JP2000239828A - Production of ceramics coating and ceramics-coated member - Google Patents

Production of ceramics coating and ceramics-coated member

Info

Publication number
JP2000239828A
JP2000239828A JP11041172A JP4117299A JP2000239828A JP 2000239828 A JP2000239828 A JP 2000239828A JP 11041172 A JP11041172 A JP 11041172A JP 4117299 A JP4117299 A JP 4117299A JP 2000239828 A JP2000239828 A JP 2000239828A
Authority
JP
Japan
Prior art keywords
ceramic
side wall
coating
ceramics
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041172A
Other languages
Japanese (ja)
Inventor
Kazuhide Matsumoto
一秀 松本
Masayuki Ito
昌行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11041172A priority Critical patent/JP2000239828A/en
Publication of JP2000239828A publication Critical patent/JP2000239828A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing ceramics coating free from difference in mechanical properties and thermal characteristics between each part in a member having a three-dimensional shape and excellent characteristics. SOLUTION: In a producing method in which a member 5 having a side wall part 5a and an effective part 5b is coated with ceramics, a stage in which the side wall part is coated with ceramics, a stage in which the effective part is coated with ceramics and a driving device 7 separately driving the side wall part and the effective part are provided, and, by controlling the surface roughness of the side wall part and the effective part, the collision angle between the coated part in the member and the ceramics particles, the method for moving the member, the driving rate of the member, or the like, respectively in the side wall part and the effective part, the member is coated with the ceramics. There is no difference between each part in the member, and the ceramics film characteristics of the side wall part and the effective part can remarkably be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械的特性および
熱的特性に優れたセラミックス被覆の製造方法およびセ
ラミックス被覆部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic coating having excellent mechanical and thermal characteristics and a ceramic coated member.

【0002】[0002]

【従来の技術】一般に、耐摩耗性,耐食性を必要とする
駆動装置や耐熱性を必要とする高温部品には、TiN,
TiC,Al2 3 ,ZrO2 ,CrN等のセラミック
ス皮膜を被覆した部材が多く使われている。このような
セラミックス被覆部材を実現するには、真空蒸着やイオ
ンプレーティング等の物理蒸着法、あるいは溶射法等に
よる被覆方法が用いられている。
2. Description of the Related Art Generally, TiN, TiN, and the like are used for driving devices requiring abrasion resistance and corrosion resistance and high-temperature components requiring heat resistance.
Members coated with a ceramic film such as TiC, Al 2 O 3 , ZrO 2 , and CrN are often used. In order to realize such a ceramic covering member, a physical vapor deposition method such as vacuum deposition or ion plating, or a coating method using a thermal spraying method or the like is used.

【0003】例えば、TiN,Al2 3 のセラミック
ス皮膜を物理蒸着法で形成する場合は、金属Tiあるい
はAlを抵抗加熱,高周波加熱,電子ビーム加熱などに
よって、金属TiあるいはAlを蒸発させ、これと同時
に真空チャンバ内にN2 ガスあるいはO2 ガスを導入
し、500℃以下の低温で部材表面に、TiNあるいは
Al2 3 を形成して被覆を行っている。また、ZrO
2 を物理蒸着法で形成する場合は、ジルコニアターゲッ
ト材を電子ビームで蒸発させ、部材表面にジルコニアの
被覆を行っている。一方、溶射法で皮膜を形成する場合
は、溶射フレーム中にセラミックス溶射粉末を導入して
部材表面にセラミックス皮膜を形成させている。
[0003] For example, when a ceramic film of TiN or Al 2 O 3 is formed by physical vapor deposition, metal Ti or Al is evaporated by resistance heating, high frequency heating, electron beam heating, or the like. simultaneously introducing N 2 gas or O 2 gas into the vacuum chamber, the low temperature member surface below 500 ℃, which were formed to cover the TiN or Al 2 O 3. In addition, ZrO
When 2 is formed by a physical vapor deposition method, the zirconia target material is evaporated with an electron beam, and the surface of the member is coated with zirconia. On the other hand, when a coating is formed by a thermal spraying method, ceramic spray powder is introduced into a thermal spray frame to form a ceramic coating on the surface of the member.

【0004】ところで、セラミックスを被覆する部材形
状は、一般に3次元の複雑な形状をしており、物理蒸着
法あるいは溶射法によるセラミックス被覆は、外周面に
施工されることがほとんどである。
[0004] By the way, the shape of a member coated with ceramics is generally a three-dimensional complicated shape, and ceramic coating by physical vapor deposition or thermal spraying is almost always applied to the outer peripheral surface.

