JP2000239732A - Method for refining molten steel - Google Patents

Method for refining molten steel

Info

Publication number
JP2000239732A
JP2000239732A JP11044861A JP4486199A JP2000239732A JP 2000239732 A JP2000239732 A JP 2000239732A JP 11044861 A JP11044861 A JP 11044861A JP 4486199 A JP4486199 A JP 4486199A JP 2000239732 A JP2000239732 A JP 2000239732A
Authority
JP
Japan
Prior art keywords
molten steel
height
swelling
radius
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11044861A
Other languages
Japanese (ja)
Inventor
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11044861A priority Critical patent/JP2000239732A/en
Publication of JP2000239732A publication Critical patent/JP2000239732A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method obtaining the optimization of an immersion tube shape, the improvement and the stabilization of alloy yield, the improvement of dephosphorizing efficiency and the improvement of productivity by preventing the stickiness of skull, in molten steel refining using a bottom-blown stirring gas and an immersion tube. SOLUTION: In the case of using Rs (m) for the inner radius of the immersion tube, Hs (m) for a roof height in the immersion tube, Hh (m) for the max. height at the center part of the molten steel raised up with the stirring gas and Rh (m) for the half value of the raised up molten steel height = Hh/2, Rs/Rh is regulated to 1.25-2.75 and Hs/Hh is regulated to 5-10. The Hh and the Rh are obtd. from the measured value of a molten steel level meter or obtd. from the equation I. Equation I, Hh (g/Qo2)1/5=212 (g.do5/Qo2)-0.14(Hb/do)-1.03, and Equation II, Rh (g/Qo2)1/5=0.17 (g.do5/Qo2)0.05(Hb/do)0.59 (wherein, g: gravity acceleration = 9.8 (m/s2), Qo: bottom-blown gas floing rate (m3/s), do: bottom- blown tuyere nozzle diameter (m) and Hb: steel bath depth (m)).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は取鍋内溶鋼面に浸漬
管を浸漬し、その内部で溶鋼の二次精錬を行なう溶鋼の
精練方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining molten steel in which a dip tube is immersed in a molten steel surface in a ladle and secondary refining of the molten steel is performed inside the dip tube.

【0002】[0002]

【従来の技術】鉄鋼業においては転炉または電気炉等で
出鋼後に鋼成分を調整するための二次精錬が行われるこ
とが多い。二次精錬の方法には、大気圧下で不活性ガス
吹き込み等で溶鋼を攪拌しつつ合金を添加混合したり、
スラグを添加して脱硫脱燐する方法、真空雰囲気を利用
して脱C、または脱H、脱N等の脱ガスを行なう方法等
が一般的に行われている。他の方法として、溶鋼表面に
浸漬管を浸漬しつつ、溶鋼をガス攪拌しながら二次精錬
をする方法がある。
2. Description of the Related Art In the steel industry, secondary refining for adjusting the steel composition is often performed after tapping in a converter or an electric furnace. In the secondary refining method, alloys are added and mixed while stirring molten steel by blowing inert gas under atmospheric pressure,
A method of performing desulfurization and dephosphorization by adding slag, a method of performing degassing such as degassing using a vacuum atmosphere, or degassing such as H and N are generally performed. As another method, there is a method of performing secondary refining while immersing a dip tube in the surface of molten steel and stirring the molten steel with gas.

【0003】大気圧下で攪拌ガスと浸漬管を用いる方法
としては、鉄鋼便覧 (製銑、製鋼)、(日本鉄鋼協会
編、1979/5、頁690)に、CAS法、SAB法
として紹介されている。これは被酸化性の強いAlやC
a、REM(希土類元素)などの元素を効率よく、かつ
精度良く取鍋溶鋼中へ添加しようとするものである。
[0003] As a method of using a stirring gas and a dip tube under atmospheric pressure, a CAS method and a SAB method are introduced in Iron and Steel Handbook (Ironmaking, Steelmaking), edited by The Iron and Steel Institute of Japan, 1979/5, page 690. ing. This is because Al and C
a, an element such as REM (rare earth element) is to be efficiently and accurately added to the ladle molten steel.

【0004】特開平1−100216号公報には、浸漬
管内に発熱剤を添加しつつ、溶鋼表面から吹酸ランスで
昇熱し、該吹酸ランスの火点下部から別のランスで脱硫
剤を吹込む方法が開示され、高能率で溶鋼昇熱と脱硫が
可能であるとしている。
Japanese Patent Application Laid-Open No. 1-100216 discloses that a heating agent is heated from the surface of molten steel with a blowing lance while a heating agent is added to an immersion tube, and a desulfurizing agent is blown from a lower portion of the blast acid lance with another lance. It discloses that a method for heating molten steel and desulfurization with high efficiency is possible.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記文献に開
示された方法または特開平1−100216号公報に開
示された方法では、浸漬管の内径あるいは高さを適正に
設定しないと生産能率上の問題がある。すなわち、浸漬
管の寸法条件によっては、(1) 添加した合金、脱硫剤等
が取鍋内のスラグと反応して歩留が低下し、あるいは不
安定になる、(2) 浸漬管内に脱硫用フラックスを添加し
て脱硫処理を行う方法では、精錬条件によってフラック
ス側から溶鋼に復硫する、(3) 溶鋼のスプラッシュによ
り浸漬管内に地金が付着して巨大化する、などの現象が
生じる。
However, in the method disclosed in the above-mentioned document or the method disclosed in Japanese Patent Application Laid-Open No. 1-100216, unless the inner diameter or the height of the immersion tube is properly set, the efficiency of production becomes high. There's a problem. That is, depending on the dimensions of the dip tube, (1) the added alloy, desulfurizing agent, etc. react with the slag in the ladle to lower the yield or become unstable. In the method of performing desulfurization treatment by adding a flux, phenomena such as resulfurization from the flux side to molten steel depending on the refining conditions, and (3) swelling of the metal in the immersion pipe due to the splash of molten steel occur, and the like.

【0006】上記(1) の添加合金の歩留低下は合金コス
トが増加し、製造コストが増大する。合金歩留が不安定
になると成分調整工程の能率低下につながり、成分規格
的中率が低下するため大きな問題となる。
[0006] The decrease in the yield of the additive alloy (1) increases the alloy cost and the manufacturing cost. If the alloy yield becomes unstable, it leads to a decrease in the efficiency of the component adjustment step, and the standard ratio of the components decreases, which is a serious problem.

【0007】上記(2) の復硫現象は脱硫速度が低下して
精錬コストの増大と生産性の低下をもたらす。復硫が著
しい場合には目標硫黄濃度まで到達することができな
い。
[0007] The resulfurization phenomenon (2) reduces the desulfurization rate, resulting in an increase in refining costs and a decrease in productivity. If the resulfurization is significant, the target sulfur concentration cannot be reached.

【0008】上記(3) のように浸漬管内に巨大な地金が
付着すると頻繁に地金切り作業が必要になって、生産性
の低下につながる。
[0008] As described in the above (3), if a large metal ingot adheres to the immersion pipe, frequent metal cutting work is required, leading to a decrease in productivity.

