WO2010071096A1 - Method for controlling engine of vehicle having power extraction mechanism and device for controlling engine of vehicle having power extraction mechanism - Google Patents

Method for controlling engine of vehicle having power extraction mechanism and device for controlling engine of vehicle having power extraction mechanism Download PDF

Info

Publication number
WO2010071096A1
WO2010071096A1 PCT/JP2009/070802 JP2009070802W WO2010071096A1 WO 2010071096 A1 WO2010071096 A1 WO 2010071096A1 JP 2009070802 W JP2009070802 W JP 2009070802W WO 2010071096 A1 WO2010071096 A1 WO 2010071096A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
engine
speed
area
Prior art date
Application number
PCT/JP2009/070802
Other languages
French (fr)
Japanese (ja)
Inventor
成昭 石川
アビナッシュ ベルルラマムジ
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to JP2010542953A priority Critical patent/JP5220130B2/en
Publication of WO2010071096A1 publication Critical patent/WO2010071096A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to vehicle engine control, and more particularly, to ensuring stable operation and improving reliability in a work vehicle equipped with a PTO (power take-off) mechanism.
  • PTO power take-off
  • various control processes for vehicle operation control are executed, in other words, various software is executed, and a first area used for actual operation control and control similar to the first area are executed.
  • a vehicle operation control device provided with a second area for diagnosing an abnormality or failure in the operation control of the first area by executing the process and comparing the contents of the control process in the first area Various configurations have been proposed (see, for example, Patent Document 1).
  • Such vehicle operation diagnosis is performed in a conventional apparatus that does not have the second area for diagnosis as described above. Since it is possible to reliably detect and diagnose a vehicle operation control failure caused by destruction of stored data for operation control, etc., there is an advantage that it is possible to provide a more reliable device.
  • a three-dimensional map in which the relative relationship among the engine speed, torque, and accelerator opening is preset that is, An all-speed map is provided, and the engine speed is controlled based on the correlation between the engine speed and torque at that accelerator position in the all-speed map using the accelerator position at that time as a parameter. There is control.
  • the above-mentioned all speed map is generally stored and used in a semiconductor memory element such as a ROM or a RAM.
  • a defect or the like of the semiconductor memory element occurs, the all speed map is read out. Since the speed map data is not normal, there is a possibility that the rotation control as described above cannot be maintained normally.
  • the conventional device only having the over-rotation suppression function has the above-described defects in the semiconductor memory element. It is not possible to detect abnormal rotation control.
  • the present invention has been made in view of the above circumstances, and in particular, in a work vehicle equipped with a power take-off mechanism and configured to perform engine rotation control by an all-speed map, data failure due to a failure of a semiconductor memory element or the like.
  • the engine control method and power take-off mechanism equipment of the vehicle equipped with a power take-off mechanism that can reliably detect and diagnose an abnormality in the engine rotation control caused by the occurrence, etc., and ensure safe vehicle operation, improve reliability, etc.
  • An engine control device for a vehicle is provided.
  • various control processes for controlling the operation of the vehicle equipped with the power take-off mechanism are executed, and the first area that is actually used for the operation control of the vehicle, And a second area in which diagnosis processing for the presence or absence of a failure in vehicle operation control by area is executed.
  • engine rotation control by an all-speed map is provided as one of vehicle operation control.
  • An engine control method in an engine control device for a vehicle equipped with a power take-off mechanism In the second area, the actual engine speed calculated based on the vehicle running condition inputted externally is determined in advance for the detected accelerator opening and the torque determined by the all speed map.
  • an engine control device for a vehicle with a power take-off mechanism that enables operation control of a vehicle with a power take-out mechanism based on an operation control process executed in an electronic control unit
  • the electronic control unit is provided with a first area that is actually used for operation control of the vehicle, and a second area in which a diagnosis process for the presence or absence of a failure in the operation control of the vehicle by the first area is executed.
  • the electronic control unit is In the second area, the actual engine speed calculated based on the vehicle running condition inputted externally, An addition result obtained by adding a predetermined allowable incremental speed to a target engine speed determined based on a predetermined correlation with the detected accelerator opening and the torque determined by the all speed map. If the actual engine speed is greater than the addition result, Power that is configured to subject the torque determined by the all-speed map to a gradual decrease control as the actual engine speed increases, and to use the torque that has been subjected to the gradual decrease control for engine control in the first area.
  • An engine control device for a vehicle equipped with a take-out mechanism is provided.
  • the same processing procedure as that of the first area is performed.
  • An abnormality in the actual engine speed obtained is diagnosed, and when the abnormality is diagnosed, the engine torque obtained in the all speed map in the first area is limited. It is possible to detect abnormality in engine rotation at level 1 caused by failure of semiconductor memory elements such as RAM and ROM used in the electronic control unit constituting the engine. Torque fluctuations can be suppressed, smooth work stoppage can be achieved, and high safety and reliability can be secured. .
  • FIG. 3 It is a block diagram which shows the structural example of the engine control apparatus for power take-off mechanism equipment vehicles in embodiment of this invention.
  • 3 is a subroutine flowchart showing a procedure of an engine rotation control process executed in the vehicle engine control device equipped with a power take-off mechanism shown in FIG. 1.
  • It is a schematic diagram which shows an example of an all speed map typically.
  • It is a characteristic diagram which shows an example of the actual engine speed versus torque characteristic line in the all speed map used for PTO control by the engine control apparatus for vehicles equipped with the power take-off mechanism in the embodiment of the present invention.
  • It is a characteristic diagram which shows an example of the torque limitation characteristic with respect to the actual engine speed used for the engine speed control in the engine control apparatus for vehicles with the power take-off mechanism in the embodiment of the present invention.
  • Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
  • the members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
  • a configuration example of an engine control device for a vehicle with a power take-off mechanism according to an embodiment of the present invention will be described with reference to FIG.
  • the power take-off mechanism equipped vehicle is premised on, for example, a fire engine.
  • the electronic control unit 1 includes, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and is provided in an injector (not shown).
  • a drive circuit (not shown) or the like for driving the prepared actuator is configured as a main component.
  • the electronic control unit 1 is configured to execute electronic control of various operations of the vehicle, and specifically, for example, an energization control signal or fuel injection control of an injector (not shown). .
  • the electronic control unit 1 also executes PTO (power take-off) control.
  • FIG. 1 a functional block diagram of a portion related to execution of an engine control method for a vehicle with a power take-off mechanism according to the present invention is shown in the electronic control unit 1.
  • the area where software is executed is divided into two. That is, the first area (hereinafter referred to as “level 1 (Lv1)” for convenience) where software processing is actually used for operation control of an engine (not shown) is basically the same as level 1.
  • the software is executed to diagnose whether or not there is a level 1 failure, so to speak, it is classified into a second area (hereinafter referred to as “level 2 (Lv2)” for the sake of convenience). ing.
  • a PTO selector switch 2 for switching ON / OFF of the operation of the PTO mechanism is provided at an appropriate portion of the vehicle (not shown), and an ON / OFF signal (hereinafter referred to as an ON / OFF signal) , “PTO ON / OFF signal (PTO ON / OFF SIG)”) is input to the electronic control unit 1 for PTO control and the like.
  • an ON / OFF signal hereinafter referred to as an ON / OFF signal
  • PTO ON / OFF signal PTO ON / OFF SIG
  • the speed signal of the PTO mechanism is generated based on various data, and the speed signal is electronically controlled via a CAN (Controller Area Network) as PTO SIG. It is inputted to the unit 1 and used for PTO control in the electronic control unit 1.
  • CAN Controller Area Network
  • an upper object (not shown) connected to the output shaft (not shown) of the PTO mechanism is, for example, in the embodiment of the present invention, a pump (see FIG. Although not shown, an output adjustment volume 3 for adjusting the pump output is provided, and a signal corresponding to the set volume position (hereinafter referred to as “POWER signal (POWER SIG)” for convenience). ) Is input to the electronic control unit 1 and is used for PTO control and the like, similar to the PTO ON / OFF signal. Further, the electronic control unit 1 receives various sensor signals necessary for vehicle operation control such as a crank angle sensor 4, a cam angle sensor 5, and an accelerator opening sensor 6 provided in the vehicle, and a normal engine It is used for control and PTO control.
  • engine rotation control includes both normal engine rotation control when the PTO mechanism (not shown) is not operating and constant engine rotation control during the PTO function operation (PTO mode). These are based on the assumption that all-speed maps that have been conventionally known are used. Also, the all speed map used for normal engine rotation control and the all speed map used when the PTO mechanism is operating are different from each other.
  • the all speed map schematically shown in the electronic control unit 1 is for operating the PTO mechanism. That is, it is an all speed map suitable for constant engine rotation control.
  • the actual engine speed, engine torque (or fuel injection amount), and target engine speed correspond to the three-dimensional axis, and various target engines
  • torque This is a set of three-dimensional data in which the correlation between the actual engine speed and the engine torque (hereinafter simply referred to as “torque”) is defined.
  • the target engine speed is calculated by a predetermined arithmetic expression, a map, or the like based on the accelerator opening or the set value of the output adjustment volume 3.
  • FIG. 4 shows an example of the actual engine speed vs. torque characteristic line in the all speed map used in driving the PTO mechanism, and this characteristic line example will be described below.
  • the characteristic line example shown in FIG. 4 shows a torque change with respect to a change in the actual engine speed at a certain accelerator opening. This characteristic line shows that the torque is constant from zero to the actual engine speed n1, and thereafter, the torque rapidly decreases as the actual engine speed increases, and there is an actual engine speed. When the rotation speed exceeds n2 (n2> n1), the torque is regulated to be constant.
  • the actual engine speed n1 and the actual engine speed n2 are relatively close values, and the slope of the characteristic line between them is set relatively steep. As described below, constant rotation control can be realized.
  • the actual engine speed matches the target engine speed shown in FIG.
  • the required load of the PTO mechanism increases, the actual engine speed is reduced along the characteristic line of FIG. 4 (see the upward bold arrow in FIG. 4), increasing the torque and increasing the load. Will respond.
  • the torque becomes excessive, so that the actual engine speed is increased along the characteristic line of FIG. 4 (the downward thick arrow in FIG. 4).
  • the torque becomes insufficient, the actual engine speed is reduced again, and the torque is increased, so that the engine speed between the actual engine speeds n1 and n2 is balanced.
  • the actual engine speed is maintained at this rotational speed with the rotational speed at the balance point as the target engine speed.
  • the target engine speed is calculated by a predetermined calculation formula or calculation map based on the output signals of the cam angle sensor 5 and the accelerator opening sensor 6 and the like. Yes.
  • the actual engine speed corresponding to the actual engine speed is calculated based on the output signal of the crank angle sensor 4 using a predetermined arithmetic expression.
  • the engine torque is determined by the all speed map based on the target engine speed and the actual engine speed described above.
  • the engine torque obtained by the all speed map is supplied to a minimum value selection process (a portion indicated as “min” in FIG. 1).
  • the engine torque input from level 2 (details will be described later) and any The smaller one is selected and used for fuel / torque conversion processing (indicated as “FMTC (Fuel Mass Torque Conversion)” in FIG. 1).
  • FMTC Full Mass Torque Conversion
  • the fuel injection amount Q to the engine (not shown) by the injector (not shown) for the engine torque obtained by the all speed map is determined by the fuel / torque conversion process.
  • This fuel / torque conversion process is performed in advance based on a characteristic curve between the required torque and the fuel injection amount Q stored in advance or stored, or based on an arithmetic expression, the amount Q of fuel to be injected with respect to the required torque. Is to be decided.
  • the energization time of an injector (not shown) necessary for supplying the fuel injection amount Q determined by FMTH to the engine (not shown) is determined by the energization control, and according to the energization time.
  • An energization control signal is output from the electronic control unit 1 to an energization circuit of an injector (not shown).
  • the actual engine speed corresponding to the actual engine speed is calculated using a predetermined arithmetic expression. ing. Further, based on the output signals of the cam angle sensor 5 and the accelerator opening sensor 6, the target engine speed is calculated by a predetermined calculation formula or calculation map.
  • the presence or absence of abnormality such as PTO SIG (hereinafter referred to as “PTO CAN data” for the sake of convenience) or PTO POWER SIG externally input by CAN is determined. If an abnormality such as PTO CAN data is detected by this abnormality detection process, the ramp function is enabled.
  • the ramp function according to the embodiment of the present invention outputs the target engine speed by reducing the target engine speed in a ramp shape from the time point when the above-described abnormality is detected. In other words, the target engine speed is forcibly increased with time. The output is reduced to a low level.
  • the torque limiting function is provided, and when there is no abnormality in the PTO CAN data or the like, the torque limiting rate is calculated based on the target engine speed and the actual engine speed. ing. In this torque limiting function, the greater the difference between the target engine speed and the actual engine speed, the closer the torque limit rate is calculated to 0%, while the difference between the target engine speed and the actual engine speed is within a certain range. In the case where the torque limit rate is 100%.
  • the torque limiting rate obtained by this torque limiting function is multiplied by the engine torque obtained by the level 1 all speed map, and the result of the multiplication is supplied to the minimum value selection process described above for level 1.
  • the torque limit rate is 100%, so the multiplication result is the engine torque itself obtained in the all speed map.
  • the minimum value selection process the engine torque obtained by the all speed map is selected.
  • the target engine speed from the ramp function described above is provided to the torque limiting function. Therefore, the torque limit rate decreases with a decrease in the target engine speed from the ramp function, and the torque limit rate is multiplied by the engine torque from the level 1 all speed map, and the multiplication result Will be used for the minimum value selection process.
  • the target engine speed from the ramp function is used as the actual engine speed to calculate the engine torque, and the torque limit rate at the level 2 described above is obtained. Together with the multiplied engine torque, it is subjected to a minimum value selection process.
  • level 1 and level 2 are the same as those for normal vehicle operation control at levels 1 and 2 as in the prior art except for the above-described functions.
  • Processing (software) is executed, and level 1 processing is used for actual vehicle operation, and various signals such as an energization control signal and an ignition control signal correspond to the electronic control unit 1. It is output to a controlled object (for example, an energization circuit of an injector (not shown), an ignition circuit of a spark plug, etc.).
  • a controlled object for example, an energization circuit of an injector (not shown), an ignition circuit of a spark plug, etc.
  • the processing contents of level 1 are compared under predetermined conditions to diagnose the presence or absence of abnormality in the processing at level 1, and according to the diagnosis result, an alarm or notification is generated. Necessary new processing is executed.
  • FIG. 2 shows a procedure of an engine rotation control process executed in the electronic control unit 1 in a subroutine flowchart, and the contents thereof will be described below with reference to FIG.
  • the processing by the electronic control unit 1 is started, first, the actual engine speed is calculated (see step S102 in FIG. 2).
  • the actual engine speed is calculated by a predetermined arithmetic expression based on the output signal of the crank angle sensor 4.
  • the target engine speed and the stable control engine speed range are determined by the electronic control unit 1 (see step S104 in FIG. 2).
  • the target engine speed is determined using a target engine speed calculation map stored in advance in a predetermined storage area of the electronic control unit 1.
  • This target engine speed calculation map is configured so that the target engine speed can be read with respect to the accelerator opening and torque, using the accelerator opening and torque as parameters, and the accelerator opening, torque, and The correlation of the target engine speed is based on the all speed map used in level 1.
  • the all-speed map is such that the actual engine speed vs. torque characteristics as shown in FIG. 4 are determined with respect to the target engine speed. Based on the engine speed versus torque characteristic, the torque for the actual engine speed is determined.
  • the target engine speed calculation map reads the target engine speed determined by each actual engine speed versus torque characteristics in the all speed map, the torque and accelerator opening at that time, and maps them as corresponding numerical data It is a thing.
  • the accelerator opening corresponding to this characteristic line is selected by the all speed map.
  • the accelerator opening and torque are input, the engine speed at the balance point and the engine speed at the balance point are set as the target engine speed, and these are set as a set of data.
  • the target engine speed is configured to be readable, and is configured to be able to read the target engine speed for the accelerator opening and torque specified as described above for a plurality of actual engine speed vs. torque characteristic lines. It will be.
  • the accelerator opening when the target engine speed is determined by the target engine rotation calculation map is detected by the accelerator opening sensor 6, and the torque is determined by the level 1 all speed map. Torque.
  • the stable control engine speed range is an allowable deviation amount of the actual engine speed from the target engine speed, and is used to determine whether or not to limit torque described later (details will be described later). ).
  • Such a stable control engine speed range may be a predetermined constant. For example, an arithmetic expression is obtained based on simulations or experiments so that an appropriate value is determined by correlation with the target engine speed. It may be calculated by an arithmetic expression.
  • the electronic control unit 1 determines whether or not the actual engine speed D is larger than the sum of the target engine speed A and the stable control engine speed range B (see step S106 in FIG. 2).
  • the processing by the electronic control unit 1 proceeds to the processing of step S108 described below, while when it is determined that D> A + B is not satisfied ( In the case of NO), the actual engine speed is not abnormal and the series of processes is terminated, and the process by the electronic control unit 1 returns to the main routine (not shown).
  • the engine rotation constant control based on the all speed map at level 1 is continued.
  • step S108 instead of the torque determined by the all speed map at level 1, the torque subjected to torque limitation at level 2 as described below is provided to the fuel / torque conversion process at level 1.
  • engine rotation control is performed. That is, first, the torque limit (torque limit) in the embodiment of the present invention is performed based on the torque limit characteristic with respect to the actual engine speed as shown in FIG.
  • the characteristic line shown in FIG. 5 indicates that the torque remains constant until the actual engine speed exceeds a value obtained by adding a predetermined target engine speed A to a predetermined speed B (stable control engine speed range).
  • a predetermined target engine speed A a predetermined speed B
  • the torque is increased at a predetermined reduction rate as the actual engine speed increases thereafter. It is stipulated to be small. That is, according to the characteristic line shown in FIG. 5, when the actual engine speed exceeds the target engine speed A + the stable control engine speed range B, the torque is reduced in inverse proportion to the actual engine speed. It has become a thing.
  • the torque that is constant until the actual engine speed exceeds the predetermined target engine speed A + the stable control engine speed range B is determined by the all speed map at level 1 immediately before the torque limit is reached.
  • the target engine speed A is the target engine speed determined by the all speed map at level 1 immediately before shifting to the torque limit.
  • the stable control engine rotation range indicates an increase in the rotation speed that can be allowed in an increasing direction from the target engine rotation speed.
  • Such a stable control engine speed range may be a predetermined constant. For example, an arithmetic expression is obtained based on simulations or experiments so that an appropriate value is determined by correlation with the target engine speed, and this calculation is performed. You may make it use the value calculated each time by a type
  • the torque value thus subjected to the torque limitation is supplied to the fuel / torque conversion process at level 1 and converted into a fuel injection amount corresponding to the torque, and an injector (not shown) is used to obtain the fuel injection amount. ))
  • Energization control is performed. Therefore, by applying the engine control method according to the embodiment of the present invention, for example, an abnormality in level 1 control processing caused by a failure of a semiconductor memory element such as RAM or ROM in the electronic control unit 1 is detected. In this case, the engine rotation control is performed at level 1 based on the torque regulated at level 2. In particular, in a work vehicle, a sudden torque is generated when the vehicle operation is abnormal. It is possible to smoothly stop work without causing fluctuations, and high safety and reliability can be ensured.
  • Torque is limited when an abnormality in the engine speed due to a defective semiconductor memory element is detected, so it is particularly applicable to vehicles equipped with a power take-off mechanism that requires high safety and reliability. it can.