【0005】この外周面への被覆においても、図6に示
すような側壁部5aと有効部5bとを持った部材5への
セラミックス被覆は通常1回の工程で行われるため、側
壁部5aと有効部5bとではセラミックスが被覆される
条件が異なり、その結果、側壁部5aと有効部5bとで
は形成されたセラミックス皮膜の特性に優劣が生じる。
例えば、図5は一般に行われている真空蒸着法によるセ
ラミックス被覆を模式的に示した図であるが、真空排気
装置2で排気された真空チャンバ1の内部における電子
銃室3から発生した電子ビームEBにより、ターゲット
材4を蒸発させて側壁部5aと有効部5bを有する部材
5にセラミックスを被覆している。
In the coating of the outer peripheral surface as well, since the ceramic coating of the member 5 having the side wall 5a and the effective portion 5b as shown in FIG. The condition for coating the ceramics is different between the effective portion 5b and as a result, the properties of the ceramic film formed between the side wall portion 5a and the effective portion 5b are superior.
For example, FIG. 5 is a view schematically showing a ceramic coating by a vacuum deposition method which is generally performed. An electron beam generated from an electron gun chamber 3 in a vacuum chamber 1 evacuated by a vacuum exhaust device 2 is shown. The target material 4 is evaporated by EB, and the member 5 having the side wall portion 5a and the effective portion 5b is coated with ceramics.

【0006】[0006]

【発明が解決しようとする課題】このようにして製作さ
れた部材5では、側壁部5a内側のセラミックス皮膜の
密着性や熱サイクル特性が,有効部5bのセラミックス
皮膜と比較して大きく劣る場合があるという問題があっ
た。
In the member 5 manufactured as described above, the adhesion and heat cycle characteristics of the ceramic film inside the side wall 5a may be significantly inferior to those of the effective portion 5b. There was a problem.

【0007】本発明(請求項1乃至請求項8対応)は、
上記問題を解消するためになされたもので、その目的
は、3次元形状の部材に対しセラミックス皮膜の機械的
特性や熱的特性が各部位において差がなく、従来よりも
格段に優れた特性を有するセラミックス被覆の製造方法
を提供することにある。
The present invention (corresponding to claims 1 to 8) provides:
The purpose of the present invention is to solve the above-mentioned problem. The purpose is to make the mechanical and thermal properties of the ceramic film comparable to those of the three-dimensional member at each part, and to achieve much better properties than before. An object of the present invention is to provide a method for producing a ceramic coating having the same.

【0008】また、本発明(請求項9及び請求項10対
応)の他の目的は、セラミックス皮膜の機械的特性や熱
的特性が優れ、タービン高温部品にも適用できるセラミ
ックス被覆部材を提供することにある。
Another object of the present invention (corresponding to claims 9 and 10) is to provide a ceramic coating member which is excellent in mechanical and thermal properties of a ceramic film and can be applied to high-temperature turbine components. It is in.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、側壁部と有効部を有する部材
にセラミックスを被覆する製造方法において、前記側壁
部にセラミックスを被覆する工程と、前記有効部にセラ
ミックスを被覆する工程と、前記側壁部と前記有効部を
別々に駆動する駆動装置を設け、前記側壁部と前記有効
部の表面粗さ、前記部材の被覆部位とセラミックス粒子
との衝突角度、前記部材の移動方法、前記部材の駆動速
度等を、前記側壁部と前記有効部それぞれにおいて制御
することにより前記部材にセラミックスを被覆すること
を特徴とする。
In order to achieve the above object, a first aspect of the present invention is to provide a method of coating a member having a side wall and an effective portion with a ceramic, wherein the side wall is coated with a ceramic. A step of coating the effective portion with ceramics; and providing a driving device for separately driving the side wall portion and the effective portion, the surface roughness of the side wall portion and the effective portion, the coating portion of the member and the ceramics. The member is coated with ceramics by controlling a collision angle with particles, a method of moving the member, a driving speed of the member, and the like in each of the side wall portion and the effective portion.

【0010】本発明の請求項2は、側壁部と有効部を有
する部材に物理蒸着でセラミックスを被覆する製造方法
において、前記側壁部内側の表面粗さを前記有効部の表
面粗さに対して相対的に粗くしたことを特徴とする。
According to a second aspect of the present invention, there is provided a manufacturing method for coating a member having a side wall portion and an effective portion with ceramics by physical vapor deposition. It is characterized by being relatively rough.

【0011】本発明の請求項3は、側壁部内側に物理蒸
着でセラミックスを被覆する工程において、セラミック
ス蒸発粒子の大部分が側壁部内側に45°以上の角度で
衝突するように部材を配置したことを特徴とする。
According to a third aspect of the present invention, in the step of coating the inside of the side wall with the ceramic by physical vapor deposition, the members are arranged such that most of the evaporated particles of the ceramic collide with the inside of the side wall at an angle of 45 ° or more. It is characterized by the following.