【0009】本発明の目的は、これらの問題を解決しよ
うとするものであり、浸漬管形状および攪拌ガス吹き込
みの条件を規定して、(1) 合金の歩留向上と安定化、
(2) 精錬フラックス添加時の脱硫あるいは脱燐効率の向
上、(3) 浸漬管地金付着抑制による生産性向上を可能に
する方法を提供することにある。
An object of the present invention is to solve these problems, and by specifying the shape of the immersion tube and the conditions for blowing the stirring gas, (1) improving the yield and stabilizing the alloy,
It is an object of the present invention to provide a method for (2) improving desulfurization or dephosphorization efficiency at the time of adding a refining flux, and (3) improving productivity by suppressing adhesion of immersed pipe metal.

【0010】[0010]

【課題を解決するための手段】転炉または電気炉で溶製
された溶鋼は二次精錬処理工程へ搬送されるが、本発明
者らは浸漬管を取鍋に浸漬し、取鍋底部より攪拌用ガス
を吹き込む精錬方法について検討を行った。
Means for Solving the Problems Molten steel smelted in a converter or an electric furnace is transported to a secondary refining process. The refining method of blowing gas for stirring was studied.

【0011】図1は大気圧下で浸漬管を用いた精錬方法
の一例を示す概要図である。同図において、符号1は溶
鋼、2はスラグ、3は取鍋、4は底吹き羽口、5は浸漬
管、6は排気口、7はフラックス投入口、8は昇降装
置、9は溶鋼レベル計である。スラグ2は転炉等からの
出鋼時、不可避的に取鍋に混入したものである。二次精
錬は昇降装置8を用いて浸漬管5を取鍋3内の溶鋼1の
上部から浸漬させるが、このときあらかじめ底吹き羽口
4から攪拌ガスを吹き込んで溶鋼表面に噴出させ、局部
的に溶鋼を露出させてから浸漬管を浸漬することによっ
て、浸漬管内のスラグを最小限にする。その後、フラッ
クス投入口7から脱硫剤、合金元素などを投入する。さ
らに、取鍋底部に設けられた底吹き羽口4から、Ar、
2 などの不活性ガスを吹き込んで溶鋼を攪拌し、フラ
ックスと溶鋼の反応効率を高める。
FIG. 1 is a schematic diagram showing an example of a refining method using an immersion tube under atmospheric pressure. In the figure, reference numeral 1 denotes molten steel, 2 denotes slag, 3 denotes a ladle, 4 denotes a bottom blowing tuyere, 5 denotes a dip tube, 6 denotes an exhaust port, 7 denotes a flux inlet, 8 denotes a lifting device, and 9 denotes a molten steel level. It is total. The slag 2 is inevitably mixed into the ladle when tapping from a converter or the like. In the secondary refining, the dipping tube 5 is dipped from the upper part of the molten steel 1 in the ladle 3 using the elevating device 8. The slag in the dip tube is minimized by immersing the dip tube after exposing the molten steel to the slag. Thereafter, a desulfurizing agent, an alloy element, and the like are introduced from the flux inlet 7. Furthermore, from the bottom blowing tuyere 4 provided at the ladle bottom, Ar,
The molten steel is stirred by blowing an inert gas such as N 2 to increase the reaction efficiency between the flux and the molten steel.

【0012】発明者らは、攪拌用の底吹きガスを吹き込
む際に、溶鋼表面が盛り上がる状態を観察した。溶鋼レ
ベル計9は浸漬管5内の溶鋼表面を2次元的に走査する
ように、首振り機構を備えており、溶鋼の盛り上がりの
位置と盛り上がり高さを測定できるようになっている。
溶鋼の盛り上がり部では裸湯面が露出しており、合金添
加やフラックス投入時、あるいは脱ガス精錬の時に問題
となる取鍋スラグとフラックスとの接触が抑制できる。
発明者らは、この盛り上がり部の半径Rhと浸漬管の内
半径Rsの関係を特定範囲の値にすれば、精錬特性が大
きく向上することを見出した。
The inventors have observed a state in which the surface of molten steel rises when a bottom blowing gas for stirring is blown. The molten steel level meter 9 is provided with a swing mechanism so as to two-dimensionally scan the surface of the molten steel in the immersion pipe 5 so that the position and the height of the raised molten steel can be measured.
The bare metal surface is exposed at the swelling portion of the molten steel, and contact between the ladle slag and the flux, which is a problem at the time of alloy addition, flux input, or degassing refining, can be suppressed.
The inventors have found that if the relationship between the radius Rh of the raised portion and the inner radius Rs of the immersion tube is set to a value within a specific range, the refining characteristics are greatly improved.

【0013】また、発明者らは、盛り上がり部から飛散
する溶鋼粒子を観察した。その結果盛り上がり部の最大
高さHhと溶鋼粒子の飛散量には相関があることを知見
した。そして、溶鋼の盛り上がり部の最大高さHhと、
浸漬管内の湯面から天井までの高さHs(m)(以下、
フリーボードという)の関係を特定範囲の値にすれば地
金付きを抑制できるとの知見を得た。
Further, the inventors have observed molten steel particles scattered from the raised portion. As a result, it was found that there is a correlation between the maximum height Hh of the raised portion and the amount of scattered molten steel particles. And the maximum height Hh of the raised part of the molten steel,
Height Hs (m) from the surface of the bath to the ceiling in the immersion tube
It was found that if the relationship of "free board" was set to a value within a specific range, it would be possible to suppress sticking.

【0014】上記の知見に基づいた本発明の要旨は以下
の(A) 〜(C) のとおりである。
The gist of the present invention based on the above findings is as follows (A) to (C).

【0015】(A) 取鍋の底部から溶鋼中に攪拌ガスを吹
き込みつつ、浸漬管を用いて溶鋼の精錬を行う方法であ
って、浸漬管の内半径をRs(m)、浸漬管内天井の湯
面からの高さをHs(m)とし、浸漬管内の攪拌ガスに
よる溶鋼の盛り上がりの最大高さをHh(m)、溶鋼の
盛り上がりの高さがHh/2である半値半径をRh
(m)としたとき、Rs/Rhを1.25〜2.75と
し、Hs/Hhを5〜10とすることを特徴とする溶鋼
の精錬方法。
(A) A method of refining molten steel using a dip tube while blowing a stirring gas into the molten steel from the bottom of the ladle, wherein the inner radius of the dip tube is Rs (m), and the inner radius of the dip tube ceiling is The height from the molten metal surface is Hs (m), the maximum height of the swelling of the molten steel by the stirring gas in the immersion pipe is Hh (m), and the half value radius at which the height of the swelling of the molten steel is Hh / 2 is Rh.
A method for refining molten steel, wherein Rs / Rh is 1.25 to 2.75 and Hs / Hh is 5 to 10, when (m).

【0016】(B) 浸漬管の天井部に設けられた走査式溶
鋼レベル計を用いて溶鋼表面の位置別の盛り上がり高さ
を測定し、溶鋼の盛り上がり高さが最大となる中心位置
と盛り上がり高さHhを求め、この中心位置と盛り上が
り高さがHh/2となる位置との距離の平均値を半値半
径Rhとして求め、前記(A) 項に記載の条件を満たすよ
うに底吹きガス流量Qo(m3 /s)およびHsの内、
少なくとも一つを変更することを特徴とする溶鋼の精錬
方法。
(B) Using a scanning molten steel level meter provided on the ceiling of the immersion pipe, the height of the molten steel surface at each position is measured, and the center position and the height of the raised maximum height of the molten steel are measured. Hh, the average value of the distance between the center position and the position where the swelling height is Hh / 2 is determined as a half-value radius Rh, and the bottom blown gas flow rate Qo is set so as to satisfy the condition described in the above item (A). (M 3 / s) and Hs,
A method for refining molten steel, wherein at least one is changed.