Abstract

A work vehicle having a power extraction mechanism for controlling the engine rpm according to an all-speed map can surely detect and check a failure of the rotation control due to generation of defective data caused by a failure of a semiconductor storage element. If the actual engine rpm calculated in a second area arranged in an electronic control unit (1) according to the running state of the vehicle inputted from outside is found to be greater than the sum obtained by adding a predetermined allowable rpm increase to a target engine rpm determined according to the correlation predetermined for the torque preset in accordance with the detected accelerator open degree and the all-speed map, the torque determined by the all-speed map in the first area provided for the actual vehicle operation control is subjected to a gradual decrease regulation accompanying the actual engine rpm increase in the second area, thereby executing the engine control in the first area.

Description

動力取出機構装備車のエンジン制御方法及び動力取出機構装備車用エンジン制御装置Engine control method for vehicle equipped with power take-off mechanism and engine control device for car equipped with power take-out mechanism
 本発明は、車両のエンジン制御に係り、特に、PTO(動力取出)機構を備えた作業車両における安定動作の確保、信頼性の向上等を図ったものに関する。 The present invention relates to vehicle engine control, and more particularly, to ensuring stable operation and improving reliability in a work vehicle equipped with a PTO (power take-off) mechanism.
 近年の車両においては、車両の動作制御に種々の電子技術が導入されると共に、様々な電子動作制御が開発、提案されているが、かかる車両の電子動作制御と共に、その電子動作制御が正常か否かを判別、診断等するいわゆるモニタリング技術についても、電子技術の進歩に伴う新しいソフトウェア技術の導入により、様々な開発、提案がなされている。 In recent vehicles, various electronic technologies have been introduced for vehicle operation control, and various electronic operation controls have been developed and proposed. Whether the electronic operation control is normal along with the vehicle electronic operation control. Various developments and proposals have been made for so-called monitoring techniques for determining whether or not to determine whether or not a new software technology has been introduced as electronic technology has advanced.
 例えば、車両の動作制御のための種々の制御処理が実行、換言すれば、種々のソフトウェアが実行され、実際の動作制御に供される第1のエリアと、この第1のエリアと同様な制御処理を実行し、第1のエリアにおける制御処理の内容と対比を行うことで第1のエリアの動作制御における異常、故障などの診断を行う第2のエリアとを設けた車両の動作制御装置など、様々な構成のものが提案されている(例えば、特許文献1等参照)。 For example, various control processes for vehicle operation control are executed, in other words, various software is executed, and a first area used for actual operation control and control similar to the first area are executed. A vehicle operation control device provided with a second area for diagnosing an abnormality or failure in the operation control of the first area by executing the process and comparing the contents of the control process in the first area Various configurations have been proposed (see, for example, Patent Document 1).
 このような車両の動作診断は、上述のような診断のための第2のエリアを有さない従来装置においては、検出、診断が困難であったソフトウェア上の不具合や、例えば、半導体記憶素子に記憶された動作制御のためのデータの破壊等に起因する車両の動作制御の不良を確実に検出、診断することができるため、より信頼性の高い装置を提供可能とする等のメリットがある。 Such vehicle operation diagnosis is performed in a conventional apparatus that does not have the second area for diagnosis as described above. Since it is possible to reliably detect and diagnose a vehicle operation control failure caused by destruction of stored data for operation control, etc., there is an advantage that it is possible to provide a more reliable device.
 ところで、車両のエンジン回転数制御の一手法として、従来から知られているものとしては、例えば、エンジン回転数とトルクとアクセル開度との相対関係が予め設定された3次元のマップ、すなわち、オールスピードマップを設けておき、その時々のアクセル開度をパラメータにして、オールスピードマップにおけるそのアクセル開度におけるエンジン回転数とトルクとの相関関係に基づいて、エンジン回転数の制御を行うようにした制御がある。 By the way, as a conventionally known method for controlling the engine speed of a vehicle, for example, a three-dimensional map in which the relative relationship among the engine speed, torque, and accelerator opening is preset, that is, An all-speed map is provided, and the engine speed is controlled based on the correlation between the engine speed and torque at that accelerator position in the all-speed map using the accelerator position at that time as a parameter. There is control.
 一般に、オールスピードマップを用いたエンジン回転制御においては、負荷が零となった場合に、過回転とならないようにオールスピードマップの設定が行われるため、オールスピードマップを用いたエンジン回転制御を行う車両にあっては、先に述べたような制御の異常、故障の検出、診断等のモニタリング機能を備えないものが一般的であった。 In general, in engine rotation control using the all speed map, when the load becomes zero, the all speed map is set so as not to overspeed, so engine rotation control using the all speed map is performed. Vehicles generally do not have monitoring functions such as control abnormality, failure detection, and diagnosis as described above.
 ところで、上述のオールスピードマップは、一般的にROMやRAM等の半導体記憶素子に記憶されて用いられるようになっているが、半導体記憶素子の不良等が生じた場合に、そこから読み出されるオールスピードマップのデータが正常でなくなるため、先に説明したような回転制御が正常に維持できなくなる可能性がある。
 しかしながら、先に述べたように、オールスピードマップ自体は正常であるとの前提の下で、過回転の抑圧機能を有するのみの従来装置にあっては、上述のような半導体記憶素子の不良に起因する回転制御の異常を検出することはできない。
By the way, the above-mentioned all speed map is generally stored and used in a semiconductor memory element such as a ROM or a RAM. However, when a defect or the like of the semiconductor memory element occurs, the all speed map is read out. Since the speed map data is not normal, there is a possibility that the rotation control as described above cannot be maintained normally.
However, as described above, under the assumption that the all-speed map itself is normal, the conventional device only having the over-rotation suppression function has the above-described defects in the semiconductor memory element. It is not possible to detect abnormal rotation control.
 特に、車両に取り付けられたモータや吸水ポンプなどの上物(補助装備)をエンジンの駆動力の一部を流用し駆動可能にするPTO(動力取出)機構を備えたいわゆる作業車両にあって、PTOモードの際に、エンジン回転への影響を極力抑圧する観点からエンジン回転を一定回転に制御する一定回転制御をオールスピードマップを利用して行われるよう構成されたものにあっては、エンジン回転制御の異常は、作業の支障となるだけでなく、場合によっては、作業者の安全確保の点から見逃すことはできない事態である。
特表平10-507805号公報 特開2001-82213号公報
In particular, in a so-called work vehicle equipped with a PTO (power take-off) mechanism that makes it possible to drive an upper part (auxiliary equipment) such as a motor and a water pump attached to the vehicle by using part of the driving force of the engine, In the PTO mode, if the engine rotation is controlled using the all-speed map to control the engine rotation to a constant rotation from the viewpoint of suppressing the influence on the engine rotation as much as possible, the engine rotation An abnormality in the control not only hinders the work, but in some cases cannot be overlooked from the viewpoint of ensuring the safety of the worker.
JP 10-507805 gazette JP 2001-82213 A
 本発明は、上記実状に鑑みてなされたもので、特に、動力取出機構を装備し、オールスピードマップによるエンジン回転制御を行うよう構成された作業車両において、半導体記憶素子の故障等によるデータの不良発生等に起因するエンジン回転制御の異常を確実に検出、診断可能とすると共に、安全な車両動作の確保、信頼性の向上等を図った動力取出機構装備車のエンジン制御方法及び動力取出機構装備車用エンジン制御装置を提供するものである。 The present invention has been made in view of the above circumstances, and in particular, in a work vehicle equipped with a power take-off mechanism and configured to perform engine rotation control by an all-speed map, data failure due to a failure of a semiconductor memory element or the like. The engine control method and power take-off mechanism equipment of the vehicle equipped with a power take-off mechanism that can reliably detect and diagnose an abnormality in the engine rotation control caused by the occurrence, etc., and ensure safe vehicle operation, improve reliability, etc. An engine control device for a vehicle is provided.
 本発明の第1の形態によれば、動力取出機構装備車両の動作制御のための種々の制御処理が実行され、実際に車両の動作制御に供される第1のエリアと、前記第1のエリアによる車両の動作制御における故障の有無の診断処理が実行される第2のエリアとが設けられると共に、前記第1のエリアにおいては、車両の動作制御の1つとしてオールスピードマップによるエンジン回転制御が行われるよう構成されてなる動力取出機構装備車用エンジン制御装置におけるエンジン制御方法であって、
 前記第2のエリアにおいて、外部入力された車両の走行状態に基づいて演算算出された実エンジン回転数が、検出されたアクセル開度及び前記オールスピードマップにより定められたトルクに対して予め定められた相関関係に基づいて決定される目標エンジン回転数に、所定の許容増分回転数を加算した結果より大である場合に、
 前記オールスピードマップにより定められたトルクに、実エンジン回転数の増加に伴う漸減規制を施し、当該漸減規制が施されたトルクを、前記第1のエリアにおけるエンジン制御に供するよう構成されてなる動力取出機構装備車のエンジン制御方法が提供される。
 本発明の第2の形態によれば、電子制御ユニットにおいて実行される動作制御処理に基づいて動力取出機構装備車両の動作制御を可能としてなる動力取出機構装備車用エンジン制御装置であって、前記電子制御ユニットは、実際に車両の動作制御に供される第1のエリアと、前記第1のエリアによる車両の動作制御における故障の有無の診断処理が実行される第2のエリアとが設けられると共に、前記第1のエリアにおいては、車両の動作制御の1つとしてオールスピードマップによるエンジン回転制御が行われるよう構成されてなる動力取出機構装備車用エンジン制御装置において、
 前記電子制御ユニットは、
 前記第2のエリアにおいて、外部入力された車両の走行状態に基づいて演算算出された実エンジン回転数と、
 検出されたアクセル開度及び前記オールスピードマップにより定められたトルクに対して予め定められた相関関係に基づいて決定される目標エンジン回転数に、所定の許容増分回転数を加算した加算結果との大小を比較し、前記実エンジン回転数が、前記加算結果より大である場合に、
 前記オールスピードマップにより定められたトルクに、実エンジン回転数の増加に伴う漸減規制を施し、当該漸減規制が施されたトルクを、前記第1のエリアにおけるエンジン制御に供するよう構成されてなる動力取出機構装備車用エンジン制御装置が提供される。
According to the first aspect of the present invention, various control processes for controlling the operation of the vehicle equipped with the power take-off mechanism are executed, and the first area that is actually used for the operation control of the vehicle, And a second area in which diagnosis processing for the presence or absence of a failure in vehicle operation control by area is executed. In the first area, engine rotation control by an all-speed map is provided as one of vehicle operation control. An engine control method in an engine control device for a vehicle equipped with a power take-off mechanism,
