JP2000234923A - Surface profile measuring device and part measuring method - Google Patents

Surface profile measuring device and part measuring method

Info

Publication number
JP2000234923A
JP2000234923A JP11036059A JP3605999A JP2000234923A JP 2000234923 A JP2000234923 A JP 2000234923A JP 11036059 A JP11036059 A JP 11036059A JP 3605999 A JP3605999 A JP 3605999A JP 2000234923 A JP2000234923 A JP 2000234923A
Authority
JP
Japan
Prior art keywords
sphere
measurement
measured
dut
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11036059A
Other languages
Japanese (ja)
Inventor
Tomonori Nishino
友規 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11036059A priority Critical patent/JP2000234923A/en
Publication of JP2000234923A publication Critical patent/JP2000234923A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost surface profile measuring device wherein no stick-slip or sucking occurs while objects of various profiles are easily coped with. SOLUTION: A sphere 3 is provided on a surface 2a of a surface plate 2 which is a reference surface, and an object 1 to be measured is placed on the sphere 3. In order to measure a surface profile of a surface 1a of the object 1 relative to the reference surface 2a, the object 1 is moved on the sphere 3, and the changes in the distance between the surface 1a and the surface 2a is detected with an electric micrometer 5. The sphere 3 is arranged at a hole part of a washer 4 provided on the surface 2a, which regulates the sphere 3 from moving on the surface 2a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、平面度および平行
度や表面粗さ等を測定する際の被測定物の面形体を検出
する面形体測定装置および部品製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface profile measuring apparatus and a component manufacturing method for detecting a surface profile of an object to be measured when measuring flatness, parallelism, surface roughness, and the like.

【0002】[0002]

【従来の技術】工作機械や加工機械を構成する機械部品
は、それぞれその部品の機能に応じた精度で加工されて
いる。種々ある加工精度の中で最も基本的な精度として
は、平面度および平行度が上げられる。平面度や平行度
の測定は、部品の要求精度や材料や形状に応じて様々な
方法で行われている。最も基本的でかつ一般的に行われ
ている方法は、基準となる平面度の良い定盤上で被測定
物を滑らせて、基準面に対する被測定面の高さの変化を
変位計で計測する。また、定盤の代わりにリニアガイド
や回転テーブルを使用し、被測定物を変位計に対して平
行移動または回転移動させて測定を行う方法もある。変
位計としては、ダイヤルゲージや電気マイクロメータの
ような接触式の変位計や、静電容量型変位計,レーザー
変位計およびCCDを利用した変位計のような非接触式
の変位計などが用いられる。
2. Description of the Related Art Machine parts constituting a machine tool or a processing machine are machined with an accuracy corresponding to the function of each part. Among the various types of processing accuracy, the most basic accuracy is increased flatness and parallelism. The measurement of flatness and parallelism is performed by various methods according to the required accuracy, material, and shape of a part. The most basic and commonly used method is to measure the change in the height of the surface to be measured relative to the reference surface with a displacement meter by sliding the object to be measured on a surface plate with good flatness as a reference. I do. There is also a method in which a linear guide or a rotary table is used in place of the surface plate, and the measurement is performed by moving the object to be measured in parallel or rotationally with respect to the displacement meter. As the displacement meter, a contact type displacement meter such as a dial gauge or an electric micrometer, or a non-contact type displacement meter such as a capacitance type displacement meter, a laser displacement meter, and a displacement meter using a CCD are used. Can be

【0003】[0003]

【発明が解決しようとする課題】しかしながら、被測定
物を定盤上で滑らせる方法では、被測定物の接触部分が
平面形状の場合には定盤と被測定物との接触面積が大き
くなり、摩擦が増大してスティックスリップ(stick sl
ip)が生じやすくなる。このようなスティックスリップ
が生じたり、定盤と被測定物との間にゴミ等の異物が混
入したりすると測定に誤差が生じやすくなり、高精度で
測定する場合や測定値の再現性が求められる測定の場合
には問題であった。
However, in the method in which the object to be measured is slid on the surface plate, the contact area between the surface plate and the object to be measured increases when the contact portion of the object to be measured has a planar shape. , Increased friction and stick-slip (stick sl
ip) is more likely to occur. If such a stick-slip occurs or foreign matter such as dust is mixed between the surface plate and the object to be measured, an error tends to occur in the measurement, and when measuring with high accuracy or reproducibility of the measured value is required. In the case of measurements taken, it was a problem.