【0012】本発明の請求項4は、有効部に物理蒸着で
セラミックスを被覆する工程において、セラミックス蒸
発粒子の大部分が有効部表面に90°の角度で衝突する
ように部材を配置したことを特徴とする。
According to a fourth aspect of the present invention, in the step of coating ceramics on the effective portion by physical vapor deposition, the member is arranged such that most of the evaporated particles of the ceramic collide with the surface of the effective portion at an angle of 90 °. Features.

【0013】本発明の請求項5は、側壁部内側に物理蒸
着でセラミックスを被覆する工程において、部材を回転
する工程および固定する工程によりセラミックス被覆が
終了するまで行うことを特徴とする。
A fifth aspect of the present invention is characterized in that the step of coating the inside of the side wall with the ceramic by physical vapor deposition is performed until the ceramic coating is completed by the step of rotating and fixing the member.

【0014】本発明の請求項6は、側壁部と有効部を有
する部材を固定して前記側壁部内側に物理蒸着でセラミ
ックスを被覆する工程において、前記側壁部の深さLと
前記有効部の幅Wの比であるアスペクト比(L/W)が
最も大きい箇所にセラミックス蒸発粒子の大部分が直接
衝突するように前記部材の固定角度を決めることを特徴
とする。
According to a sixth aspect of the present invention, in the step of fixing a member having a side wall portion and an effective portion and coating the inside of the side wall portion with ceramics by physical vapor deposition, the depth L of the side wall portion and the effective portion The fixed angle of the member is determined so that most of the ceramic evaporation particles directly collide with a portion where the aspect ratio (L / W), which is the ratio of the width W, is the largest.

【0015】本発明の請求項7は、側壁部内側に物理蒸
着でセラミックスを被覆する工程において、部材を回転
する工程および部材を固定する工程によりセラミックス
被覆が終了するまで回転駆動および固定動作を制御装置
により連続自動制御することを特徴とする。
According to a seventh aspect of the present invention, in the step of coating the inside of the side wall with the ceramic by physical vapor deposition, the rotation driving and the fixing operation are controlled until the ceramic coating is completed by the step of rotating the member and the step of fixing the member. It is characterized by continuous automatic control by the device.

【0016】本発明の請求項8は、側壁部を有する部材
に溶射でセラミックスを被覆する製造方法において、請
求項2乃至請求項7記載のいずれかのセラミックス被覆
部材の製造方法を使用することを特徴とする。
According to an eighth aspect of the present invention, there is provided a method for coating a member having a side wall portion with a ceramic by thermal spraying, wherein the method for manufacturing a ceramic coated member according to any one of the second to seventh aspects is used. Features.

【0017】請求項1乃至請求項8によれば、側壁部と
有効部の表面粗さ、被覆部位とセラミックス粒子との衝
突角度、部材の駆動方法または部材の駆動速度を、側壁
部と有効部それぞれにおいて制御しているので、3次元
形状の部材の各部位で差がなく側壁部と有効部のセラミ
ックス皮膜特性を大きく向上させることができる。
According to the first to eighth aspects, the surface roughness of the side wall portion and the effective portion, the collision angle between the coated portion and the ceramic particles, the driving method of the member or the driving speed of the member are determined by changing the side wall portion and the effective portion. Since the control is performed in each part, there is no difference in each part of the three-dimensionally shaped member, and the ceramic film characteristics of the side wall part and the effective part can be greatly improved.

【0018】本発明の請求項9は、側壁部と有効部を有
する部材を請求項1乃至請求項7記載のいずれかの製造
方法でセラミックス被覆を形成し、タービン高温部品に
も適用可能にすることを特徴とする。
According to a ninth aspect of the present invention, a member having a side wall portion and an effective portion is formed with a ceramic coating by any one of the manufacturing methods according to the first to seventh aspects so that the member can be applied to a turbine high-temperature component. It is characterized by the following.

【0019】本発明の請求項10は、セラミックスを被
覆する部材において、請求項8記載の製造方法でセラミ
ックス被覆を形成し、タービン高温部品にも適用可能に
することを特徴とする。請求項9及び請求項10によれ
ば、セラミックス皮膜の機械的特性や熱的特性が優れタ
ービン高温部品にも適用できるセラミックス被覆部材を
提供できる。
According to a tenth aspect of the present invention, in a member for coating a ceramic, a ceramic coating is formed by the manufacturing method according to the eighth aspect, so that the member can be applied to a turbine high-temperature component. According to the ninth and tenth aspects, it is possible to provide a ceramic coating member which has excellent mechanical properties and thermal properties of a ceramic film and can be applied to a turbine high-temperature component.

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照して説明する。図1は、本発明の第1実施例(請求
項1乃至請求項6、請求項8乃至請求項10対応)の構
成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a first embodiment (corresponding to claims 1 to 6, and claims 8 to 10) of the present invention.