In the second area, the actual engine speed calculated based on the vehicle running condition inputted externally is determined in advance for the detected accelerator opening and the torque determined by the all speed map. If the target engine speed determined based on the correlation is larger than the result of adding a predetermined allowable incremental speed,
Power that is configured to subject the torque determined by the all-speed map to a gradual decrease control as the actual engine speed increases, and to use the torque that has been subjected to the gradual decrease control for engine control in the first area. An engine control method for a vehicle equipped with a take-out mechanism is provided.
According to a second aspect of the present invention, there is provided an engine control device for a vehicle with a power take-off mechanism that enables operation control of a vehicle with a power take-out mechanism based on an operation control process executed in an electronic control unit, The electronic control unit is provided with a first area that is actually used for operation control of the vehicle, and a second area in which a diagnosis process for the presence or absence of a failure in the operation control of the vehicle by the first area is executed. In addition, in the first area, in the engine control device for a vehicle equipped with a power take-off mechanism configured to perform engine rotation control based on an all speed map as one of vehicle operation control,
The electronic control unit is
In the second area, the actual engine speed calculated based on the vehicle running condition inputted externally,
An addition result obtained by adding a predetermined allowable incremental speed to a target engine speed determined based on a predetermined correlation with the detected accelerator opening and the torque determined by the all speed map. If the actual engine speed is greater than the addition result,
Power that is configured to subject the torque determined by the all-speed map to a gradual decrease control as the actual engine speed increases, and to use the torque that has been subjected to the gradual decrease control for engine control in the first area. An engine control device for a vehicle equipped with a take-out mechanism is provided.
 本発明によれば、オールスピードマップによるエンジン回転制御が行われる第1のエリアとは別個に、車両動作制御の診断処理が行われる第2のエリアにおいて、第1のエリアと同一の処理手順により得た実エンジン回転数の異常を診断するようにし、異常と診断された際に、第1のエリアにおいてオールスピードマップで得られたエンジントルクに対して制限を施すようにしたので、エンジン制御装置を構成する電子制御ユニット等に用いられるRAMやROMなどの半導体記憶素子の故障に起因するレベル1におけるエンジン回転の異常検出を可能とし、特に、作業車両にあっては、エジン回転異常時における急激なトルク変動を抑圧でき、円滑な作業停止が可能となり、高い安全性、信頼性が確保できるという効果を奏するものである。 According to the present invention, in the second area where the diagnosis process of the vehicle operation control is performed separately from the first area where the engine rotation control based on the all speed map is performed, the same processing procedure as that of the first area is performed. An abnormality in the actual engine speed obtained is diagnosed, and when the abnormality is diagnosed, the engine torque obtained in the all speed map in the first area is limited. It is possible to detect abnormality in engine rotation at level 1 caused by failure of semiconductor memory elements such as RAM and ROM used in the electronic control unit constituting the engine. Torque fluctuations can be suppressed, smooth work stoppage can be achieved, and high safety and reliability can be secured. .
本発明の実施の形態における動力取出機構装備車用エンジン制御装置の構成例を示す構成図である。It is a block diagram which shows the structural example of the engine control apparatus for power take-off mechanism equipment vehicles in embodiment of this invention. 図1に示された動力取出機構装備車用エンジン制御装置において実行されるエンジン回転制御処理の手順を示すサブルーチンフローチャートである。3 is a subroutine flowchart showing a procedure of an engine rotation control process executed in the vehicle engine control device equipped with a power take-off mechanism shown in FIG. 1. オールスピードマップの一例を模式的に示す模式図である。It is a schematic diagram which shows an example of an all speed map typically. 本発明の実施の形態における動力取出機構装備車用エンジン制御装置によるPTO制御に用いられるオールスピードマップにおける実エンジン回転数対トルク特性線の一例を示す特性線図である。It is a characteristic diagram which shows an example of the actual engine speed versus torque characteristic line in the all speed map used for PTO control by the engine control apparatus for vehicles equipped with the power take-off mechanism in the embodiment of the present invention. 本発明の実施の形態における動力取出機構装備車用エンジン制御装置におけるエンジン回転制御に用いられる実エンジン回転数に対するトルク制限特性の一例を示す特性線図である。It is a characteristic diagram which shows an example of the torque limitation characteristic with respect to the actual engine speed used for the engine speed control in the engine control apparatus for vehicles with the power take-off mechanism in the embodiment of the present invention.
1…電子制御ユニット
2…PTO切替スイッチ
3…出力調整ボリューム
4…クランク角センサ
5…カム角センサ
6…アクセル開度センサ
DESCRIPTION OF SYMBOLS 1 ... Electronic control unit 2 ... PTO changeover switch 3 ... Output adjustment volume 4 ... Crank angle sensor 5 ... Cam angle sensor 6 ... Accelerator opening sensor
 以下、本発明の実施の形態について、図1乃至図5を参照しつつ説明する。
 なお、以下に説明する部材、配置等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
 最初に、本発明の実施の形態における動力取出機構装備車用エンジン制御装置の構成例について、図1を参照しつつ説明する。
 まず、本発明の実施の形態において、動力取出機構装備車としては、例えば、消防自動車等などを前提としたものである。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.
The members and arrangements described below do not limit the present invention and can be variously modified within the scope of the gist of the present invention.
First, a configuration example of an engine control device for a vehicle with a power take-off mechanism according to an embodiment of the present invention will be described with reference to FIG.
First, in the embodiment of the present invention, the power take-off mechanism equipped vehicle is premised on, for example, a fire engine.
 電子制御ユニット1は、例えば、公知・周知の構成を有してなるマイクロコンピュータ(図示せず)を中心に、RAMやROM等の記憶素子(図示せず)を有すると共に、図示されないインジェクタに設けられたアクチュエータを駆動するための駆動回路(図示せず)等を主たる構成要素として構成されたものとなっている。
 かかる電子制御ユニット1は、車両の各種動作の電子制御が実行されるようになっているもので、例えば、具体的には、インジェクタ(図示せず)の通電制御信号や燃料噴射制御等である。
 さらに、本発明の実施の形態においては、電子制御ユニット1は、PTO(動力取出)制御も実行されるものとなっている。図1においては、本発明に係る動力取出機構装備車のエンジン制御方法の実行に関連する部分の機能ブロック図が、電子制御ユニット1内に示されたものとなっている。
The electronic control unit 1 includes, for example, a microcomputer (not shown) having a known and well-known configuration, a storage element (not shown) such as a RAM and a ROM, and is provided in an injector (not shown). A drive circuit (not shown) or the like for driving the prepared actuator is configured as a main component.
The electronic control unit 1 is configured to execute electronic control of various operations of the vehicle, and specifically, for example, an energization control signal or fuel injection control of an injector (not shown). .
Furthermore, in the embodiment of the present invention, the electronic control unit 1 also executes PTO (power take-off) control. In FIG. 1, a functional block diagram of a portion related to execution of an engine control method for a vehicle with a power take-off mechanism according to the present invention is shown in the electronic control unit 1.
 以下、図1に示された電子制御ユニット1内の機能ブロックについて説明することとする。
 まず、本発明の実施の形態における電子制御ユニット1においては、ソフトウェアが実行されるエリアが、2つに区分されたものとなっている。
 すなわち、ソフトウェア処理が実際にエンジン(図示せず)の動作制御などに供される第1のエリア(以下、便宜的に「レベル1(Lv1)」と称する)と、基本的にレベル1と同一のソフトウェアが実行されて、レベル1の故障の有無を診断する、いわばモニタ機能を果たす第2のエリア(以下、便宜的に「レベル2(Lv2)」と称する)とに区分されたものとなっている。
Hereinafter, functional blocks in the electronic control unit 1 shown in FIG. 1 will be described.
First, in the electronic control unit 1 according to the embodiment of the present invention, the area where software is executed is divided into two.
That is, the first area (hereinafter referred to as “level 1 (Lv1)” for convenience) where software processing is actually used for operation control of an engine (not shown) is basically the same as level 1. The software is executed to diagnose whether or not there is a level 1 failure, so to speak, it is classified into a second area (hereinafter referred to as “level 2 (Lv2)” for the sake of convenience). ing.
 かかる前提の下、まず、車両(図示せず)の適宜な部位には、PTO機構の動作のON/OFFを切り替えのためのPTO切替スイッチ2が設けられており、そのON/OFF信号(以下、「PTO ON/OFF信号(PTO ON/OFF SIG)」と称する)が電子制御ユニット1へ入力されて、PTO制御等に供されるようになっている。
 また、本発明の実施の形態においては、電子制御ユニット1とは別個に、車両の動作制御のための他の電子制御ユニット(図示せず)が設けられており、電子制御ユニット1における種々の動作制御を補助するための各種の動作制御処理が実行される他、電子制御ユニット1とは別個に、車両動作のために必要な種々の動作制御処理が独自に実行されるものとなっている。この図示されない他の電子制御ユニットでは、PTO機構の速度信号が種々のデータに基づいて生成されるようになっており、その速度信号がPTO SIGとして、CAN(Controller Area Network)を介して電子制御ユニット1に入力されて、電子制御ユニット1におけるPTO制御に供されるようになっている。
Under such a premise, first, a PTO selector switch 2 for switching ON / OFF of the operation of the PTO mechanism is provided at an appropriate portion of the vehicle (not shown), and an ON / OFF signal (hereinafter referred to as an ON / OFF signal) , “PTO ON / OFF signal (PTO ON / OFF SIG)”) is input to the electronic control unit 1 for PTO control and the like.