【0004】また、部品加工時に水、油等の切削液や研
削液を用いた場合には部品に水や油が付着しており、こ
の状態で部品の測定を行うと部品と定盤との吸い付きが
生じて測定精度に影響が出る。そこで、従来は被測定物
の水気を布等で拭き取ってから測定を行うようにしてい
るが、例えば、セラミックス材のように微少な気孔を有
する部材の場合には、測定前に水気を拭き取っても気孔
内部に残った水分が測定中に滲み出てくることがあっ
た。
When a cutting fluid such as water or oil or a grinding fluid is used at the time of processing a part, water or oil adheres to the part. Sticking occurs, which affects measurement accuracy. Therefore, conventionally, measurement is performed after wiping the moisture of the object to be measured with a cloth or the like.For example, in the case of a member having minute pores such as a ceramic material, the moisture is wiped before measurement. In some cases, moisture remaining inside the pores may seep out during measurement.

【0005】そのため、測定を行う前に被測定物の水気
を拭き取るだけでなく乾燥させる必要があり、測定作業
時間が増加するという問題があった。特に、高精度な部
品の場合には加工と測定を何回も繰り返して精度を出す
ようにしているため、乾燥時間のために作業時間が非常
に長くなるという欠点があった。なお、乾燥時間を短縮
するために被測定物に温風を吹きかけるなどして外部か
ら熱を与える方法が考えられるが、この場合には乾燥時
の熱の影響により被測定物に膨張・収縮が生じて測定精
度に影響するという欠点がある。
[0005] Therefore, it is necessary to dry not only the moisture of the object to be measured but also to dry it before performing the measurement, and there is a problem that the measuring operation time is increased. In particular, in the case of a high-precision part, since processing and measurement are repeated many times to improve the accuracy, there is a disadvantage that the working time becomes extremely long due to the drying time. In order to shorten the drying time, it is conceivable to apply heat from the outside by blowing warm air on the object to be measured, but in this case, the object to be measured expands and contracts due to the influence of the heat during drying. It has the disadvantage that it affects measurement accuracy.

【0006】一方、リニアガイドや回転テーブルを用い
て測定をする場合には、上述したようなスティックスリ
ップや被測定物の吸い付きといったような問題は生じな
いが、以下のような欠点がある。すなわち、様々な大き
さ、形状、重量を有する部品に対して一つのリニアガイ
ドまたは回転テーブルで対応するのは難しく、例えば、
回転させて測定するものと平行移動させて測定するもの
とがある場合には、リニアガイドと回転テーブルとの両
方を用意する必要があり、コストの上昇を招く結果とな
る。また、加工された部品が水気を帯びているような場
合には、その水分がリニアガイドや回転テーブルの軸受
部に侵入して、錆等が発生して不具合が生じるおそれも
あった。
On the other hand, when measurement is performed using a linear guide or a rotary table, the above-described problems such as stick-slip and sticking of an object to be measured do not occur, but have the following disadvantages. That is, it is difficult to respond to parts having various sizes, shapes, and weights with a single linear guide or rotary table.
In the case where there is one that measures by rotating and one that measures by moving in parallel, it is necessary to prepare both a linear guide and a rotary table, which results in an increase in cost. Further, when the processed part is wet, the water may enter the linear guide or the bearing portion of the rotary table, causing rust or the like, which may cause a problem.

【0007】本発明の目的は、スティックスリップや吸
い付きが発生せず、かつ、様々な形態の被測定物に容易
に対応することができる安価な面形体測定装置および部
品製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive planar shape measuring apparatus and a component manufacturing method which do not generate stick-slip or sticking and can easily cope with various types of objects to be measured. It is in.