【0017】(C) HhおよびRhを下記(1) および(2)
式により求め、前記(A) 項に記載の条件を満たすように
底吹きガス流量Qo(m3 /s)およびHsの内、少な
くとも一つを変更することを特徴とする溶鋼の精錬方
法。
(C) Hh and Rh are represented by the following (1) and (2)
A method for refining molten steel, characterized in that at least one of the bottom-blown gas flow rates Qo (m 3 / s) and Hs is changed so as to satisfy the condition described in the above item (A) by an equation.

【0018】 Hh(g/Qo2)1/5 = 212 (g・do5/Qo2)-0.14(Hb/do)-1.03 (1) Rh(g/Qo2)1/5 = 0.17 (g・do5/Qo2)0.05(Hb/do)0.59 (2) ここで、g:重力加速度=9.8(m/s2 )、do:
底吹き羽口ノズル径(m)、Hb:鋼浴深さ(m)であ
る。
[0018] Hh (g / Qo 2) 1/5 = 212 (g · do 5 / Qo 2) -0.14 (Hb / do) -1.03 (1) Rh (g / Qo 2) 1/5 = 0.17 (g・ Do 5 / Qo 2 ) 0.05 (Hb / do) 0.59 (2) where g: gravitational acceleration = 9.8 (m / s 2 ), do:
Bottom blowing tuyere nozzle diameter (m), Hb: steel bath depth (m).

【0019】[0019]

【発明の実施の形態】発明者らは底吹きガスによる溶鋼
の盛り上がり部の形状の定量化を試みた。図1に示す装
置を用いて200t取鍋に収容された溶鋼に対して底吹
きガスを吹き込み、浸漬管内面天井に設けた走査型の溶
鋼レベル計9を用いて盛り上がりの形状を測定した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors tried to quantify the shape of a raised portion of molten steel by a bottom-blown gas. Using the apparatus shown in FIG. 1, bottom blow gas was blown into molten steel stored in a 200-t ladle, and the shape of the swell was measured using a scanning type molten steel level meter 9 provided on the inner ceiling of the immersion pipe.

【0020】図2は半径R(m)方向の溶鋼の盛り上が
り高さH(m)をプロットしたグラフである。同図は、
底吹きガス流量Qo(m3 /s)、鋼浴深さHb
(m)、底吹き羽口ノズル径do(m)の条件を変化さ
せて測定したものである。
FIG. 2 is a graph in which the swelling height H (m) of the molten steel in the direction of the radius R (m) is plotted. The figure shows
Bottom blown gas flow rate Qo (m 3 / s), steel bath depth Hb
(M), which was measured by changing the conditions of the bottom nozzle port diameter do (m).

【0021】同図に示すように、ガス吹き込み中心位置
での盛り上がり高さをHh(m)とし、盛り上がり高さ
がHh/2となる半径(半値半径。単に盛り上がりの半
径ともいう)をRh(m)として、RとHの関係、すな
わち盛り上がりの形状を調べると、概略正規分布の式で
表せることがわかった。すなわち、盛り上がり高さHは
半径Rの関数として以下の(3) 式で表すことができる。
この式から導出される曲線を図2中に示す。
As shown in the drawing, the height of the swell at the center of the gas injection is Hh (m), and the radius (half-value radius, also simply referred to as the radius of the swell) at which the height of the swell is Hh / 2 is Rh ( Examining the relationship between R and H, that is, the shape of the swelling as m), it was found that the relationship can be approximately expressed by a normal distribution equation. That is, the swell height H can be expressed by the following equation (3) as a function of the radius R.
The curve derived from this equation is shown in FIG.

【0022】H/Hh=exp{-0.7x(R/Rh)2} (3) なお、底吹きノズルのガス吹き込み口が一つでない場
合、例えば単管の集合体の場合、各単管のガスが通過す
る部分の断面積の総和Sを求め、S=(π/4)・do
2 から求まる換算径doをノズル内径として用いる。ま
た、ポーラスプラグのように耐火物の気孔部分からガス
を流す場合には、溶鋼と接するポーラスプラグの単純な
幾何学的面積Sを求め、ガス通過面積に換算するため
に、Sに0.005を乗じ(S’=0.005・S)
て、S’=(π/4)・do2 から換算径doを求めれ
ばよい。
H / Hh = exp {−0.7 × (R / Rh) 2 } (3) When the number of gas blowing ports of the bottom blowing nozzle is not one, for example, in the case of a single tube assembly, The sum S of the cross-sectional areas of the portions through which the gas passes is determined, and S = (π / 4) · do
The converted diameter do obtained from 2 is used as the nozzle inner diameter. Further, when gas flows from the pores of the refractory like a porous plug, a simple geometrical area S of the porous plug in contact with the molten steel is determined, and converted into a gas passing area by 0.005. (S '= 0.005 · S)
Then, the converted diameter do may be obtained from S ′ = (π / 4) · do 2 .

【0023】上記のように、盛り上がりの形状を規定す
るためには、HhとRhの2変数を定めればよい。発明
者らは模型実験、精練試験設備等を用いた試験をおこな
い、ガス流量Qo、底吹き羽口半径do等の因子を用い
て整理した。その結果、下記(1) および(2) の実験式を
得た。
As described above, in order to define the shape of the swelling, two variables of Hh and Rh may be determined. The inventors conducted tests using a model experiment, a scouring test facility, and the like, and arranged using factors such as a gas flow rate Qo and a bottom blowing tuyere radius do. As a result, the following empirical formulas (1) and (2) were obtained.

【0024】 Hh(g/Qo2)1/5 = 212 (g・do5/Qo2)-0.14(Hb/do)-1.03 (1) Rh(g/Qo2)1/5 = 0.17 (g・do5/Qo2)0.05(Hb/do)0.59 (2) ここで、g:重力加速度=9.8(m/s2 )、Qo:
底吹きガス流量(m3/s)、do:底吹き羽口ノズル
径(m)、Hb:鋼浴深さ(m)である。
[0024] Hh (g / Qo 2) 1/5 = 212 (g · do 5 / Qo 2) -0.14 (Hb / do) -1.03 (1) Rh (g / Qo 2) 1/5 = 0.17 (g・ Do 5 / Qo 2 ) 0.05 (Hb / do) 0.59 (2) where g: gravitational acceleration = 9.8 (m / s 2 ), Qo:
Bottom blowing gas flow rate (m 3 / s), do: bottom blowing tuyere nozzle diameter (m), Hb: steel bath depth (m).

【0025】図3は底吹き羽口のノズル径および底吹き
ガス流量と溶鋼の盛り上がり高さとの関係を示すグラフ
である。
FIG. 3 is a graph showing the relationship between the nozzle diameter of the bottom blowing tuyere, the flow rate of the bottom blowing gas, and the swelling height of the molten steel.

【0026】図4は底吹き羽口のノズル径および底吹き
ガス流量と溶鋼の盛り上がり部の半径との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the nozzle diameter of the bottom blow tuyere, the flow rate of the bottom blow gas, and the radius of the raised portion of molten steel.