In the embodiment of the present invention, a separate electronic control unit (not shown) for controlling the operation of the vehicle is provided separately from the electronic control unit 1. Various operation control processes for assisting operation control are executed, and various operation control processes necessary for vehicle operation are independently executed separately from the electronic control unit 1. . In this other electronic control unit (not shown), the speed signal of the PTO mechanism is generated based on various data, and the speed signal is electronically controlled via a CAN (Controller Area Network) as PTO SIG. It is inputted to the unit 1 and used for PTO control in the electronic control unit 1.
 一方、PTO機構の出力軸(図示せず)に接続される上物(図示せず)は、例えば、本発明の実施の形態においては、外部から水を取り込んで高圧放出するためのポンプ(図示せず)であるが、そのポンプ出力を調整するための出力調整ボリューム3が設けられており、設定されたボリューム位置に応じた信号(以下、便宜的に「POWER信号(POWER SIG)」と称する)が電子制御ユニット1に入力され、PTO ON/OFF信号同様、PTO制御等に供されるようになっている。
 さらに、電子制御ユニット1には、車両内に設けられたクランク角センサ4、カム角センサ5、アクセル開度センサ6などの車両動作制御に必要な各種のセンサ信号が入力されて、通常のエンジン制御やPTO制御に供されるようになっている。
On the other hand, an upper object (not shown) connected to the output shaft (not shown) of the PTO mechanism is, for example, in the embodiment of the present invention, a pump (see FIG. Although not shown, an output adjustment volume 3 for adjusting the pump output is provided, and a signal corresponding to the set volume position (hereinafter referred to as “POWER signal (POWER SIG)” for convenience). ) Is input to the electronic control unit 1 and is used for PTO control and the like, similar to the PTO ON / OFF signal.
Further, the electronic control unit 1 receives various sensor signals necessary for vehicle operation control such as a crank angle sensor 4, a cam angle sensor 5, and an accelerator opening sensor 6 provided in the vehicle, and a normal engine It is used for control and PTO control.
 次に、電子制御ユニット1内に概念的に形成されるレベル1及びレベル2について説明する。
 まず、本発明の実施の形態におけるエンジン回転制御は、PTO機構(図示せず)が非動作時の場合の通常時におけるエンジン回転制御も、PTO機能動作(PTOモード)時におけるエンジン回転一定制御も、いずれも従来から知られているオールスピードマップを用いたものであることが前提である。
 また、通常時のエンジン回転制御に用いられるオールスピードマップと、PTO機構動作時に用いられるオールスピードマップとは、それぞれ別個のものである。
Next, level 1 and level 2 conceptually formed in the electronic control unit 1 will be described.
First, engine rotation control according to the embodiment of the present invention includes both normal engine rotation control when the PTO mechanism (not shown) is not operating and constant engine rotation control during the PTO function operation (PTO mode). These are based on the assumption that all-speed maps that have been conventionally known are used.
Also, the all speed map used for normal engine rotation control and the all speed map used when the PTO mechanism is operating are different from each other.
 図1において、電子制御ユニット1内に模式的に示されたオールスピードマップは、PTO機構動作時用のものである。すなわち、エンジン回転一定制御に適するオールスピードマップである。
 一般的なオールスピードマップは、図3に一例が示されたように、実エンジン回転数、エンジントルク(又は燃料噴射量)及び目標エンジン回転数を3次元における軸に対応させ、種々の目標エンジン回転数における実エンジン回転数とエンジントルク(以下、単に「トルク」と称する)との相関関係が規定された3次元データの集合である。
 なお、ここで、目標エンジン回転数は、アクセル開度、又は、出力調整ボリューム3の設定値に基づいて、所定の演算式やマップ等により算出されるものである。
In FIG. 1, the all speed map schematically shown in the electronic control unit 1 is for operating the PTO mechanism. That is, it is an all speed map suitable for constant engine rotation control.
As shown in FIG. 3 as an example of a general all speed map, the actual engine speed, engine torque (or fuel injection amount), and target engine speed correspond to the three-dimensional axis, and various target engines This is a set of three-dimensional data in which the correlation between the actual engine speed and the engine torque (hereinafter simply referred to as “torque”) is defined.
Here, the target engine speed is calculated by a predetermined arithmetic expression, a map, or the like based on the accelerator opening or the set value of the output adjustment volume 3.
 図4には、PTO機構駆動の際に用いられるオールスピードマップにおける実エンジン回転数対トルク特性線の一例が示されており、以下、この特性線例について説明する。
 図4に示された特性線例は、あるアクセル開度における実エンジン回転数の変化に対するトルク変化を示すものである。
 この特性線は、実エンジン回転数が零からある実エンジン回転数n1までは、トルク一定とされ、それ以後は、実エンジン回転数の増加と共にトルクが急速に低下し、実エンジン回転数がある回転数n2(n2>n1)を超えるとトルク一定に規定されたものとなっている。
FIG. 4 shows an example of the actual engine speed vs. torque characteristic line in the all speed map used in driving the PTO mechanism, and this characteristic line example will be described below.
The characteristic line example shown in FIG. 4 shows a torque change with respect to a change in the actual engine speed at a certain accelerator opening.
This characteristic line shows that the torque is constant from zero to the actual engine speed n1, and thereafter, the torque rapidly decreases as the actual engine speed increases, and there is an actual engine speed. When the rotation speed exceeds n2 (n2> n1), the torque is regulated to be constant.
 かかる特性線において、実エンジン回転数n1と実エンジン回転数n2は比較的近い値とされ、この間の特性線の傾きが比較的急峻に設定されたものとなっており、このような特性設定により次述するように回転一定制御が実現できるものとなっている。 In such a characteristic line, the actual engine speed n1 and the actual engine speed n2 are relatively close values, and the slope of the characteristic line between them is set relatively steep. As described below, constant rotation control can be realized.
 すなわち、まず、実エンジン回転数が、図4の目標エンジン回転数に一致している状態にあると仮定する。かかる状態において、PTO機構の要求負荷が増えると、実エンジン回転数は、図4の特性線に沿って回転数が減じられることとなり(図4の上向き太線矢印参照)、トルクを増やし負荷増大に応えることとなる。
 そして、負荷要求が満たされると、トルクが余分となるため、実エンジン回転数は、先程とは逆に、図4の特性線に沿って回転数が増大してゆき(図4の下向き太線矢印参照)、逆にトルクが不足してくると、再び、実エンジン回転数が減じられてトルクの増大が図られるというようにして、実エンジン回転数n1とn2とのほぼ中間の回転数がバランス点となり、実エンジン回転数は、このバランス点の回転数を目標エンジン回転数として、かかる回転数に維持されるものとなっている。
That is, first, it is assumed that the actual engine speed matches the target engine speed shown in FIG. In such a state, when the required load of the PTO mechanism increases, the actual engine speed is reduced along the characteristic line of FIG. 4 (see the upward bold arrow in FIG. 4), increasing the torque and increasing the load. Will respond.
When the load requirement is satisfied, the torque becomes excessive, so that the actual engine speed is increased along the characteristic line of FIG. 4 (the downward thick arrow in FIG. 4). On the contrary, when the torque becomes insufficient, the actual engine speed is reduced again, and the torque is increased, so that the engine speed between the actual engine speeds n1 and n2 is balanced. The actual engine speed is maintained at this rotational speed with the rotational speed at the balance point as the target engine speed.
 ここで、再び、図1の説明に戻ることとする。
 レベル1においては、上述したようなオールスピードマップが設けられており、PTO切替スイッチ2がONとされて、エンジン制御がレベル1によるPTOモードとされることで、PTOモードにおけるエンジン回転一定制御に供されるものとなっている。
Here, let us return to the description of FIG.
In level 1, the above-described all speed map is provided, and the PTO changeover switch 2 is turned ON, and the engine control is set to the PTO mode according to level 1, so that the engine rotation constant control in the PTO mode is achieved. It is to be offered.
 すなわち、まず、レベル1においては、カム角センサ5、アクセル開度センサ6の出力信号等に基づいて、目標エンジン回転数が予め定められた演算式、又は演算マップにより算出されるようになっている。
 また、レベル1においては、クランク角センサ4の出力信号に基づいて、実際のエンジン回転数に相当する実エンジン回転数を予め定められた演算式により算出処理が行われるようになっている。
That is, first, at level 1, the target engine speed is calculated by a predetermined calculation formula or calculation map based on the output signals of the cam angle sensor 5 and the accelerator opening sensor 6 and the like. Yes.
At level 1, the actual engine speed corresponding to the actual engine speed is calculated based on the output signal of the crank angle sensor 4 using a predetermined arithmetic expression.
 そして、後述するレベル2において行われるPTO CANデータ等に対する異常検出処理によって異常が検出されてない状態、換言すれば、電子制御ユニット1による動作制御が正常に行われている状態にある場合には、上述した目標エンジン回転数及び実エンジン回転数に基づいて、オールスピードマップによって、エンジントルクが決定されるものとなっている。 Then, when no abnormality is detected by abnormality detection processing for PTO CAN data or the like performed at level 2 described later, in other words, when the operation control by the electronic control unit 1 is normally performed. The engine torque is determined by the all speed map based on the target engine speed and the actual engine speed described above.
 オールスピードマップによって得られたエンジントルクは、最小値選択処理(図1において「min」と表記された箇所)へ供され、ここで、レベル2から入力されるエンジントルク(詳細は後述)といずれか小さい方が選択されて、燃料・トルク変換処理(図1においては「FMTC(Fuel Mass Torque Conversion)」と表記)に供されるようになっている。電子制御ユニット1による車両の動作制御が正常な状態にあっては、レベル2から入力されるエンジントルクは、オールスピードマップで得られエンジントルクと同一とされるため、結局、オールスピードマップによって得られたエンジントルクによって燃料・トルク変換処理が行われることとなる。 The engine torque obtained by the all speed map is supplied to a minimum value selection process (a portion indicated as “min” in FIG. 1). Here, the engine torque input from level 2 (details will be described later) and any The smaller one is selected and used for fuel / torque conversion processing (indicated as “FMTC (Fuel Mass Torque Conversion)” in FIG. 1). When the vehicle operation control by the electronic control unit 1 is in a normal state, the engine torque input from level 2 is obtained from the all speed map and is the same as the engine torque. The fuel / torque conversion process is performed by the engine torque thus generated.