【0008】[0008]

【課題を解決するための手段】発明の実施の形態を示す
図1に対応付けて説明する。 (1)請求項1の発明による面形体測定装置では、測定
の基準となる基準面2a上を転動する複数の転動体3
と、転動体3を介して基準面2a上を移動する被測定物
1の被測定面1aと基準面2aとの距離の変化を検出す
る検出器5とを備えて上述の目的を達成する。 (2)請求項2の発明は、請求項1に記載の面形体測定
装置において、転動体3を所定位置から移動しないよう
に規制する規制部材4を設けた。 (3)請求項3の発明は、部品の平面度または平行度を
所定の精度に加工する部品製造方法に適用され、部品1
の平面加工を行う第1の工程と、平面加工が行われた面
1aの面形体を請求項1または請求項2に記載の面形体
測定装置により測定する第2の工程とを交互に繰り返し
行い所定精度に加工することにより上述の目的を達成す
る。
An embodiment of the present invention will be described with reference to FIG. (1) In the planar shape measuring device according to the first aspect of the present invention, the plurality of rolling elements 3 rolling on the reference surface 2a serving as a measurement reference.
And a detector 5 for detecting a change in the distance between the measured surface 1a of the DUT 1 moving on the reference surface 2a via the rolling elements 3 and the reference surface 2a, thereby achieving the above object. (2) According to a second aspect of the present invention, in the planar shape measuring device according to the first aspect, a regulating member 4 for regulating the rolling element 3 so as not to move from a predetermined position is provided. (3) The invention according to claim 3 is applied to a component manufacturing method for processing the flatness or parallelism of a component to a predetermined accuracy.
The first step of performing the planar processing of step (a) and the second step of measuring the planar form of the surface 1a on which the planar processing has been performed by the planar characteristic measuring apparatus according to claim 1 or 2 are alternately and repeatedly performed. The above object is achieved by processing to a predetermined accuracy.

【0009】なお、本発明の構成を説明する上記課題を
解決するための手段の項では、本発明を分かり易くする
ために発明の実施の形態の図を用いたが、これにより本
発明が発明の実施の形態に限定されるものではない。
In the section of the means for solving the above-mentioned problems, which explains the configuration of the present invention, the drawings of the embodiments of the present invention are used to make the present invention easy to understand. However, the present invention is not limited to the embodiment.

【0010】[0010]

【発明の実施の形態】以下、図1〜図8を参照して本発
明の実施の形態を説明する。 −第1の実施の形態− 図1は本発明による面形体測定装置の第1の実施の形態
を示す図であり、(a)は平面図、(b)は(a)のA
−A断面図である。図1は平面円盤状、すなわち円形平
行平板である被測定物1の平行度測定を行う場合を示し
ており、被測定物1は定盤2の面2a上に配設された3
つの球体3の上に載置される。球体3は同一半径で同一
精度を有しており、例えば、ボールベアリングに使用さ
れる鋼球が用いられる。なお、水気のある部品を頻繁に
測定する場合には、球体3に鋼球を用いると錆が発生す
るおそれがあるのでセラミックス等の球体が用いられ
る。球体3の真球度は測定精度に影響を与えるので、要
求される測定精度に応じて精度の異なる球体3を使い分
けるのが好ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. -First Embodiment- Fig. 1 is a view showing a first embodiment of a planar shape measuring device according to the present invention, wherein (a) is a plan view and (b) is A in (a).
It is -A sectional drawing. FIG. 1 shows a case in which a parallelism measurement is performed on a DUT 1 which is a flat disk, that is, a circular parallel plate, and the DUT 1 is disposed on a surface 2 a of a surface plate 2.
Are placed on the three spheres 3. The spheres 3 have the same radius and the same accuracy. For example, steel balls used for ball bearings are used. In the case where a wet part is frequently measured, if a steel ball is used for the spherical body 3, rust may be generated, so a spherical body such as ceramics is used. Since the sphericity of the sphere 3 affects the measurement accuracy, it is preferable to use different spheres 3 having different accuracy in accordance with the required measurement accuracy.