【0021】図に示すように、真空チャンバ1は真空排
気装置2により真空とされており、この真空チャンバ1
内の下部には電子ビームを発生させる電子銃室3が配設
されている。また、真空チャンバ1内の下部には、図示
しないるつぼにセラミックス皮膜と同種類のセラミック
スインゴットであるジルコニアからなるターゲット材4
が収容されている。
As shown in the figure, the vacuum chamber 1 is evacuated by a vacuum exhaust device 2.
An electron gun chamber 3 for generating an electron beam is provided in a lower part of the inside. In a lower part of the vacuum chamber 1, a target material 4 made of zirconia, which is a ceramic ingot of the same type as the ceramic film, is placed in a crucible (not shown).
Is housed.

【0022】一方、真空チャンバ1の上部にはセラミッ
クス被覆を行う部材5が取付け治具6を介してチャンバ
外部に設置された部材駆動装置7に取付けられている。
この部材5は側壁部5aと有効部5bとを有しており、
部材駆動装置7は水平方向の動作と回転動作ができる。
さらに、部材5の上部近傍には部材5を500℃以上に
加熱するための加熱装置8が配設されている。
On the other hand, on the upper part of the vacuum chamber 1, a member 5 for performing ceramic coating is mounted via a mounting jig 6 to a member driving device 7 installed outside the chamber.
This member 5 has a side wall portion 5a and an effective portion 5b,
The member driving device 7 can perform horizontal operation and rotational operation.
Further, a heating device 8 for heating the member 5 to 500 ° C. or higher is provided near the upper portion of the member 5.

【0023】次に、本実施例の製造装置を用いたセラミ
ックス被覆部材の製造方法について説明する。部材5の
有効部5bにジルコニアを被覆する場合には、側壁部5
aをステンレス板材等のマスキングで覆い、有効部5b
とターゲット材4が相対するように部材5を取付け治具
6により取付ける。この後、真空排気装置2によって真
空チャンバ1を10-4Pa程度の真空度になるまで真空
引きする。次いで、加熱装置8により部材5を500℃
以上に加熱し、電子銃室3からターゲット材4に電子ビ
ームを照射する。この電子ビーム照射によりターゲット
材4が溶融・蒸発し、ジルコニア蒸発粒子の大部分が有
効部5bに90°の角度で衝突し皮膜が形成される。
Next, a method of manufacturing a ceramic covering member using the manufacturing apparatus of this embodiment will be described. When the effective portion 5b of the member 5 is coated with zirconia, the side wall 5
a is covered with a mask such as a stainless steel plate, and the effective portion 5b
The member 5 is mounted by the mounting jig 6 so that the target member 4 and the target material 4 face each other. Thereafter, the vacuum chamber 1 is evacuated to a degree of vacuum of about 10 @ -4 Pa by the evacuation device 2. Next, the member 5 is heated to 500 ° C. by the heating device 8.
The heating is performed as described above, and the target material 4 is irradiated with an electron beam from the electron gun chamber 3. The target material 4 is melted and evaporated by the electron beam irradiation, and most of the evaporated zirconia particles collide with the effective portion 5b at an angle of 90 ° to form a film.

【0024】一般に、部材5のような形状において、側
壁部5aの内側へのセラミックス被覆は有効部5bと同
時に行う。この場合、ジルコニア蒸発粒子は側壁部5a
内側に下方から斜めに衝突し皮膜を形成する。
In general, in the shape of the member 5, the inside of the side wall 5a is coated with the ceramics simultaneously with the effective portion 5b. In this case, the evaporated zirconia particles are formed on the side wall 5a.
It collides obliquely inward from below to form a film.

【0025】下記表1は、平板試験片で側壁部内側およ
び有効部へのジルコニア被覆を模擬して製作した試料の
内容を示したものである。すなわち、ジルコニア蒸発粒
子と平板試験片との衝突角度、およびジルコニア被覆前
の平板表面粗さRa(μm)を変えている。これらの試
料を、タービン高温部品評価法として用いられている大
気中での1100℃〜150℃間の熱サイクル試験に供
与し、皮膜が剥離するまでの寿命を評価した。その結果
を図2に示す。
Table 1 below shows the contents of samples manufactured by simulating zirconia coating on the inside of the side wall portion and the effective portion with a flat plate test piece. That is, the collision angle between the zirconia evaporated particles and the flat plate test piece, and the flat plate surface roughness Ra (μm) before zirconia coating were changed. These samples were subjected to a thermal cycle test between 1100 ° C. and 150 ° C. in the atmosphere used as a method for evaluating turbine high-temperature parts, and the life until the coating was peeled was evaluated. The result is shown in FIG.