 すなわち、オールスピードマップによって得られたエンジントルクに対するインジェクタ(図示せず)によるエンジン(図示せず)への燃料噴射量Qが、燃料・トルク変換処理によって決定されるようになっている。この燃料・トルク変換処理は、予め設定され、記憶されている必要トルクと燃料噴射量Qとの特性曲線、又は、演算式に基づいて、必要トルクに対して燃料噴射されるべき燃料の量Qが決定されるようになっている。 That is, the fuel injection amount Q to the engine (not shown) by the injector (not shown) for the engine torque obtained by the all speed map is determined by the fuel / torque conversion process. This fuel / torque conversion process is performed in advance based on a characteristic curve between the required torque and the fuel injection amount Q stored in advance or stored, or based on an arithmetic expression, the amount Q of fuel to be injected with respect to the required torque. Is to be decided.
 そして、FMTHで決定された燃料噴射量Qをエンジン(図示せず)に供給するために必要なインジェクタ(図示せず)の通電時間が、通電制御によって決定されると共に、その通電時間に応じた通電制御信号が電子制御ユニット1から図示されないインジェクタの通電回路へ出力されるものとなっている。 The energization time of an injector (not shown) necessary for supplying the fuel injection amount Q determined by FMTH to the engine (not shown) is determined by the energization control, and according to the energization time. An energization control signal is output from the electronic control unit 1 to an energization circuit of an injector (not shown).
 一方、レベル2においては、レベル1同様、クランク角センサ4の出力信号に基づいて、実際のエンジン回転数に相当する実エンジン回転数を予め定められた演算式により算出処理が行われるようになっている。
 また、カム角センサ5、アクセル開度センサ6の出力信号等に基づいて、目標エンジン回転数が予め定められた演算式、又は、演算マップにより算出されるようになっている。
On the other hand, at level 2, as with level 1, based on the output signal of the crank angle sensor 4, the actual engine speed corresponding to the actual engine speed is calculated using a predetermined arithmetic expression. ing.
Further, based on the output signals of the cam angle sensor 5 and the accelerator opening sensor 6, the target engine speed is calculated by a predetermined calculation formula or calculation map.
 また、レベル2においては、CANによって外部入力されたPTO SIG(以後、便宜的に「PTO CANデータ」と称する)やPTO POWER SIGなどの異常の有無が判定されるようになっている。そして、この異常検出処理によってPTO CANデータ等の異常が検出された場合には、ramp機能が有効とされるようになっている。
 本発明の実施の形態におけるramp機能は、上述の異常が検出された時点から目標エンジン回転数をランプ状に減少させて出力する、換言すれば、時間の経過と共に、目標エンジン回転数を強制的に低下させて出力するものとなっている。
In level 2, the presence or absence of abnormality such as PTO SIG (hereinafter referred to as “PTO CAN data” for the sake of convenience) or PTO POWER SIG externally input by CAN is determined. If an abnormality such as PTO CAN data is detected by this abnormality detection process, the ramp function is enabled.
The ramp function according to the embodiment of the present invention outputs the target engine speed by reducing the target engine speed in a ramp shape from the time point when the above-described abnormality is detected. In other words, the target engine speed is forcibly increased with time. The output is reduced to a low level.
 また、上述したPTO CANデータ等の異常検出処理によって、データの異常が検出された場合には、先にレベル1の説明で言及したように、レベル1で算出された目標エンジン回転数に代えて、上述のramp機能で得られた目標エンジン回転数が、レベル1のオールスピードマップに供されるようになっている。
  さらに、レベル2においては、トルク制限機能を有しており、PTO CANデータ等に異常が無い状態においては、目標エンジン回転数と実エンジン回転数に基づいてトルク制限率が算出されるようになっている。このトルク制限機能は、目標エンジン回転数と実エンジン回転数の差が大きいほどトルク制限率は0%に近い値が算出される一方、目標エンジン回転数と実エンジン回転数の差が一定の範囲にある場合には、トルク制限率100%を算出するものとなっている。
In addition, when an abnormality in data is detected by the above-described abnormality detection process such as PTO CAN data, instead of the target engine speed calculated at level 1 as mentioned in the explanation of level 1 above, The target engine speed obtained by the above-described ramp function is provided to the level 1 all speed map.
Further, at level 2, the torque limiting function is provided, and when there is no abnormality in the PTO CAN data or the like, the torque limiting rate is calculated based on the target engine speed and the actual engine speed. ing. In this torque limiting function, the greater the difference between the target engine speed and the actual engine speed, the closer the torque limit rate is calculated to 0%, while the difference between the target engine speed and the actual engine speed is within a certain range. In the case where the torque limit rate is 100%.
 そして、このトルク制限機能によって得られたトルク制限率とレベル1のオールスピードマップで得られたエンジントルクとの乗算がなされ、その乗算結果は、レベル1の先に述べた最小値選択処理へ供されるようになっている他、レベル2の他の処理に適宜供されるようになっている。
  したがって、PTO CANデータ等に異常が無く、車両が正常に動作している状態にあっては、トルク制限率は100%となるため、乗算結果は、オールスピードマップで得られたエンジントルクそのものとなり、最小値選択処理においては、オールスピードマップで得られたエンジントルクが選択されることとなる。
Then, the torque limiting rate obtained by this torque limiting function is multiplied by the engine torque obtained by the level 1 all speed map, and the result of the multiplication is supplied to the minimum value selection process described above for level 1. In addition to the above, it is appropriately used for other processing of level 2.
Therefore, when there is no abnormality in the PTO CAN data, etc. and the vehicle is operating normally, the torque limit rate is 100%, so the multiplication result is the engine torque itself obtained in the all speed map. In the minimum value selection process, the engine torque obtained by the all speed map is selected.
 一方、PTO CANデータ等の異常が検出された場合には、先に述べたramp機能からの目標エンジン回転数がトルク制限機能に供されるようになっている。そのため、トルク制限率は、ramp機能からの目標エンジン回転数の低下と共に低下してゆくこととなり、かかるトルク制限率とレベル1のオールスピードマップからのエンジントルクとの乗算が行われ、その乗算結果が最小値選択処理に供されることとなる。
  この場合、レベル1におけるオールスピードマップには、先に述べたようにramp機能からの目標エンジン回転数が実エンジン回転数と供されてエンジントルクが算出され、上述したレベル2のトルク制限率が乗じられたエンジントルクと共に最小値選択処理に供される。
On the other hand, when an abnormality such as PTO CAN data is detected, the target engine speed from the ramp function described above is provided to the torque limiting function. Therefore, the torque limit rate decreases with a decrease in the target engine speed from the ramp function, and the torque limit rate is multiplied by the engine torque from the level 1 all speed map, and the multiplication result Will be used for the minimum value selection process.
In this case, in the all speed map at the level 1, as described above, the target engine speed from the ramp function is used as the actual engine speed to calculate the engine torque, and the torque limit rate at the level 2 described above is obtained. Together with the multiplied engine torque, it is subjected to a minimum value selection process.
 したがって、PTO CANデータ等の異常が検出された場合には、レベル1における最小値選択処理においては、レベル2からのトルク制限を受けたエンジントルクが選択されてFMTCに供されることとなるため、トルク制限が施された通電制御が行われることとなる。 Therefore, when an abnormality such as PTO CAN data is detected, in the minimum value selection process at level 1, the engine torque subjected to the torque limit from level 2 is selected and used for FMTC. Thus, energization control with torque limitation is performed.
 なお、図1において、図示は省略してあるが、レベル1、レベル2は、上述の機能を除けば、従来同様、レベル1、レベル2のそれぞれにおいて、通常の車両動作制御のための同一の処理(ソフトウェア)が実行され、レベル1の処理が実際の車両動作に供されるようになっており、電子制御ユニット1からは、通電制御信号や点火制御信号等の種々の信号が、対応する制御対象(例えば、図示されないインジェクタの通電回路や点火プラグの点火回路等)へ出力されものとなっている。一方、レベル2においては、レベル1との処理内容の対比を所定の条件の下で行い、レベル1における処理における異常の有無を、診断し、その診断結果に応じて、警報、報知の発生や、必要な新たな処理が実行されるようになっている。 Although not shown in FIG. 1, level 1 and level 2 are the same as those for normal vehicle operation control at levels 1 and 2 as in the prior art except for the above-described functions. Processing (software) is executed, and level 1 processing is used for actual vehicle operation, and various signals such as an energization control signal and an ignition control signal correspond to the electronic control unit 1. It is output to a controlled object (for example, an energization circuit of an injector (not shown), an ignition circuit of a spark plug, etc.). On the other hand, at level 2, the processing contents of level 1 are compared under predetermined conditions to diagnose the presence or absence of abnormality in the processing at level 1, and according to the diagnosis result, an alarm or notification is generated. Necessary new processing is executed.
 図2には、電子制御ユニット1において実行されるエンジン回転制御処理の手順がサブルーチンフローチャートに示されており、以下、同図を参照しつつ、その内容について説明する。
 電子制御ユニット1による処理が開始されると、最初に、実エンジン回転数の算出が行われる(図2のステップS102参照)。
 この実エンジン回転数の算出は、クランク角センサ4の出力信号に基づいて所定の演算式により算出されるものである。
FIG. 2 shows a procedure of an engine rotation control process executed in the electronic control unit 1 in a subroutine flowchart, and the contents thereof will be described below with reference to FIG.
When the processing by the electronic control unit 1 is started, first, the actual engine speed is calculated (see step S102 in FIG. 2).
The actual engine speed is calculated by a predetermined arithmetic expression based on the output signal of the crank angle sensor 4.
 次いで、電子制御ユニット1により目標エンジン回転数及び安定制御エンジン回転数範囲が決定される(図2のステップS104参照)。
 ここで、目標エンジン回転数は、電子制御ユニット1の所定の記憶領域に予め記憶された目標エンジン回転数算出マップを用いて決定されるものとなっている。
 この目標エンジン回転数算出マップは、アクセル開度とトルクをパラメータとして、これらアクセル開度とトルクに対して、目標エンジン回転数が読み出し可能に構成されたものであり、アクセル開度、トルク、及び、目標エンジン回転数の相関関係は、レベル1において用いられているオールスピードマップに基づくものである。
Next, the target engine speed and the stable control engine speed range are determined by the electronic control unit 1 (see step S104 in FIG. 2).
Here, the target engine speed is determined using a target engine speed calculation map stored in advance in a predetermined storage area of the electronic control unit 1.