【0011】各球体3は面2a上に載置された円筒状の
ワッシャー4の穴部分に配設されている。このワッシャ
ー4は球体3が面2a上を移動して所定位置からずれて
しまうのを防止し、再現性の良い測定が可能となるよう
に設けられるものであり、必ず用いなければならないと
いうものではない。図1では球体3は、定盤2上におい
て正三角形Tの各頂点上に配置され、3つの球体3が被
測定物1の中心Oから等距離となるように被測定物1を
球体3上に載置する。定盤2の面2aは測定の際の基準
面であり、平行度測定に用いられる電気マイクロメータ
5は面2a上に載置されたスタンド6に固定されてい
る。
Each sphere 3 is disposed in a hole of a cylindrical washer 4 placed on the surface 2a. The washer 4 is provided so as to prevent the sphere 3 from moving on the surface 2a and deviating from a predetermined position, and to enable measurement with good reproducibility. Absent. In FIG. 1, the spheres 3 are arranged on the vertices of an equilateral triangle T on the surface plate 2, and the object 1 is placed on the sphere 3 so that the three spheres 3 are equidistant from the center O of the object 1. Place on. The surface 2a of the surface plate 2 is a reference surface for measurement, and the electric micrometer 5 used for the parallelism measurement is fixed to a stand 6 mounted on the surface 2a.

【0012】電気マイクロメータ5は接触式の変位形で
あり、被測定物1の平行度を測定する際には、プローブ
5aを被測定物1の上面1aに接触させた状態で、作業
者が手で被測定物1をその中心Oを回転中心として1回
転させる。電気マイクロメータ5は、被測定物1が1回
転する間に面2aに対する面1aの高さの変化を検出す
る。検出信号は不図示のコントローラに送られ、コント
ローラから出力される検出結果に基づいて平行度が算出
される。
The electric micrometer 5 is of a contact type displacement type, and when measuring the parallelism of the DUT 1, an operator contacts the probe 5 a with the upper surface 1 a of the DUT 1. The device under test 1 is rotated by one rotation about its center O by hand. The electric micrometer 5 detects a change in the height of the surface 1a with respect to the surface 2a while the device under test 1 makes one rotation. The detection signal is sent to a controller (not shown), and the parallelism is calculated based on the detection result output from the controller.

【0013】図2は測定時の球体3の動作を説明する図
である。被測定物1を球体3上で回転すると、球体3は
ワッシャー4の穴の中で図2の矢印で示すように回転す
る。そのため、被測定物1は、球体3と被測定物1との
接触点を含む仮想的な平面10との接触を保ちつつ回転
移動することになる。また、全ての球体3は半径が等し
いので仮想平面10は基準面である面2aと平行にな
り、本実施の形態の装置を用いて得られる面1aの高さ
の変化は、従来のように被測定物1を面2a上で滑らせ
て得られる高さの変化と等しくなる。
FIG. 2 is a diagram for explaining the operation of the sphere 3 during measurement. When the device under test 1 is rotated on the sphere 3, the sphere 3 rotates in the hole of the washer 4 as shown by the arrow in FIG. Therefore, the DUT 1 rotates while maintaining contact with the virtual plane 10 including the contact point between the sphere 3 and the DUT 1. Further, since all the spheres 3 have the same radius, the virtual plane 10 is parallel to the plane 2a which is the reference plane, and the change in the height of the plane 1a obtained by using the apparatus of the present embodiment is different from the conventional one. This is equal to the change in height obtained by sliding the DUT 1 on the surface 2a.

【0014】ところで、ワッシャー4および球体3は定
盤2上に単に置いただけなので、被測定物1の大きさが
種々異なる場合には、被測定物1の大きさに応じてワッ
シャー4および球体3の位置を変更して測定を行えばよ
い。図3に示す被測定物11は被測定物1より小さなも
のであり、この場合にはワッシャー4および球体3を矢
印Bのように移動して被測定物11を球体3上に配設す
る。
By the way, since the washer 4 and the sphere 3 are merely placed on the surface plate 2, when the size of the DUT 1 is variously different, the washer 4 and the sphere 3 are changed according to the size of the DUT 1. The measurement may be performed by changing the position of. The DUT 11 shown in FIG. 3 is smaller than the DUT 1. In this case, the washer 4 and the sphere 3 are moved as shown by the arrow B to dispose the DUT 11 on the sphere 3.