【0027】図3および図4に示すあてはめ直線は上記
(1) および(2) 式の関係を示し、各プロットは上述の実
測値データである。図3および4から、Hh、Rhの実
験式として式(1) および(2) が妥当であることがわか
る。
The fitted straight lines shown in FIG. 3 and FIG.
The relationship between Equations (1) and (2) is shown, and each plot is the above-described measured data. From FIGS. 3 and 4, it can be seen that equations (1) and (2) are valid as empirical equations for Hh and Rh.

【0028】次に、Hs/Hh=6で一定として、盛り
上がりの半値半径Rhと浸漬管内半径Rsとの比が、合
金の歩留に及ぼす影響を調査した。
Next, assuming that Hs / Hh = 6 was constant, the effect of the ratio of the half-height radius Rh on the rise to the radius Rs in the immersion pipe on the yield of the alloy was investigated.

【0029】図1の装置で、盛り上がりの半値半径Rh
が約0.5mになるようにし、各種内径の浸漬管を用意
して試験を行った。添加合金として、Al純分98%の
ショットアルミニウム0.3kg/溶鋼tをフラックス
投入口から添加し、約3分間ガス攪拌して混合させた
後、メタルサンプルを採取分析した。分析値からAlの
歩留を算出し、Rs/Rhで整理した。
With the apparatus shown in FIG.
Was about 0.5 m, and tests were conducted by preparing dip tubes of various inner diameters. As an additive alloy, 0.3 kg of shot aluminum with 98% Al purity / molten steel t was added from a flux inlet, and the mixture was mixed with gas for about 3 minutes, and then a metal sample was collected and analyzed. The yield of Al was calculated from the analysis values and arranged by Rs / Rh.

【0030】図5は浸漬管内半径Rs対溶鋼盛り上がり
の半径Rhの比と、Al歩留の関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between the ratio of the radius Rs in the immersion pipe to the radius Rh of the rise of the molten steel and the Al yield.

【0031】同図に示すように、Al歩留を向上させる
(90%以上)ためには、Rs/Rhを1.25〜2.
75とするのがよいことがわかる。この理由は、以下の
ように考えられる。
As shown in the figure, in order to improve the Al yield (90% or more), Rs / Rh is set to 1.25 to 2.
It is understood that 75 is better. The reason is considered as follows.

【0032】浸漬管内の攪拌ガス導入によってできた上
昇流は溶鋼表面で水平流(正確には盛り上がり形状に沿
った表面流)に変化し、その後浸漬管内壁に衝突して下
降流へと変化すると考えられる。したがって、Rs/R
hが1.25未満では盛り上がりに対して浸漬管径が小
さすぎるために、この下降流が強く、添加した金属Al
が完全に溶解する前に浸漬管外へ排出されスラグにトラ
ップされる。そのためAl添加歩留が低下する。一方、
Rs/Rhが2.75を超えると浸漬管径が大きすぎる
ために、常時浸漬管内に取鍋スラグの一部が存在し、添
加した金属Alが浸漬管内の取鍋スラグにトラップさ
れ、Al添加歩留が低下すると考えられる。好ましく
は、Rs/Rhは1.5〜2.5である。
When the upward flow generated by the introduction of the stirring gas in the immersion tube changes to a horizontal flow (more precisely, a surface flow along the rising shape) on the surface of the molten steel, and then collides with the inner wall of the immersion tube and changes to a downward flow. Conceivable. Therefore, Rs / R
When h is less than 1.25, the downflow is strong because the diameter of the immersion tube is too small with respect to the rise, and the added metal Al
Is completely discharged from the dip tube before being completely dissolved and trapped in the slag. Therefore, the Al addition yield decreases. on the other hand,
When Rs / Rh exceeds 2.75, the diameter of the immersion pipe is too large, so that a part of the ladle slag is always present in the immersion pipe, and the added metal Al is trapped in the ladle slag in the immersion pipe, and Al addition is performed. It is thought that the yield decreases. Preferably, Rs / Rh is between 1.5 and 2.5.

【0033】次に、浸漬管内半径対溶鋼の盛り上がりの
大きさ(半値半径Rh)の比が脱硫効率に及ぼす影響を
調査した。
Next, the effect of the ratio of the radius in the immersion tube to the size of the swelling of the molten steel (the half-value radius Rh) on the desulfurization efficiency was investigated.

【0034】図1の装置で、フラックス投入口からCa
O系フラックス(CaO:60%−CaF2 :40%)
を5kg/溶鋼t添加し、各種の内半径の浸漬管を用い
て溶鋼の脱硫処理(処理前溶鋼中濃度:[S]=50p
pm)を行った。処理時間は10分間である。このと
き、処理前の取鍋スラグ中の(FeO+MnO)濃度は
6%であった。
In the apparatus shown in FIG.
O-based flux (CaO: 60% -CaF 2: 40%)
5 kg / t of molten steel, and desulfurizing the molten steel using a dip tube of various inner radii (concentration in molten steel before treatment: [S] = 50 p
pm). The processing time is 10 minutes. At this time, the (FeO + MnO) concentration in the ladle slag before the treatment was 6%.

【0035】図6は浸漬管内半径Rs対溶鋼盛り上がり
半径Rhの比と、脱硫率との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the ratio of the inner radius Rs of the immersion tube to the bulge radius Rh of the molten steel and the desulfurization rate.

【0036】同図に示すように、脱硫率を向上させる
(60%以上)には、Rs/Rhを1.25〜2.75
とするのがよいことがわかる。Rs/Rhが1.25未
満では、前記のように浸漬管径が小さすぎて、添加フラ
ックスが浸漬管外へ流出するため、脱硫率が低下する。
また、Rs/Rhが2.75を超えると、(FeO+M
nO)濃度の高い取鍋スラグが浸漬管内に残留して脱硫
を阻害するため、脱硫率が低下する。好ましくは、Rs
/Rhは1.5〜2.5である。
As shown in the figure, in order to improve the desulfurization rate (60% or more), Rs / Rh is 1.25 to 2.75.
It is understood that it is better to set When Rs / Rh is less than 1.25, the diameter of the immersion tube is too small as described above, and the added flux flows out of the immersion tube, so that the desulfurization rate decreases.
When Rs / Rh exceeds 2.75, (FeO + M
The ladle slag having a high concentration of nO) remains in the immersion tube and inhibits desulfurization, so that the desulfurization rate decreases. Preferably, Rs
/ Rh is 1.5 to 2.5.

【0037】CaO系フラックスによる溶鋼脱硫は、C
aO+S=CaS+O、の反応に依存しており、酸素ポ
テンシャルの高い(すなわち、低級酸化物(FeO+M
nO)濃度の高い)取鍋スラグが脱硫を阻害するためと
考えられる。
The desulfurization of molten steel by a CaO-based flux is carried out by C
aO + S = CaS + O, and has a high oxygen potential (ie, a lower oxide (FeO + M
It is considered that ladle slag with a high nO) concentration inhibits desulfurization.

【0038】図5および図6に示すように、合金の歩留
の面でも、脱硫効率の面でも、Rs/Rhの好適範囲は
ほぼ一致することがわかった。
As shown in FIGS. 5 and 6, it was found that the preferred range of Rs / Rh was substantially the same both in terms of the yield of the alloy and the desulfurization efficiency.