This target engine speed calculation map is configured so that the target engine speed can be read with respect to the accelerator opening and torque, using the accelerator opening and torque as parameters, and the accelerator opening, torque, and The correlation of the target engine speed is based on the all speed map used in level 1.
 すなわち、オールスピードマップは、先に述べたように、目標エンジン回転数に対して、図4に示されたような実エンジン回転数対トルク特性が定まるものとなっており、この特定された実エンジン回転数対トルク特性に基づいて、実エジン回転数に対するトルクが定まるようになっているものである。そして、目標エンジン回転数算出マップは、オールスピードマップにおける個々の実エンジン回転数対トルク特性で定まる目標エンジン回転数と、その時のトルク及びアクセル開度を読み取り、それらを対応する数値データとしてマップ化したものである。 That is, as described above, the all-speed map is such that the actual engine speed vs. torque characteristics as shown in FIG. 4 are determined with respect to the target engine speed. Based on the engine speed versus torque characteristic, the torque for the actual engine speed is determined. The target engine speed calculation map reads the target engine speed determined by each actual engine speed versus torque characteristics in the all speed map, the torque and accelerator opening at that time, and maps them as corresponding numerical data It is a thing.
 より具体的に説明すれば、目標エンジン回転算出マップは、例えば、図4を例に採れば、この特性線に対応するアクセル開度、すなわち、換言すれば、オールスピードマップによってこの特性線が選択される際のアクセル開度と、バランス点におけるトルクと、バランス点におけるエンジン回転数を目標エンジン回転数とし、これらを一組のデータとし、上述のアクセル開度とトルクが入力された際に、目標エンジン回転数を読み出し可能に構成されたもので、複数の実エンジン回転数対トルク特性線について、上述のように特定されたアクセル開度とトルクに対する目標エンジン回転数を読み出し可能に構成されてなるものである。
 そして、この目標エンジン回転算出マップによって、目標エンジン回転数を決定する際のアクセル開度は、アクセル開度センサ6によって検出されるものであり、トルクは、レベル1のオールスピードマップによって決定されたトルクである。
More specifically, for example, if the target engine rotation calculation map is taken as an example in FIG. 4, the accelerator opening corresponding to this characteristic line, that is, in other words, this characteristic line is selected by the all speed map. When the accelerator opening and torque are input, the engine speed at the balance point and the engine speed at the balance point are set as the target engine speed, and these are set as a set of data. The target engine speed is configured to be readable, and is configured to be able to read the target engine speed for the accelerator opening and torque specified as described above for a plurality of actual engine speed vs. torque characteristic lines. It will be.
The accelerator opening when the target engine speed is determined by the target engine rotation calculation map is detected by the accelerator opening sensor 6, and the torque is determined by the level 1 all speed map. Torque.
 また、安定制御エンジン回転数範囲は、実エンジン回転数の目標エンジン回転数からの許容し得るずれ量であり、後述するトルク制限を行うか否かの判断に用いられるものである(詳細は後述)。かかる安定制御エンジン回転数範囲は、予め定めた定数としても良く、また、例えば、目標エンジン回転数との相関で適宜な値が定められるようにシュミレーションや実験等に基づいて演算式を得、この演算式によって算出するようにしても良い。 Further, the stable control engine speed range is an allowable deviation amount of the actual engine speed from the target engine speed, and is used to determine whether or not to limit torque described later (details will be described later). ). Such a stable control engine speed range may be a predetermined constant. For example, an arithmetic expression is obtained based on simulations or experiments so that an appropriate value is determined by correlation with the target engine speed. It may be calculated by an arithmetic expression.
 次いで、電子制御ユニット1により、実エンジン回転数Dが、目標エンジン回転数Aと安定制御エンジン回転範囲Bの和より大であるか否かが判定される(図2のステップS106参照)。
 そして、D>A+Bであると判定された場合(YESの場合)には、電子制御ユニット1による処理は、次述するステップS108の処理へ進む一方、D>A+Bではないと判定された場合(NOの場合)は、実エンジン回転数は異常ではないとして一連の処理が終了され、電子制御ユニット1による処理は、図示されないメインルーチンへ戻ることとなる。
 ここで、D>A+Bでないと判定された場合には、レベル1におけるオールスピードマップによるエンジン回転一定制御が継続されることとなる。
Next, the electronic control unit 1 determines whether or not the actual engine speed D is larger than the sum of the target engine speed A and the stable control engine speed range B (see step S106 in FIG. 2).
When it is determined that D> A + B (in the case of YES), the processing by the electronic control unit 1 proceeds to the processing of step S108 described below, while when it is determined that D> A + B is not satisfied ( In the case of NO), the actual engine speed is not abnormal and the series of processes is terminated, and the process by the electronic control unit 1 returns to the main routine (not shown).
Here, when it is determined that D> A + B is not satisfied, the engine rotation constant control based on the all speed map at level 1 is continued.
 一方、ステップS108においては、レベル1においてオールスピードマップにより決定されたトルクに代えて、次述するようにレベル2でトルク制限が施されたトルクが、レベル1における燃料・トルク変換処理へ供されてエンジン回転制御がなされることとなる。
 すなわち、まず、本発明の実施の形態におけるトルク制限(トルク規制)は、図5に示されたような実エンジン回転数に対するトルク制限特性に基づいて行われるものとなっている。
On the other hand, in step S108, instead of the torque determined by the all speed map at level 1, the torque subjected to torque limitation at level 2 as described below is provided to the fuel / torque conversion process at level 1. Thus, engine rotation control is performed.
That is, first, the torque limit (torque limit) in the embodiment of the present invention is performed based on the torque limit characteristic with respect to the actual engine speed as shown in FIG.
 図5に示された特性線は、実エンジン回転数が、所定の目標エンジン回転数Aに所定の回転数B(安定制御エンジン回転範囲)を加えた値を超えるまでは、トルクを一定に維持する一方、実エンジン回転数が、所定の目標エンジン回転数Aに安定制御エンジン回転範囲Bを加えた範囲を超えた場合は、以後、実エンジン回転数の増加に伴いトルクを所定の減少率で小さくするよう規定されたものとなっている。
 すなわち、図5に示された特性線によれば、実エンジン回転数が目標エンジン回転数A+安定制御エンジン回転範囲Bを超える場合には、トルクは、実エンジン回転数に反比例して低下せしめられるものとなっている。
The characteristic line shown in FIG. 5 indicates that the torque remains constant until the actual engine speed exceeds a value obtained by adding a predetermined target engine speed A to a predetermined speed B (stable control engine speed range). On the other hand, when the actual engine speed exceeds the range obtained by adding the stable control engine speed range B to the predetermined target engine speed A, the torque is increased at a predetermined reduction rate as the actual engine speed increases thereafter. It is stipulated to be small.
That is, according to the characteristic line shown in FIG. 5, when the actual engine speed exceeds the target engine speed A + the stable control engine speed range B, the torque is reduced in inverse proportion to the actual engine speed. It has become a thing.
 ここで、実エンジン回転数が、所定の目標エンジン回転数A+安定制御エンジン回転範囲Bを超えるまで一定とされるトルクは、トルク制限に移る直前に、レベル1においてオールスピードマップによって定まるトルクである。
 そして、目標エンジン回転数Aは、同様に、トルク制限に移る直前に、レベル1においてオールスピードマップによって定まる目標エンジン回転数である。
 また、安定制御エンジン回転範囲は、目標エンジン回転数からの増加方向で許容し得る回転数の増分を示すものである。かかる安定制御エンジン回転範囲は、予め定めた定数としても良く、また、例えば、目標エンジン回転数との相関で適宜な値が定められるようにシュミレーションや実験等に基づいて演算式を得、この演算式によってその都度算出される値を用いるようにしても良い。
Here, the torque that is constant until the actual engine speed exceeds the predetermined target engine speed A + the stable control engine speed range B is determined by the all speed map at level 1 immediately before the torque limit is reached. .
Similarly, the target engine speed A is the target engine speed determined by the all speed map at level 1 immediately before shifting to the torque limit.
Further, the stable control engine rotation range indicates an increase in the rotation speed that can be allowed in an increasing direction from the target engine rotation speed. Such a stable control engine speed range may be a predetermined constant. For example, an arithmetic expression is obtained based on simulations or experiments so that an appropriate value is determined by correlation with the target engine speed, and this calculation is performed. You may make it use the value calculated each time by a type | formula.
 このようにしてトルク制限を受けたトルクの値は、レベル1における燃料・トルク変換処理へ供され、そのトルクに応じた燃料噴射量に変換されて、その燃料噴射量を得るべくインジェクタ(図示せず)の通電制御が行われることとなる。
 したがって、本発明の実施の形態によるエンジン制御方法を適用することによって、例えば、電子制御ユニット1内のRAMやROMなどの半導体記憶素子の故障に起因するようなレベル1の制御処理の異常を検出することができると共に、その場合には、レベル2においてトルク規制されたトルクに基づくレベル1によるエンジン回転制御が行われるため、特に、作業車両にあっては、車両動作異常時において、急激なトルク変動を生ずることなく、円滑に作業停止を行うことが可能となり、高い安全性、信頼性が確保できるものとなっている。
The torque value thus subjected to the torque limitation is supplied to the fuel / torque conversion process at level 1 and converted into a fuel injection amount corresponding to the torque, and an injector (not shown) is used to obtain the fuel injection amount. )) Energization control is performed.
Therefore, by applying the engine control method according to the embodiment of the present invention, for example, an abnormality in level 1 control processing caused by a failure of a semiconductor memory element such as RAM or ROM in the electronic control unit 1 is detected. In this case, the engine rotation control is performed at level 1 based on the torque regulated at level 2. In particular, in a work vehicle, a sudden torque is generated when the vehicle operation is abnormal. It is possible to smoothly stop work without causing fluctuations, and high safety and reliability can be ensured.
 半導体記憶素子の不良に起因するエンジン回転数の異常が検出された際に、トルク制限を行うようにしたので、特に、高い安全性、信頼性が所望される動力取出機構を装備した車両に適用できる。 Torque is limited when an abnormality in the engine speed due to a defective semiconductor memory element is detected, so it is particularly applicable to vehicles equipped with a power take-off mechanism that requires high safety and reliability. it can.