【0015】従来の測定装置と比較した場合、本実施の
形態の面形体測定装置には以下のような利点がある。 (A)被測定物1と面2aとの間に球体3を介在させる
ことにより、被測定物1が濡れていても面2aに吸い付
くことが無く、また、従来のような接触面への異物の混
入による測定誤差の発生を避けることができる。さら
に、被測定物1を基準面(面2a)に対して移動させた
ときに球体3が図2のように回転するため、被測定物1
は小さな力で容易にかつ滑らかに平面10上を移動する
とともに、従来のようなスティックスリップの発生を防
止することができる。その結果、再現性の良い測定がで
きるとともに、従来行っていた測定前の乾燥工程を省略
することが可能となり、測定時間を大幅に短縮すること
ができる。特に、測定・加工を何回も繰り返すような高
精度部品に対しては効果的である。なお、球体3の回転
が何らかの原因(例えば、ワッシャー4の縁との摩擦
で)で阻害されるようなことが起こった場合でも、被測
定物1と球体3との接触面積は非常に小さいので滑りや
すくスティックスリップが発生することはない。
Compared with a conventional measuring device, the planar shape measuring device of the present embodiment has the following advantages. (A) Since the sphere 3 is interposed between the DUT 1 and the surface 2a, the DUT 1 does not stick to the surface 2a even if the DUT 1 is wet. It is possible to avoid the occurrence of a measurement error due to the entry of foreign matter. Further, when the DUT 1 is moved with respect to the reference plane (surface 2a), the sphere 3 rotates as shown in FIG.
Can easily and smoothly move on the plane 10 with a small force, and can prevent occurrence of stick-slip as in the related art. As a result, measurement with good reproducibility can be performed, and a drying step before measurement, which has been conventionally performed, can be omitted, and the measurement time can be significantly reduced. In particular, it is effective for high-precision parts in which measurement and processing are repeated many times. Even if the rotation of the sphere 3 is hindered for some reason (for example, by friction with the edge of the washer 4), the contact area between the DUT 1 and the sphere 3 is very small. It is slippery and does not cause stick-slip.

【0016】(B)上述した実施の形体では、定盤2上
に球体3およびワッシャー4を載置する構造であるた
め、従来のように製品化されたリニアガイドや回転テー
ブルを用いるものに比べて非常に簡単な構成となりコス
ト低減を図ることができる。さらに、図3に示したよう
に球体3およびワッシャー4の配置を変更するだけで、
種々の大きさの被測定物1に対応することが可能とな
る。
(B) In the embodiment described above, since the sphere 3 and the washer 4 are mounted on the surface plate 2, it is compared with a conventional product using a linear guide or a rotary table which has been commercialized. Thus, the configuration becomes very simple, and the cost can be reduced. Further, as shown in FIG. 3, only by changing the arrangement of the sphere 3 and the washer 4,
It is possible to correspond to the DUT 1 of various sizes.

【0017】なお、図1に示したように被測定物1を回
転させて測定を行う場合には、被測定物1が球体3から
外れないように図4に示すようなVブロック12を使用
すると良い。測定時には、被測定物1の側面をVブロッ
ク12の面12a,12bに軽く押し当てながら被測定
物1を回転させる。
When the measurement is performed by rotating the DUT 1 as shown in FIG. 1, a V-block 12 as shown in FIG. Good. At the time of measurement, the DUT 1 is rotated while lightly pressing the side surfaces of the DUT 1 against the surfaces 12a and 12b of the V-block 12.