【0039】次に、フリーボード高さHsが浸漬管内の
地金付きに及ぼす影響を調査した。Rs/Rh=1.7
5で一定として数ヶ月操業を行い、1ヶ月当たりの地金
切りの作業を行った回数を指標とした。また、Hs/H
h=3の条件を基準とした耐火物コスト指数を使用して
評価した。
Next, the effect of the height Hs of the free board on the metal in the immersion tube was investigated. Rs / Rh = 1.7
The operation was carried out for several months at a constant value of 5, and the number of times of slab cutting per month was used as an index. Hs / H
The evaluation was performed using the refractory cost index based on the condition of h = 3.

【0040】図7は浸漬管内天井の高さHs対溶鋼盛り
上がり部高さHhの比と地金切り作業および耐火物コス
トの関係示すグラフである。
FIG. 7 is a graph showing the relationship between the ratio of the height Hs of the ceiling in the immersion pipe to the height Hh of the swelling portion of the molten steel and the cost of the slab cutting and refractory costs.

【0041】同図に示すように、地金切り回数を低減
(3回/月以下)するためにはHs/Hhを5以上にす
る必要があることがわかる。Hs/Hhが5未満である
と、溶鋼盛り上がり部から飛散した溶鋼粒子が、浸漬管
の天井部に付着する量が増大し、地金切り回数が増加す
る。浸漬管内面側壁にも溶鉄粒子は飛散するが、溶鋼面
からの距離が近いため溶鋼の輻射熱により加熱され、側
壁に沿って流れ落ちて地金切り回数の増大には寄与しな
いものと考えられる。また、図7より耐火物コスト指数
が大幅に低下(3以下)するのはHs/Hhが10以下
の条件であることがわかる。Hs/Hhが10を超える
と耐火物の上下方向の温度差が大きくなり、操業中にれ
んがの割れが頻発するため、耐火物コストが増大する。
好ましくは、6〜9である。
As shown in the figure, it is understood that Hs / Hh needs to be 5 or more in order to reduce the number of times of slab cutting (3 times / month or less). If Hs / Hh is less than 5, the amount of the molten steel particles scattered from the raised portion of the molten steel adheres to the ceiling of the immersion pipe, and the number of times of ingot cutting increases. Although the molten iron particles are scattered on the inner side wall of the immersion pipe, it is considered that since the distance from the molten steel surface is short, the molten iron particles are heated by the radiant heat of the molten steel, flow down along the side wall, and do not contribute to an increase in the number of slab cutting. Further, FIG. 7 shows that the refractory cost index is significantly reduced (3 or less) when Hs / Hh is 10 or less. If Hs / Hh exceeds 10, the temperature difference in the vertical direction of the refractory increases, and cracks in the brick occur frequently during operation, so that the cost of the refractory increases.
Preferably, it is 6-9.

【0042】図8は、合金歩留、脱硫率、地金付き、耐
火物コストの評価をRs/RhおよびHs/Hhで整理
した相関図である。同図において、×は合金歩留、脱硫
率、地金付き、耐火物コストなど、2項目以上に大きな
問題がある精錬条件、△はこれらの評価指標の2項目以
上に何らかの問題があったり、いずれか一つに大きな問
題がある精錬条件、○はこれら指標が良好な精錬条件で
ある。すなわち、領域[1]は合金歩留と脱硫率の大幅
低下かつ地金付き大であり、領域[2]は合金歩留と脱
硫率の低下、領域[3]は合金歩留と脱硫率低下かつ耐
火物コストの大幅増大、領域[4]は地金付き大、領域
[5]は合金歩留、脱硫率、地金付き、耐火物コストと
も良好、領域[6]は耐火物コストの大幅増大、領域
[7]は合金歩留および脱硫率低下かつ地金付き大、領
域[8]は合金歩留と脱硫率低下、領域[9]は合金歩
留と脱硫率低下かつ耐火物コスト大幅増大の領域であ
る。
FIG. 8 is a correlation diagram in which the evaluations of the alloy yield, desulfurization rate, metal ingot, and refractory cost are arranged by Rs / Rh and Hs / Hh. In the figure, × indicates refining conditions that have two or more major problems such as alloy yield, desulfurization rate, ingots, refractory cost, etc., and Δ indicates that there are some problems in two or more of these evaluation indices, Refining conditions in which any one has a serious problem, and ○ indicates refining conditions in which these indexes are favorable. That is, region [1] has a large decrease in alloy yield and desulfurization rate and large metal ingot, region [2] has a low alloy yield and desulfurization ratio, and region [3] has an alloy yield and low desulfurization rate. In addition, refractory costs have increased significantly. Area [4] has large ingots, area [5] has good alloy yield, desulfurization rate, ingots, refractory costs are good, and area [6] has large refractory costs. Area [7] is low alloy yield and desulfurization rate and large ingot with area [8] is alloy yield and low desulfurization rate, area [9] is alloy yield and low desulfurization rate and large refractory cost It is an area of increase.

【0043】同図に示すように、合金歩留向上および脱
硫率向上を確保し、かつ、地金切り回数を低減および耐
火物コスト指数の低減を図るには、Rs/Rh=1.2
5〜2.75の条件と、Hs/Hh=5〜10の条件と
を同時に満足する必要があることがわかる。
As shown in the figure, Rs / Rh = 1.2 in order to secure the improvement of the alloy yield and the desulfurization rate, and to reduce the number of times of ingot cutting and the refractory cost index.
It is understood that it is necessary to simultaneously satisfy the condition of 5 to 2.75 and the condition of Hs / Hh = 5 to 10.

【0044】本発明の実施にあたって、第1の方法は、
内半径Rs、フリーボード高さHsの浸漬管の内部に溶
鋼の盛り上がり形状を測定するセンサを設け、溶鋼の盛
り上がりの最大高さHhと半値半径Rhを直接測定し、
Rs/Rhが1.25〜2.75、Hs/Hhが5〜1
0となるように、底吹き羽口からのガス吹き込み量Qo
の変更、および浸漬管の浸漬深さを変更することによる
Hs変更のいずれかまたは双方を調整する方法である。
In practicing the present invention, a first method is as follows:
A sensor for measuring the swelling shape of the molten steel is provided inside the immersion pipe having the inner radius Rs and the free board height Hs, and the maximum height Hh and the half-value radius Rh of the swelling of the molten steel are directly measured.
Rs / Rh is 1.25 to 2.75, Hs / Hh is 5-1.
The gas injection amount Qo from the bottom tuyere to be 0
And adjusting one or both of the Hs changes by changing the immersion depth of the immersion tube.