Claims (6)

  1. 動力取出機構装備車両の動作制御のための種々の制御処理が実行され、実際に車両の動作制御に供される第1のエリアと、前記第1のエリアによる車両の動作制御における故障の有無の診断処理が実行される第2のエリアとが設けられると共に、前記第1のエリアにおいては、車両の動作制御の1つとしてオールスピードマップによるエンジン回転制御が行われるよう構成されてなる動力取出機構装備車用エンジン制御装置におけるエンジン制御方法であって、
     前記第2のエリアにおいて、外部入力された車両の走行状態に基づいて演算算出された実エンジン回転数が、検出されたアクセル開度及び前記オールスピードマップにより定められたトルクに対して予め定められた相関関係に基づいて決定される目標エンジン回転数に、所定の許容増分回転数を加算した結果より大である場合に、
     前記オールスピードマップにより定められたトルクに、実エンジン回転数の増加に伴う漸減規制を施し、当該漸減規制が施されたトルクを、前記第1のエリアにおけるエンジン制御に供することを特徴とする動力取出機構装備車用エンジン制御装置のエンジン制御方法。
    Various control processes for controlling the operation of the vehicle equipped with the power take-off mechanism are executed, the first area that is actually used for the operation control of the vehicle, and whether there is a failure in the operation control of the vehicle in the first area. And a second area where diagnostic processing is executed, and in the first area, a power take-off mechanism configured to perform engine rotation control based on an all-speed map as one of vehicle operation control. An engine control method in an engine control device for an equipped vehicle,
    In the second area, the actual engine speed calculated based on the vehicle running condition inputted externally is determined in advance for the detected accelerator opening and the torque determined by the all speed map. If the target engine speed determined based on the correlation is larger than the result of adding a predetermined allowable incremental speed,
    The torque determined by the increase in the actual engine speed is applied to the torque determined by the all speed map, and the torque subjected to the decrease control is used for engine control in the first area. An engine control method for an engine control device for a vehicle equipped with a take-out mechanism.
  2. 漸減規制は、実エンジン回転数の増加に反比例して、トルクを所定の減少率で低下せしめることを特徴とする動力取出機構装備車用エンジン制御装置のエンジン制御方法。 The gradual reduction regulation is an engine control method for an engine control device for a vehicle with a power take-off mechanism, wherein the torque is reduced at a predetermined reduction rate in inverse proportion to the increase in the actual engine speed.
  3. レベル1においては、漸減規制が施されたトルクに対して、予め定められた演算処理によって、前記トルク発生のために必要とされる燃料噴射量が定められ、当該燃料噴射量に応じたインジェクタへの通電が実行されるよう制御処理がなされることを特徴とする請求項2記載の動力取出機構装備車用エンジン制御装置のエンジン制御方法。 At level 1, the fuel injection amount required for generating the torque is determined by a predetermined calculation process for the torque that has been subjected to the gradual reduction restriction, and the fuel injection amount corresponding to the fuel injection amount is determined. 3. An engine control method for an engine control device for a vehicle with a power take-off mechanism according to claim 2, wherein the control process is performed so that the energization of the engine is executed.
  4. 電子制御ユニットにおいて実行される動作制御処理に基づいて動力取出機構装備車両の動作制御を可能としてなる動力取出機構装備車用エンジン制御装置であって、
     前記電子制御ユニットは、実際に車両の動作制御に供される第1のエリアと、前記第1のエリアによる車両の動作制御における故障の有無の診断処理が実行される第2のエリアとが設けられると共に、前記第1のエリアにおいては、車両の動作制御の1つとしてオールスピードマップによるエンジン回転制御が行われるよう構成されてなる動力取出機構装備車用エンジン制御装置において、
     前記電子制御ユニットは、
     前記第2のエリアにおいて、外部入力された車両の走行状態に基づいて演算算出された実エンジン回転数と、
     検出されたアクセル開度及び前記オールスピードマップにより定められたトルクに対して予め定められた相関関係に基づいて決定される目標エンジン回転数に、所定の許容増分回転数を加算した加算結果との大小を比較し、前記実エンジン回転数が、前記加算結果より大である場合に、
     前記オールスピードマップにより定められたトルクに、実エンジン回転数の増加に伴う漸減規制を施し、当該漸減規制が施されたトルクを、前記第1のエリアにおけるエンジン制御に供するよう構成されてなることを特徴とする動力取出機構装備車用エンジン制御装置。
    An engine control device for a vehicle with a power take-off mechanism that enables operation control of a vehicle with a power take-out mechanism based on a motion control process executed in an electronic control unit,
    The electronic control unit includes a first area that is actually used for vehicle operation control, and a second area in which a diagnosis process for the presence or absence of a failure in vehicle operation control by the first area is executed. In addition, in the first area, in the engine control device for a vehicle with a power take-off mechanism configured to perform engine rotation control by an all-speed map as one of the vehicle operation controls,
    The electronic control unit is
    In the second area, the actual engine speed calculated based on the vehicle running condition inputted externally,
    An addition result obtained by adding a predetermined allowable incremental speed to a target engine speed determined based on a predetermined correlation with the detected accelerator opening and the torque determined by the all speed map. If the actual engine speed is greater than the addition result,
    The torque determined by the all-speed map is subjected to a gradual reduction regulation with an increase in the actual engine speed, and the torque subjected to the gradual reduction regulation is used for engine control in the first area. An engine control device for vehicles equipped with a power take-off mechanism.
  5. 漸減規制は、実エンジン回転数の増加に反比例して、トルクを所定の減少率で低下せしめることを特徴とする請求項4記載の動力取出機構装備車用エンジン制御装置。 5. The engine control device for a vehicle with a power take-off mechanism according to claim 4, wherein the gradual reduction regulation reduces the torque at a predetermined reduction rate in inverse proportion to the increase in the actual engine speed.
  6. 電子制御ユニットは、レベル1において、漸減規制が施されたトルクに対して、予め定められた演算処理によって、前記トルク発生のために必要とされる燃料噴射量が定められ、当該燃料噴射量に応じたインジェクタへの通電を行う制御処理が実行可能に構成されてなることを特徴とする請求項5記載の動力取出機構装備車用エンジン制御装置。 At level 1, the electronic control unit determines a fuel injection amount required for generating the torque by a predetermined calculation process for the torque subjected to the gradual reduction regulation. 6. The engine control device for a vehicle equipped with a power take-off mechanism according to claim 5, wherein a control process for energizing a corresponding injector is executable.
PCT/JP2009/070802 2008-12-16 2009-12-14 Method for controlling engine of vehicle having power extraction mechanism and device for controlling engine of vehicle having power extraction mechanism WO2010071096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542953A JP5220130B2 (en) 2008-12-16 2009-12-14 Engine control method for vehicle equipped with power take-off mechanism and engine control device for car equipped with power take-out mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008319681 2008-12-16
JP2008-319681 2008-12-16