【0026】[0026]

【表1】 [Table 1]

【0027】上述した一般的な方法では、側壁部内側へ
の被覆は試料Aに相当し、有効部への被覆は試料Eに相
当する。この試料Aの剥離寿命を1とすると、試料Eは
試料Aに対して10倍の剥離寿命となっており、側壁部
内側の皮膜密着性や熱特性は有効部に比べて大きく劣っ
ている。試料Bと試料Cは、この欠点を改良すべく蒸発
粒子との衝突角度および表面粗さRaを変えた資料であ
る。表面粗さRaを1μm以上(2〜4μm)にした試
料Bは、試料Aに対して約8倍の剥離寿命が得られ、さ
らに、衝突角度を45°〜90°と大きくした試料Cで
は約9倍の剥離寿命となり、有効部を模擬した試料Eに
近い皮膜特性が得られた。
In the general method described above, the coating on the inner side of the side wall corresponds to sample A, and the coating on the effective portion corresponds to sample E. Assuming that the peeling life of this sample A is 1, the peeling life of the sample E is ten times that of the sample A, and the adhesion of the film on the inner side of the side wall portion and the thermal characteristics are greatly inferior to the effective portion. Samples B and C are materials in which the collision angle with the evaporating particles and the surface roughness Ra were changed in order to improve this defect. Sample B having a surface roughness Ra of 1 μm or more (2 to 4 μm) has a peeling life approximately eight times that of Sample A, and Sample C having a large collision angle of 45 ° to 90 ° has approximately The peel life was 9 times longer, and a film characteristic close to that of Sample E simulating the effective portion was obtained.

【0028】特に、タービン高温部品では、このような
熱サイクル特性に優れた部材が要求されている。比較の
ため、表面粗さを1μm以上にして有効部を模擬した試
料Dは、剥離寿命が試料Eの1/2程度となっている。
In particular, high temperature parts for turbines are required to have members excellent in such heat cycle characteristics. For comparison, Sample D, which simulated the effective portion with a surface roughness of 1 μm or more, has a peeling life of about 1 / of Sample E.

【0029】これらの評価結果に基づき、側壁部を有す
る部材において、側壁部内側に物理蒸着でセラミックス
を被覆する場合は、側壁部内側の表面粗さを有効部表面
粗さに対して相対的に粗くすることにより、側壁部内側
の皮膜特性を有効部の皮膜特性に大きく近付けることが
できる。好ましくは、側壁部内側の表面粗さRaを1μ
m以上、有効部表面粗さを1μmにするとよい。
Based on these evaluation results, in the case of a member having a side wall portion, when the inside of the side wall portion is coated with ceramics by physical vapor deposition, the surface roughness inside the side wall portion is relative to the effective portion surface roughness. By making the surface rough, the film characteristics inside the side wall portion can be made much closer to the film characteristics of the effective portion. Preferably, the surface roughness Ra on the inner side of the side wall is 1 μm.
m or more, and the effective part surface roughness is preferably 1 μm.

【0030】さらに、側壁部内側と蒸発粒子との衝突角
度を45°以上で90°に近付けるほど、皮膜特性は良
くなる。したがって、側壁部内側と有効部へのセラミッ
クス被覆は、それぞれに部材配置を変えて90°に近い
衝突角度が得られるようにするとよい。
Further, as the collision angle between the inside of the side wall portion and the evaporating particles approaches 45 ° or more and approaches 90 °, the film characteristics become better. Therefore, the ceramic coating on the inside of the side wall portion and the effective portion is preferably changed in the arrangement of the members so that a collision angle close to 90 ° can be obtained.

【0031】次に、部材の側壁部が有効部に対して周囲
に大きく張り出している場合は、側壁部内側へのセラミ
ックス被覆は部材を回転させながら行う。特に、図3に
示すように側壁部の深さLと有効部の幅Wの比であるア
スペクト比L/Wが大きい場合、側壁部内側の奥深い部
分には十分な皮膜厚さが得られないことがある。このよ
うな場合には、部材の回転駆動の他に、側壁部内側の奥
深い部分にセラミックス蒸発粒子が直接衝突するように
した角度で部材を固定する工程を入れるとよい。この工
程により側壁部内側の奥深い部分にも十分な被覆を行う
ことができ、回転駆動と組み合わせることによって、側
壁部内側全体に均一な皮膜を得ることができる。特に、
アスペクト比が0.5以上の場合にはこれらの方法が有
効となる。
Next, when the side wall portion of the member protrudes greatly around the effective portion, the ceramic coating on the inside of the side wall portion is performed while rotating the member. In particular, as shown in FIG. 3, when the aspect ratio L / W, which is the ratio of the depth L of the side wall portion to the width W of the effective portion, is large, a sufficient film thickness cannot be obtained in the deep portion inside the side wall portion. Sometimes. In such a case, in addition to the rotational driving of the member, a step of fixing the member at an angle such that the ceramic evaporation particles directly collide with the deep portion inside the side wall portion may be provided. By this step, a sufficient coating can be performed even on the deep portion inside the side wall portion, and a uniform film can be obtained on the entire inside of the side wall portion by combining with the rotation driving. In particular,
These methods are effective when the aspect ratio is 0.5 or more.