【0045】前記のHhとRhとは例えば下記のように
求める。図1に示す溶鋼レベル計9の走査機構(首振り
機構または電子的走査)を用いて、浸漬管内の溶鋼の平
面位置(x,y)での盛り上がりの高さz(x,y)を
測定し記憶する。この測定値zが最大値zmax となる位
置(xmax ,ymax )を求め、この位置を盛り上がりの
中心位置とする。このとき、溶鋼の盛り上がり面が泡立
った状態で細かく高さが変動することを考慮して、測定
データz(x,y)をそのまま用いるのではなく、例え
ば30mm×30mmのメッシュ領域での空間的および
時間的な平均値を用いるとよい。前記の盛り上がり中心
位置(xmax ,ymax )から、放射状に例えば8方向
に、盛り上がり高さがzmax /2となる位置(xi ,y
j )(i,jは8方向の座標を表す)を求め、中心位置
(xmax ,ymax )と(xi ,yj )との距離Ri,j
求める。この時得られたzmaxをHhとし、Ri,j の平
均値をRhとする。
The above Hh and Rh are obtained, for example, as follows. Using the scanning mechanism (swinging mechanism or electronic scanning) of the molten steel level meter 9 shown in FIG. 1, the height z (x, y) of the swelling at the plane position (x, y) of the molten steel in the immersion tube is measured. And memorize. A position (x max , y max ) at which the measured value z reaches the maximum value z max is determined, and this position is set as the center position of the swell. At this time, in consideration of the fact that the height of the raised surface of the molten steel fluctuates finely in a foamed state, the measured data z (x, y) is not used as it is, but the spatial data in a mesh area of, for example, 30 mm × 30 mm is used. And an average over time. A position (x i , y) where the height of the bulge is z max / 2 in, for example, eight directions radially from the bulge center position (x max , y max ).
j) (i, j obtains a representative) to 8 coordinate direction, the distance R i of the center position (x max, y max) and (x i, y j), obtains the j. The obtained z max is Hh, and the average value of R i, j is Rh.

【0046】本発明の第2の方法は、溶鋼盛り上がり形
状を測定せず、HhおよびRhを式(1) および(2) 式か
ら求め、前記のRs/RhおよびHs/Hhの値が所定
の範囲になるようガス吹き込み量Qoおよび浸漬管の浸
漬深さのいずれか一方または両方を調整する方法であ
る。第1、第2の方法とも、制御できる因子は底吹きガ
ス量と浸漬管の浸漬深さであるが、これらを調整しても
Rs/Rh:1.25〜2.75、Hs/Hh:5〜1
0の条件が達成されないときは浸漬管の内径の異なった
ものを用いたり、底吹きガスのノズルを交換すればよ
い。
In the second method of the present invention, Hh and Rh are obtained from the equations (1) and (2) without measuring the swelling shape of the molten steel, and the values of Rs / Rh and Hs / Hh are determined to be predetermined. This is a method of adjusting one or both of the gas blowing amount Qo and the immersion depth of the immersion tube so as to fall within the range. In both the first and second methods, the controllable factors are the amount of the bottom blown gas and the immersion depth of the immersion tube, but even if these are adjusted, Rs / Rh: 1.25 to 2.75, Hs / Hh: 5-1
When the condition of 0 is not achieved, a dip tube having a different inner diameter may be used, or the nozzle of the bottom blow gas may be replaced.

【0047】溶鋼レベル計の信頼性、測定精度等を勘案
して上記の第1の方法または第2の方法の方法のいずれ
かを選べばよい。
Either the first method or the second method may be selected in consideration of the reliability, measurement accuracy, and the like of the molten steel level meter.

【0048】[0048]

【実施例】溶銑250トンを上底吹き転炉で吹錬した。
所定の炭素濃度(ここでは[C]=0.05%)まで脱
炭吹錬後、出鋼口から溶鋼を取鍋に出鋼した。出鋼の初
期と末期に転炉スラグ(低級酸化物濃度(FeO+Mn
O)=22%)が取鍋に流出した。出鋼中に、取鍋に脱
酸用金属Alを2kg/溶鋼tと造滓用の生石灰CaO
を2kg/溶鋼t添加した。脱酸用金属Alは、溶鋼中
溶解酸素やスラグ中低級酸化物との反応に使用された。
その結果、スラグ中低級酸化物は6%となった。
EXAMPLE 250 tons of hot metal was blown in a top and bottom blown converter.
After decarburization blowing to a predetermined carbon concentration (here, [C] = 0.05%), molten steel was discharged from a tapping port to a ladle. In the initial and final stages of tapping, converter slag (lower oxide concentration (FeO + Mn)
O) = 22%) flowed out to the ladle. During tapping, 2 kg of metal Al for deoxidation / molten steel t and quick lime CaO for slag making were added to the ladle.
Was added at 2 kg / t. The metal Al for deoxidation was used for reaction with dissolved oxygen in molten steel and lower oxides in slag.
As a result, the low-grade oxide in the slag was 6%.

【0049】取鍋の鋼浴深さは3mで、取鍋底部の羽口
(内径8mm)から攪拌用Arガスを1m3 /minの
流量で吹き込んだ。ガス気泡の上昇により、溶鋼の裸面
を形成させ、スラグを最少にしてから、浸漬管を溶鋼上
部に浸漬させた。
The steel bath depth of the ladle was 3 m, and Ar gas for stirring was blown at a flow rate of 1 m 3 / min from a tuyere (inner diameter 8 mm) at the bottom of the ladle. The rise of the gas bubbles formed a bare surface of the molten steel and minimized the slag, and then immersed the immersion tube in the upper part of the molten steel.

【0050】この条件でのHh、Rhは前記(1) 、(2)
式より、Hh=0.4m、Rh=0.35mであった。
Under these conditions, Hh and Rh are as described in (1) and (2) above.
From the formula, Hh = 0.4 m and Rh = 0.35 m.

【0051】また、浸漬管の浸漬深さは、浸漬管の下端
から溶鋼表面までの垂直距離として0.3mとした。な
お、取鍋底部羽口には出鋼時に溶鋼差込で閉塞しないよ
うに、事前に先端部5cm程度に耐火物の詰め物をつ
け、取鍋底吹き時にはArガスの圧力を上げて詰め物を
吹き飛ばした。
The immersion depth of the immersion tube was 0.3 m as a vertical distance from the lower end of the immersion tube to the surface of the molten steel. The ladle bottom tuyere was filled with a refractory filling material about 5 cm in front so that it would not be blocked by molten steel insertion when tapping, and when the ladle bottom was blown, the pressure of Ar gas was increased to blow off the filling material. .

【0052】(実施例1)浸漬管の内半径を0.17〜
1.25mとし、浸漬管内高さHsを1.2〜4.4m
として溶鋼に浸漬し、その後速やかに浸漬管内に成分調
整用の金属Alを1kg/溶鋼t添加した。成分調整用
Alを添加する前の溶鋼中の酸可溶Al濃度(以下、
[sol.Al]と略す)は0.02%であった。Al
純分98%の金属Alを1kg/溶鋼t添加して100
%の歩留が得られた場合の[sol.Al]増加量は
0.098%である。したがって、Al添加前後の[s
ol.Al]増加量を0.098%で割って100倍し
た値が歩留である。試験結果を表1に示す。
(Example 1) The inner radius of the immersion tube was set to 0.17 to
1.25 m, and the height Hs in the immersion tube is 1.2 to 4.4 m
Then, immediately after that, 1 kg of metal Al for component adjustment / molten steel t was added into the dip tube. Acid soluble Al concentration in molten steel before adding Al for component adjustment (hereinafter, referred to as
[Sol. Al] was 0.02%. Al
100 kg of metal Al with a pure content of 98% is added at 1 kg / molten steel t.
% When a yield of [sol. Al] is 0.098%. Therefore, [s] before and after the addition of Al
ol. [Al] The value obtained by dividing the increase by 0.098% and multiplying by 100 is the yield. Table 1 shows the test results.