Publications (1)

Publication Number Publication Date
WO2010071096A1 true WO2010071096A1 (en) 2010-06-24

Family

ID=42268766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070802 WO2010071096A1 (en) 2008-12-16 2009-12-14 Method for controlling engine of vehicle having power extraction mechanism and device for controlling engine of vehicle having power extraction mechanism

Country Status (2)

Country Link
JP (1) JP5220130B2 (en)
WO (1) WO2010071096A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102691A (en) * 2010-11-12 2012-05-31 Bosch Corp Engine control device of power take-off mechanism-equipped vehicle
JP2016065498A (en) * 2014-09-25 2016-04-28 いすゞ自動車株式会社 Vehicle control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076313A1 (en) 2014-11-10 2016-05-19 株式会社資生堂 Method for evaluating glow of skin, method for examining skin glow improvers, and skin glow improver
JP6540660B2 (en) * 2016-04-15 2019-07-10 トヨタ自動車株式会社 Data recording apparatus for internal combustion engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958251A (en) * 1982-09-29 1984-04-03 Toyota Motor Corp Control method for internal combustion engine and automatic speed change gear
JPH06213253A (en) * 1993-09-10 1994-08-02 Zexel Corp Starting control device for vehicle
JPH07233755A (en) * 1994-02-25 1995-09-05 Isuzu Motors Ltd Accelerator control device
JPH10507805A (en) * 1994-10-29 1998-07-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vehicle drive unit control method and device
JP2001082213A (en) * 1999-09-17 2001-03-27 Mitsubishi Motors Corp Fuel injection control device
WO2007074670A1 (en) * 2005-12-27 2007-07-05 Hitachi Construction Machinery Co., Ltd. Pump control device for hydraulic working machine, pump control method, and construction machine
JP2008151001A (en) * 2006-12-15 2008-07-03 Komatsu Ltd Engine load control device of working vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144626A (en) * 2006-12-07 2008-06-26 Hitachi Constr Mach Co Ltd Abnormality determining device for construction machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958251A (en) * 1982-09-29 1984-04-03 Toyota Motor Corp Control method for internal combustion engine and automatic speed change gear
JPH06213253A (en) * 1993-09-10 1994-08-02 Zexel Corp Starting control device for vehicle
JPH07233755A (en) * 1994-02-25 1995-09-05 Isuzu Motors Ltd Accelerator control device
JPH10507805A (en) * 1994-10-29 1998-07-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Vehicle drive unit control method and device
JP2001082213A (en) * 1999-09-17 2001-03-27 Mitsubishi Motors Corp Fuel injection control device
WO2007074670A1 (en) * 2005-12-27 2007-07-05 Hitachi Construction Machinery Co., Ltd. Pump control device for hydraulic working machine, pump control method, and construction machine
JP2008151001A (en) * 2006-12-15 2008-07-03 Komatsu Ltd Engine load control device of working vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102691A (en) * 2010-11-12 2012-05-31 Bosch Corp Engine control device of power take-off mechanism-equipped vehicle
JP2016065498A (en) * 2014-09-25 2016-04-28 いすゞ自動車株式会社 Vehicle control device

Also Published As

Publication number Publication date
JP5220130B2 (en) 2013-06-26
JPWO2010071096A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US6751544B2 (en) Vehicle engine control device
US8087484B2 (en) Method for limiting setpoint torques during engine control
JP2008014221A (en) Controller of engine with auxiliary machine
JP4814326B2 (en) Method for identifying torque setting errors in a vehicle drive unit having at least two separate motors and apparatus for implementing the method
KR101348898B1 (en) Control method for fail safety of hybrid vehicle
JP2010196713A (en) Torque monitoring method and device for vehicle driving unit
JPS6251737A (en) Safety emergency travelling method and device for self-ignition type internal combustion engine
JP5220130B2 (en) Engine control method for vehicle equipped with power take-off mechanism and engine control device for car equipped with power take-out mechanism
JP5087524B2 (en) Electronically controlled diesel engine
US8200387B2 (en) Device and method for controlling a drive unit
JP2003262154A (en) Electronic control device for vehicle
JP2011127439A (en) Control device of internal combustion engine
JP2009062998A (en) Vehicle control system
CN110281937A (en) Method for monitoring vehicle
WO2010044359A1 (en) Engine rpm control device
KR20080088626A (en) Monitoring system for a hybrid drive
WO2010044361A1 (en) Engine rpm control device
US8433464B2 (en) Method for simplifying torque distribution in multiple drive systems
JP2007138878A (en) Control device of internal combustion engine
JP2005291173A (en) Vehicle control system
JP5096280B2 (en) Engine control method for vehicle equipped with power take-off mechanism and engine control device for car equipped with power take-out mechanism
JP2008190389A (en) Electronic control device
JP6922458B2 (en) Electronic control device
US7325532B2 (en) Method for the torque-oriented control of an internal combustion engine
CN106467022B (en) Method and device for determining whether a fault state exists in a motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833399

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542953

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833399

Country of ref document: EP

Kind code of ref document: A1