【0032】図4は、本発明の第2実施例(請求項7、
請求項9及び請求項10対応)の構成図である。図に示
すように、本実施例では、部材5の側壁部5a内部にジ
ルコニアを被覆することを示しているが、側壁部5aが
ターゲット材4に相対するように部材5が取付け治具6
に取付けられている。側壁部5a内側に均一にジルコニ
アを被覆するため、部材5を回転しながら被覆する工程
と部材5を固定して被覆する工程とを組み合わせて行
い、側壁部内側の皮膜特性が格段に優れたジルコニア被
覆のタービン高温部材を得ることができた。
FIG. 4 shows a second embodiment of the present invention.
It is a block diagram of Claim 9 and Claim 10). As shown in the drawing, in this embodiment, the inside of the side wall 5a of the member 5 is covered with zirconia, but the member 5 is attached to the mounting jig 6 so that the side wall 5a faces the target material 4.
Mounted on In order to uniformly coat the inside of the side wall 5a with zirconia, the step of coating while rotating the member 5 and the step of fixing and covering the member 5 are performed in combination, so that the zirconia with the extremely excellent film characteristics inside the side wall is provided. A coated turbine hot component could be obtained.

【0033】また、図4に示すように、本装置では駆動
装置7にNC制御装置9を接続しているので、上記の回
転駆動,回転速度,固定動作,固定時間を自由に組み合
わせて制御できる。また、連続自動制御で特性の優れた
セラミックス皮膜を均一に被覆することもできる。
Further, as shown in FIG. 4, since the NC control device 9 is connected to the drive device 7 in the present device, the above-described rotational drive, rotational speed, fixed operation, and fixed time can be freely combined and controlled. . In addition, a ceramic film having excellent characteristics can be uniformly coated by continuous automatic control.

【0034】上述した各実施例で行われた方法は、溶射
法によるセラミックス被覆にもそのまま適用することが
でき、また同様に製造方法にも用いることにより側壁部
においても優れた溶射皮膜特性を持つ部材を得ることが
できる。
The method performed in each of the above-described embodiments can be applied to ceramic coating by a thermal spraying method as it is, and also has excellent thermal spray coating characteristics on the side wall by using the same in the manufacturing method. A member can be obtained.

【0035】[0035]

【発明の効果】以上説明したように、本発明のセラミッ
クス被覆の製造方法(請求項1乃至請求項8対応)によ
れば、側壁部を有する部材において側壁部にセラミック
スを被覆する工程と有効部にセラミックスを被覆する工
程とを設けて側壁部と有効部を別々に被覆し、側壁部と
有効部の表面粗さ、被覆部位とセラミックス粒子との衝
突角度、部材の駆動方法または部材の駆動速度を、側壁
部と有効部それぞれにおいて制御しているので、3次元
形状の部材の各部位で差がなく、側壁部と有効部のセラ
ミックス皮膜特性を大きく向上させることができる。ま
た、本発明のセラミックス被覆部材(請求項9及び請求
項10対応)によれば、皮膜特性が優れており、タービ
ン高温部材にも適用できる。
As described above, according to the method for producing a ceramic coating of the present invention (corresponding to claims 1 to 8), the step of coating the side wall with the ceramic in the member having the side wall and the effective portion The side wall and the effective portion are separately coated by providing a step of coating the ceramic on the surface, the surface roughness of the side wall and the effective portion, the collision angle between the coated portion and the ceramic particles, the driving method of the member or the driving speed of the member Is controlled in each of the side wall portion and the effective portion, so that there is no difference between the respective portions of the three-dimensionally shaped member, and the ceramic film characteristics of the side wall portion and the effective portion can be greatly improved. Further, according to the ceramic-coated member of the present invention (corresponding to claims 9 and 10), the coating characteristics are excellent, and it can be applied to turbine high-temperature members.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例であるセラミックス被覆方
法の概略構成図。
FIG. 1 is a schematic configuration diagram of a ceramic coating method according to a first embodiment of the present invention.

【図2】図1のセラミックス被覆試験片の熱サイクル試
験結果を示す棒グラフ図。
FIG. 2 is a bar graph showing the results of a thermal cycle test of the ceramic-coated test piece of FIG.

【図3】本発明に係る側壁部内部へのセラミックス被覆
の模式図。
FIG. 3 is a schematic diagram of ceramic coating on the inside of a side wall according to the present invention.

【図4】本発明の第2実施例であるセラミックス被覆方
法の概略構成図。
FIG. 4 is a schematic configuration diagram of a ceramic coating method according to a second embodiment of the present invention.

【図5】一般的な物理蒸着によるセラミックス被覆形成
方法の概略構成図。
FIG. 5 is a schematic configuration diagram of a general method of forming a ceramic coating by physical vapor deposition.