【0053】[0053]

【表1】 [Table 1]

【0054】表1のNo.1、2、7、8のデータよ
り、浸漬管内半径RsとRhの比Rs/Rhが1.25
〜2.75の条件を外れた場合、金属Alの歩留が低下
することがわかった。さらに、この条件を外れると10
チャージ(チャージとは溶鋼処理の1単位である。以
下、chと略記する)での金属Alの歩留の標準偏差が
10%を超えて大きくなる。このばらつきが大きいと、
合金添加後に溶鋼サンプルを採取して分析し、目標成分
内に入っているかどうかを調べなければ連続鋳造装置へ
取鍋を移送することができない。
In Table 1, No. From the data of 1, 2, 7, and 8, the ratio Rs / Rh of the radius Rs to Rh in the immersion tube is 1.25.
It was found that the yield of metal Al was reduced when the conditions of ~ 2.75 were not satisfied. Further, if the condition is not met, 10
The standard deviation of the yield of metal Al in charge (charge is one unit of molten steel processing; hereinafter, abbreviated as ch) increases to more than 10%. If this variation is large,
After the addition of the alloy, a molten steel sample is collected and analyzed to determine whether or not it is within the target components, so that the ladle cannot be transferred to the continuous casting apparatus.

【0055】また、余分な分析を行うと、分析待ち時間
が増加し、さらに成分の再調整時間が増加するため溶鋼
の温度降下は10ch平均で15℃になり、その分を補
償するため出鋼温度を15℃高くする必要があった。転
炉出鋼温度の増加により転炉耐火物損耗速度は0.1m
m/ch程度から0.2mm/chを超えて増大し、転
炉寿命に悪影響を与えた。
Further, if the extra analysis is performed, the analysis waiting time increases, and the re-adjustment time of the components also increases, so that the temperature drop of the molten steel becomes 15 ° C. on an average of 10 channels, and the tapping is made to compensate for that. The temperature had to be increased by 15 ° C. Converter refractory wear rate is 0.1m due to increase in converter tapping temperature
It increased from about m / ch to more than 0.2 mm / ch and adversely affected the converter life.

【0056】一方、表1のNo.9、10、14のデー
タより、浸漬管内高さHsとHhとの比Hs/Hhが5
未満では地金付きが増大し、10を超えると浸漬管の耐
火物コストが増大した。
On the other hand, in Table 1, From the data of 9, 10, and 14, the ratio Hs / Hh of the height Hs to Hh in the immersion pipe is 5
If it is less than 10, the ingot has increased, and if it exceeds 10, the refractory cost of the dip tube has increased.

【0057】以上の結果から、合金歩留を安定して高位
に保ち、転炉出鋼温度と耐火物損耗を抑制し、かつ、二
次精錬での地金付きを抑制して生産性を高め、耐火物コ
ストを低減するには、Rs/Rhが1.25〜2.75
かつ、Hs/Hhを5〜10とする必要があることがわ
かった。
From the above results, it is possible to improve the productivity by maintaining the alloy yield stably at a high level, suppressing the temperature at the converter steel tapping and the wear of refractories, and suppressing the ingot of metal in the secondary refining. In order to reduce the cost of refractories, Rs / Rh is 1.25 to 2.75.
And it turned out that Hs / Hh needs to be 5-10.

【0058】(実施例2)浸漬管内半径Rsを0.17
〜1.25mとし、浸漬管内高さHsを1.2〜4.4
mとして溶鋼に浸漬し、その後速やかに浸漬管内に脱硫
用フラックス(CaO:60%+CaF2 :40%)を
5kg/溶鋼t添加して10分間の脱硫処理を行った。
脱硫処理前の硫黄濃度So、脱硫処理後の硫黄濃度Se
を用いて脱硫率α(%)を次式で求めた。
(Example 2) The inner radius Rs of the immersion tube was set to 0.17.
To 1.25 m, and the height Hs in the immersion tube is set to 1.2 to 4.4.
Then, the steel was immersed in molten steel as m, and immediately thereafter, 5 kg of a flux for desulfurization (CaO: 60% + CaF 2 : 40%) / t was added to the immersion tube, and desulfurization treatment was performed for 10 minutes.
Sulfur concentration So before desulfurization treatment, sulfur concentration Se after desulfurization treatment
And the desulfurization rate α (%) was determined by the following equation.

【0059】α=100x(So−Se)/So なお、脱硫前の硫黄濃度Soは48〜52ppmで平均
値50ppmであった。また、脱硫前のスラグ中(Fe
O+MnO)=6%であった。表2に結果を示す。
Α = 100 × (So—Se) / So The sulfur concentration So before desulfurization was 48 to 52 ppm and the average value was 50 ppm. In the slag before desulfurization (Fe
O + MnO) = 6%. Table 2 shows the results.

【0060】[0060]

【表2】 [Table 2]

【0061】表2のNo.1、2、7、8のデータよ
り、Rs/Rhが1.25〜2.75の条件を外れた場
合、脱硫率が低下することがわかった。
In Table 2, No. From the data of 1, 2, 7, and 8, it was found that when Rs / Rh was out of the range of 1.25 to 2.75, the desulfurization rate was reduced.

【0062】また、同表のNo.9、10、14のデー
タより、浸漬管内高さHsとHhとの比Hs/Hhが5
未満では地金付きが増大し、10を超えると耐火物コス
トが増大した。
In the table, No. From the data of 9, 10, and 14, the ratio Hs / Hh of the height Hs to Hh in the immersion pipe is 5
If it is less than 10, the ingot increases, and if it exceeds 10, the refractory cost increases.

【0063】以上から、溶鋼脱硫率を安定して高位に保
ち、かつ、二次精錬での地金付きを抑制して生産性を高
め、耐火物コストを低減するためには、R/Rhが1.
25〜2.75かつ、H/Hhを5〜10とする必要が
あることがわかった。
From the above, in order to stably maintain the molten steel desulfurization rate at a high level, suppress productivity of the metal in secondary refining, increase productivity, and reduce the cost of refractories, R / Rh must be 1.
It turned out that it is necessary to make 25 / 2.75 and H / Hh 5-10.

【0064】[0064]

【発明の効果】本発明により、合金歩留および溶鋼脱硫
率を安定して高位に保ち、かつ、二次精錬での地金付き
を抑制して生産性を高め、耐火物コストを低減すること
が可能である。
Industrial Applicability According to the present invention, it is possible to stably maintain the alloy yield and the desulfurization rate of molten steel at a high level, suppress the sticking of metal in secondary refining, increase productivity, and reduce the cost of refractories. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】大気圧下で浸漬管を用いた精錬方法の一例を示
す概要図である。
FIG. 1 is a schematic diagram showing an example of a refining method using an immersion tube under atmospheric pressure.

【図2】浸漬管内半径方向の溶鋼盛り上がり高さをプロ
ットしたグラフである。
FIG. 2 is a graph in which the molten steel swelling height in a radial direction in an immersion pipe is plotted.

【図3】底吹き羽口のノズル径および底吹きガス流量と
溶鋼の盛り上がり高さとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the nozzle diameter of the bottom blowing tuyere, the flow rate of the bottom blowing gas, and the swelling height of molten steel.

【図4】底吹き羽口のノズル径および底吹きガス流量と
溶鋼の盛り上がり部の半径との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the nozzle diameter of the bottom blowing tuyere, the flow rate of the bottom blowing gas, and the radius of the raised portion of molten steel.

【図5】浸漬管内半径Rs対溶鋼盛り上がり部半径Rh
の比と、Al歩留の関係を示すグラフである。
FIG. 5: Radius Rs in immersion pipe versus radius Rh of raised portion of molten steel
6 is a graph showing the relationship between the ratio of Al and the Al yield.

