とする車両用制御装置。
1. A vehicle state quantity input means for inputting a driving state and a control state of a vehicle using a signal from a sensor attached to each part, and a plurality of driving sources are adaptively and independently used according to the vehicle state. , Or in combination, to be involved in driving, and a driving force management means for managing and requesting a driving force distribution to each driving source, and according to a vehicle operating state, a control state, a driving force request, and a system failure state. A control amount calculating means for calculating an actuator operation amount attached to the drive source, a control amount output means for actually outputting the actuator operation amount to the actuator, and a self-diagnosis means for detecting a system failure. A self-diagnosis condition judging means for judging from the vehicle state and the control state whether or not a failure can be detected in the self-diagnosis means and a system state by comparing the vehicle state and the control state. Failure determination means for determining whether the system has failed and determining if a failure has occurred, and a failure location and failure content when determining that the system has failed. And a failure storage means for storing the following.In the self-diagnosis means, the operation amount of the actuator attached to the drive source is determined so that a failure can be actively detected. And a vehicle state quantity changing means for self-diagnosis to be passed to the control quantity output means.
JP11045734A 1999-02-24 1999-02-24 Vehicle control device Pending JP2000240481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11045734A JP2000240481A (en) 1999-02-24 1999-02-24 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11045734A JP2000240481A (en) 1999-02-24 1999-02-24 Vehicle control device

Publications (1)

Publication Number Publication Date
JP2000240481A true JP2000240481A (en) 2000-09-05

Family

ID=12727561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11045734A Pending JP2000240481A (en) 1999-02-24 1999-02-24 Vehicle control device

Country Status (1)

Country Link
JP (1) JP2000240481A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108248598A (en) * 2018-01-08 2018-07-06 武汉理工大学 A kind of hybrid electric vehicle driven by wheel hub Failure Control system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108248598A (en) * 2018-01-08 2018-07-06 武汉理工大学 A kind of hybrid electric vehicle driven by wheel hub Failure Control system and method

Similar Documents

Publication Publication Date Title
US9815448B2 (en) Method for simplifying torque monitoring, in particular for hybrid drives
US4531490A (en) Idling speed feedback control method having fail-safe function for abnormalities in functioning of crank angle position-detecting system of an internal combustion engine
JPH0248730B2 (en)
US6276331B1 (en) Method and apparatus for fail-safe controlling internal combustion engine with electronic controlled throttle system
US9211788B2 (en) Method for diagnosing an operating status of a drive device, and diagnostic device and drive system
US6808471B1 (en) Methods and apparatus for providing security for electronically-controlled cylinder activation and deactivation
EP1323564B1 (en) Control system for hybrid vehicle
JP2598793B2 (en) Electronic output control device for automotive internal combustion engine
JPH11190230A (en) Throttle valve control device of engine and control method
US5130930A (en) Diagnostic device for vehicle engine analysis
US6393356B1 (en) Method and arrangement for controlling a drive unit of a vehicle
JP2000240481A (en) Vehicle control device
US6182635B1 (en) Car engine controller
WO2010071096A1 (en) Method for controlling engine of vehicle having power extraction mechanism and device for controlling engine of vehicle having power extraction mechanism
US5419186A (en) Method and arrangement for checking the operation of an actuator in a motor vehicle
JPS618436A (en) Accel control device of internal combustion engine for vehicle
JPH02230940A (en) Throttle control device
JP4254619B2 (en) Fault diagnosis device
JPH0425167B2 (en)
JPH11257103A (en) Throttle opening diagnostic device
WO2004052676A1 (en) Combustion engine for a motor vehicle
JP2003531999A (en) Method of operating a fuel supply system for an internal combustion engine, for example a vehicle internal combustion engine
JP2910478B2 (en) Electronic throttle control
JP2000080934A (en) Fuel supply quantity control device
KR960004286B1 (en) Apparatus and method for enhancing accelerating capacity in internal combustion engine