【図6】セラミックス被覆を行う側壁部を有する部材の
斜視図。
FIG. 6 is a perspective view of a member having a side wall portion for performing ceramic coating.

【符号の説明】[Explanation of symbols]

1…真空チャンバ、2…真空排気装置、3…電子銃室、
4…ターゲット材、5…部材、5a…側壁部、5b…有
効部、6…取付け治具、7…部材駆動装置、8…加熱装
置、9…NC制御装置。
1: vacuum chamber, 2: vacuum pumping device, 3: electron gun chamber,
4 target material, 5 member, 5a side wall portion, 5b effective portion, 6 mounting jig, 7 member driving device, 8 heating device, 9 NC control device.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 側壁部と有効部を有する部材にセラミッ
クスを被覆する製造方法において、前記側壁部にセラミ
ックスを被覆する工程と、前記有効部にセラミックスを
被覆する工程と、前記側壁部と前記有効部を別々に駆動
する駆動装置を設け、前記側壁部と前記有効部の表面粗
さ、前記部材の被覆部位とセラミックス粒子との衝突角
度、前記部材の移動方法、前記部材の駆動速度等を、前
記側壁部と前記有効部それぞれにおいて制御することに
より前記部材にセラミックスを被覆することを特徴とす
るセラミックス被覆部材の製造方法。
1. A manufacturing method for coating a member having a side wall portion and an effective portion with ceramics, wherein the step of coating the side wall portion with ceramics, the step of coating the effective portion with ceramics, and the steps of: Provide a driving device to separately drive the portion, the surface roughness of the side wall portion and the effective portion, the collision angle between the coating portion of the member and the ceramic particles, the method of moving the member, the driving speed of the member, A method for manufacturing a ceramic-coated member, wherein the member is coated with ceramics by controlling each of the side wall portion and the effective portion.
【請求項2】 側壁部と有効部を有する部材に物理蒸着
でセラミックスを被覆する製造方法において、前記側壁
部内側の表面粗さを前記有効部の表面粗さに対して相対
的に粗くしたことを特徴とする請求項1記載のセラミッ
クス被覆部材の製造方法。
2. A manufacturing method of coating a member having a side wall portion and an effective portion with ceramics by physical vapor deposition, wherein a surface roughness inside the side wall portion is made relatively larger than a surface roughness of the effective portion. The method for producing a ceramic-coated member according to claim 1, wherein:
【請求項3】 側壁部内側に物理蒸着でセラミックスを
被覆する工程において、セラミックス蒸発粒子の大部分
が側壁部内側に45°以上の角度で衝突するように部材
を配置したことを特徴とする請求項2記載のセラミック
ス被覆部材の製造方法。
3. The method according to claim 1, wherein in the step of coating the inside of the side wall with the ceramic by physical vapor deposition, the member is arranged such that most of the evaporated particles of the ceramic collide with the inside of the side wall at an angle of 45 ° or more. Item 3. A method for producing a ceramic coated member according to Item 2.
【請求項4】 有効部に物理蒸着でセラミックスを被覆
する工程において、セラミックス蒸発粒子の大部分が有
効部表面に90°の角度で衝突するように部材を配置し
たことを特徴とする請求項2記載のセラミックス被覆部
材の製造方法。
4. The method according to claim 2, wherein, in the step of coating the effective portion with the ceramic by physical vapor deposition, the member is arranged such that most of the evaporated particles of the ceramic collide with the surface of the effective portion at an angle of 90 °. The method for producing a ceramic-coated member according to the above.
【請求項5】 側壁部内側に物理蒸着でセラミックスを
被覆する工程において、部材を回転する工程および固定
する工程によりセラミックス被覆が終了するまで行うこ
とを特徴とする請求項2記載のセラミックス被覆部材の
製造方法。
5. The ceramic coating member according to claim 2, wherein the step of coating the inside of the side wall portion with the ceramic by physical vapor deposition is performed until the ceramic coating is completed by a rotating step and a fixing step of the member. Production method.
【請求項6】 側壁部と有効部を有する部材を固定して
前記側壁部内側に物理蒸着でセラミックスを被覆する工
程において、前記側壁部の深さLと前記有効部の幅Wの
比であるアスペクト比(L/W)が最も大きい箇所にセ
ラミックス蒸発粒子の大部分が直接衝突するように前記
部材の固定角度を決めることを特徴とする請求項5記載
のセラミックス被覆部材の製造方法。
6. A step of fixing a member having a side wall portion and an effective portion and coating the inside of the side wall portion with ceramic by physical vapor deposition, wherein the ratio is a ratio of a depth L of the side wall portion to a width W of the effective portion. 6. The method according to claim 5, wherein the fixed angle of the member is determined such that most of the ceramic evaporated particles directly collide with a portion having the largest aspect ratio (L / W).
【請求項7】 側壁部内側に物理蒸着でセラミックスを
被覆する工程において、部材を回転する工程および部材
を固定する工程によりセラミックス被覆が終了するまで
回転駆動および固定動作を制御装置により連続自動制御
することを特徴とする請求項5記載のセラミックス被覆
部材の製造方法。
7. In the step of coating the inside of the side wall with the ceramic by physical vapor deposition, the rotation drive and the fixing operation are continuously and automatically controlled by the control device until the ceramic coating is completed by the step of rotating the member and the step of fixing the member. The method for producing a ceramic-coated member according to claim 5, wherein:
【請求項8】 側壁部を有する部材に溶射でセラミック
スを被覆する製造方法において、請求項2乃至請求項7
記載のいずれかのセラミックス被覆部材の製造方法を使
用することを特徴とするセラミックス被覆部材の製造方
法。
8. A manufacturing method in which a member having a side wall is coated with ceramics by thermal spraying.
A method for manufacturing a ceramic-coated member, comprising using the method for manufacturing a ceramic-coated member according to any one of the claims.
【請求項9】 側壁部と有効部を有する部材を請求項1
乃至請求項7記載のいずれかの製造方法でセラミックス
被覆を形成し、タービン高温部品にも適用可能にするこ
とを特徴とするセラミックス被覆部材。
9. A member having a side wall portion and an effective portion.
A ceramic coating member, wherein a ceramic coating is formed by any one of the manufacturing methods according to any one of claims 7 to 7, so that the ceramic coating member can be applied to a turbine high-temperature component.
【請求項10】 セラミックスを被覆する部材におい
て、請求項8記載の製造方法でセラミックス被覆を形成
し、タービン高温部品にも適用可能にすることを特徴と
するセラミックス被覆部材。
10. A ceramic-coated member, wherein the ceramic-coated member is formed by the manufacturing method according to claim 8 so as to be applicable to a turbine high-temperature component.
JP11041172A 1999-02-19 1999-02-19 Production of ceramics coating and ceramics-coated member Pending JP2000239828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041172A JP2000239828A (en) 1999-02-19 1999-02-19 Production of ceramics coating and ceramics-coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041172A JP2000239828A (en) 1999-02-19 1999-02-19 Production of ceramics coating and ceramics-coated member