【図6】浸漬管内半径Rs対溶鋼盛り上がり部半径Rh
の比と、脱硫率の関係を示すグラフである。
FIG. 6: Radius Rs in immersion pipe versus radius Rh of raised portion of molten steel
4 is a graph showing the relationship between the ratio of the above and the desulfurization rate.

【図7】浸漬管内天井の高さHs対溶鋼盛り上がり部高
さHhの比と地金切り作業および耐火物コストの関係示
すグラフである。
FIG. 7 is a graph showing the relationship between the ratio of the height Hs of the ceiling in the immersion pipe to the height Hh of the bulging portion of the molten steel, the metal cutting operation, and the cost of the refractory.

【図8】合金歩留、脱硫率、地金付き、耐火物コストの
評価をRs/RhおよびHs/Hhで整理した相関図で
ある。
FIG. 8 is a correlation diagram in which the evaluation of alloy yield, desulfurization rate, metal ingot, and refractory cost are arranged by Rs / Rh and Hs / Hh.

【符号の説明】[Explanation of symbols]

1:溶鋼 2:スラグ 3:取鍋 4:底吹き羽口 5:浸漬管 6:排気口 7:フラックス投入口 8:昇降装置 9:溶鋼レベル計 1: molten steel 2: slag 3: ladle 4: bottom blowing tuyere 5: dip tube 6: exhaust port 7: flux inlet 8: lifting device 9: molten steel level meter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 取鍋の底部から溶鋼中に攪拌ガスを吹き
込みつつ、浸漬管を用いて溶鋼の精錬を行う方法であっ
て、浸漬管の内半径をRs(m)、浸漬管内天井の湯面
からの高さをHs(m)とし、浸漬管内の攪拌ガスによ
る溶鋼の盛り上がりの最大高さをHh(m)、溶鋼の盛
り上がりの高さがHh/2である半値半径をRh(m)
としたとき、Rs/Rhを1.25〜2.75とし、H
s/Hhを5〜10とすることを特徴とする溶鋼の精錬
方法。
1. A method for refining molten steel using a dip tube while blowing a stirring gas into the molten steel from the bottom of the ladle, wherein the inner radius of the dip tube is Rs (m), The height from the surface is Hs (m), the maximum height of the swelling of the molten steel due to the stirring gas in the dip tube is Hh (m), and the half-value radius at which the height of the swelling of the molten steel is Hh / 2 is Rh (m).
When Rs / Rh is set to 1.25 to 2.75, H
A method for refining molten steel, wherein s / Hh is 5 to 10.
【請求項2】 浸漬管の天井部に設けられた走査式溶鋼
レベル計を用いて溶鋼表面の位置別の盛り上がり高さを
測定し、溶鋼の盛り上がり高さが最大となる中心位置と
盛り上がり高さHhを求め、この中心位置と盛り上がり
高さがHh/2となる位置との距離の平均値を半値半径
Rhとして求め、請求項1に記載の条件を満たすように
底吹きガス流量Qo(m3 /s)およびHsの内、少な
くとも一つを変更することを特徴とする溶鋼の精錬方
法。
2. A swelling height for each position of a molten steel surface is measured using a scanning molten steel level meter provided on a ceiling portion of a dip tube, and a center position and a swelling height at which the swelling height of the molten steel is maximum. Hh is determined, and the average value of the distance between the center position and the position where the swell height is Hh / 2 is determined as a half-value radius Rh, and the bottom blown gas flow rate Qo (m 3) is set so as to satisfy the condition described in claim 1. / S) and Hs, wherein at least one of them is changed.
【請求項3】 HhおよびRhを下記(1) および(2) 式
により求め、請求項1に記載の条件を満たすように底吹
きガス流量Qo(m3 /s)およびHsの内、少なくと
も一つを変更することを特徴とする溶鋼の精錬方法。 Hh(g/Qo2)1/5 = 212 (g・do5/Qo2)-0.14(Hb/do)-1.03 (1) Rh(g/Qo2)1/5 = 0.17 (g・do5/Qo2)0.05(Hb/do)0.59 (2) ここで、g:重力加速度=9.8(m/s2 )、do:
底吹き羽口ノズル径(m)、Hb:鋼浴深さ(m)であ
る。
3. Hh and Rh are determined by the following equations (1) and (2), and at least one of the bottom blown gas flow rate Qo (m 3 / s) and Hs is set so as to satisfy the conditions described in claim 1. A method for refining molten steel, characterized in that Hh (g / Qo 2) 1/5 = 212 (g · do 5 / Qo 2) -0.14 (Hb / do) -1.03 (1) Rh (g / Qo 2) 1/5 = 0.17 (g · do 5 / Qo 2 ) 0.05 (Hb / do) 0.59 (2) where g: gravitational acceleration = 9.8 (m / s 2 ), do:
Bottom blowing tuyere nozzle diameter (m), Hb: steel bath depth (m).
JP11044861A 1999-02-23 1999-02-23 Method for refining molten steel Withdrawn JP2000239732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11044861A JP2000239732A (en) 1999-02-23 1999-02-23 Method for refining molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11044861A JP2000239732A (en) 1999-02-23 1999-02-23 Method for refining molten steel

Publications (1)

Publication Number Publication Date
JP2000239732A true JP2000239732A (en) 2000-09-05

Family

ID=12703281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11044861A Withdrawn JP2000239732A (en) 1999-02-23 1999-02-23 Method for refining molten steel

Country Status (1)

Country Link
JP (1) JP2000239732A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480786A (en) * 2022-01-17 2022-05-13 山东钢铁股份有限公司 Visualization-based ladle bottom argon blowing control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480786A (en) * 2022-01-17 2022-05-13 山东钢铁股份有限公司 Visualization-based ladle bottom argon blowing control method

Similar Documents

Publication Publication Date Title
JP6743915B2 (en) Method for desulfurizing molten steel and desulfurizing agent
JP2013234379A (en) Method for melting extra-low phosphor and extra-low sulfur steel
JP6028755B2 (en) Method for melting low-sulfur steel
JP2000129335A (en) Production of extra-low sulfur steel excellent in cleanliness
JP7265136B2 (en) Melting method of ultra-low nitrogen steel
JP3915386B2 (en) Manufacturing method of clean steel
JP2011153328A (en) Method for smelting low-carbon high-manganese steel
JP6547734B2 (en) Method of manufacturing low-sulfur steel
JP2000239732A (en) Method for refining molten steel
EP3940088B1 (en) Method for producing ti-containing ultralow-carbon steel
JP5292853B2 (en) Vacuum degassing apparatus for molten steel and vacuum degassing refining method
JP4404025B2 (en) Melting method of low nitrogen steel
JP3598899B2 (en) Melting method
JPH0925507A (en) Method for refining molten steel
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP2000212641A (en) High speed vacuum refining of molten steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JP2002363636A (en) Method for smelting molten steel in rh vacuum degassing apparatus
JPH0665625A (en) Desulphurization method for molten steel
JP2940358B2 (en) Melting method for clean steel
JP2985720B2 (en) Vacuum refining method for ultra low carbon steel
JP4035904B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JP2001049330A (en) Production of extra-low carbon steel excellent in cleanliness
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness
JP3899555B2 (en) Manufacturing method of high purity steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509