Publications (1)

Publication Number Publication Date
JP2000239828A true JP2000239828A (en) 2000-09-05

Family

ID=12601022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041172A Pending JP2000239828A (en) 1999-02-19 1999-02-19 Production of ceramics coating and ceramics-coated member

Country Status (1)

Country Link
JP (1) JP2000239828A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504191A (en) * 2008-09-30 2012-02-16 ゼネラル・エレクトリック・カンパニイ Processing to deposit coating on blisk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504191A (en) * 2008-09-30 2012-02-16 ゼネラル・エレクトリック・カンパニイ Processing to deposit coating on blisk

Similar Documents

Publication Publication Date Title
US4596718A (en) Vacuum plasma coating apparatus
Rigney et al. PVD thermal barrier coating applications and process development for aircraft engines
Von Niessen et al. Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase
JP5952051B2 (en) Covering member having hard coating layer and method for producing the same
US6187453B1 (en) Article having a durable ceramic coating
EP0972853B1 (en) Article having a thermal barrier coating based on a phase-stable solid solution of two ceramics and apparatus and method for making the article
EP2258889A1 (en) Thermal barrier coatings and methods
JPH11315368A (en) Method for formation of functional metal, ceramic or ceramic/metallic layer on inner wall of hollow body
JP2000514497A (en) Method and apparatus for coating structural parts with a thermal insulation layer
JP7027057B2 (en) Board transfer device
CN109338308A (en) High-entropy alloy thin-film material and preparation method thereof
Reinhold et al. EB-PVD process management for highly productive zirconia thermal barrier coating of turbine blades
JP2000239828A (en) Production of ceramics coating and ceramics-coated member
US20190040525A1 (en) Physical vapor deposition using rotational speed selected with respect to deposition rate
CN110039044A (en) A kind of powder surface cladding coating apparatus and method
US20020037368A1 (en) Vacuum treatment system for application of thin, hard layers
US20150179418A1 (en) Miniature physical vapour deposition station
JPH07305162A (en) Production of ceramic coating
JPS6126770A (en) Method for coating mg, mg alloy, al or al alloy with au, ag or cu
RU2677043C1 (en) METHOD FOR OBTAINING WEAR-RESISTANT COATING BASED ON INTERMETALLIDE OF Ti-Al SYSTEM
US6589608B2 (en) Process for the vacuum coating of metal components
Cho et al. Motion planning for coating process optimisation in electron beam physical vapour deposition
JPH0874032A (en) Hard carbon film coated member and its production
JP6513514B2 (en) Temperature measurement method
Baek et al. Finite element model for unified EB–PVD machine dynamics