【0018】−第2の実施の形態− 図5は本発明による面形体測定装置の第2の実施の形態
を示す図であり、(a)は平面図、(b)は(a)のD
−D断面図である。本実施の形態では、矩形の平行平板
である被測定物21の平面度を測定する場合について説
明する。被測定物21の下面21bにはワッシャー4が
貼り付けてあり、3つのワッシャー4は図5(a)のよ
うに三角形の各頂点に配置される。被測定物21を定盤
2上に設置する際には、面2a上の3つの球体3がそれ
ぞれ被測定物21に貼り付けられた各ワッシャー4の穴
部分に収まるように載置する。測定の際には、被測定物
21を図示左右方向に直進移動させて面21aの高さの
変化を電気マイクロメータ5により検出し、その検出結
果に基づいて面21aの平面度を求める。
Second Embodiment FIGS. 5A and 5B are diagrams showing a second embodiment of the planar shape measuring device according to the present invention, wherein FIG. 5A is a plan view, and FIG.
It is -D sectional drawing. In the present embodiment, a case will be described in which the flatness of the DUT 21 which is a rectangular parallel plate is measured. Washers 4 are attached to the lower surface 21b of the DUT 21, and the three washers 4 are arranged at each vertex of the triangle as shown in FIG. When placing the DUT 21 on the surface plate 2, the three spheres 3 on the surface 2 a are placed so as to fit into the holes of the washers 4 attached to the DUT 21, respectively. At the time of measurement, the object to be measured 21 is moved straight in the horizontal direction in the figure, a change in the height of the surface 21a is detected by the electric micrometer 5, and the flatness of the surface 21a is determined based on the detection result.

【0019】本実施の形態の場合も、被測定物21は球
体3を介して面2a上に載置されることになり、第1の
実施の形態と同様の効果を得ることができる。さらに、
本実施の形態では、被測定物21の下面21bにワッシ
ャー4を貼り付けているため、図5のように被測定物2
1が平行移動した際に球体3も被測定物21とともに移
動し、常に被測定物21と面2aとの間に球体3が介在
し外れることがない。
Also in the case of the present embodiment, the device under test 21 is mounted on the surface 2a via the sphere 3, and the same effects as in the first embodiment can be obtained. further,
In the present embodiment, since the washer 4 is attached to the lower surface 21b of the DUT 21, the DUT 2 is attached as shown in FIG.
When the object 1 moves in parallel, the sphere 3 also moves together with the object 21, so that the sphere 3 does not always intervene between the object 21 and the surface 2 a and does not come off.

【0020】なお、上述した実施の形態では、ワッシャ
ー4を被測定物21側に設けて被測定物21の所定値に
球体3を規制するようにしたが、例えば、図6のように
多数の球体3を面2a上に敷きつめて、面2a上に設け
た規制部材22で球体3を面2aの所定値に規制するよ
うにしても良い。このようにすれば、被測定物21を平
行移動させても被測定物21が球体3上から外れること
がない。また、球体3を敷きつめる面積を大きく設定し
ておけば、球体3の配置を変更することなく大きな被測
定物にも小さな被測定物にも対応することができる。さ
らに、第1の実施の形態のように被測定物を回転させる
場合にも対応することができる。ただし、このように球
体3を敷きつめる場合には、多数の球体3を必要とする
とともに、専用の規制部材22を必要としコストアップ
要因となる。
In the above-described embodiment, the washer 4 is provided on the object 21 to regulate the sphere 3 to a predetermined value of the object 21. For example, as shown in FIG. The sphere 3 may be laid on the surface 2a, and the sphere 3 may be regulated to a predetermined value of the surface 2a by the regulating member 22 provided on the surface 2a. In this way, even when the object 21 is moved in parallel, the object 21 does not come off the sphere 3. In addition, if the area where the spheres 3 are spread is set large, it is possible to cope with both large and small objects without changing the arrangement of the spheres 3. Further, it is possible to cope with the case where the device to be measured is rotated as in the first embodiment. However, when the spheres 3 are laid in this manner, a large number of the spheres 3 are required, and a dedicated regulating member 22 is required, which causes an increase in cost.

【0021】なお、上述した第1および第2の実施の形
態では、転動体として球体3を用いたが、円柱状のコロ
を用いても良い。図7および図8はコロ30を用いた装
置を示す図であり、図7は被測定物1を回転させて測定
する場合の装置を、図8は被測定物21を直進移動させ
て測定する場合の装置をそれぞれ示している。どちらの
場合も、規制部材31を被測定物の下面に貼り付けた構
成とした。また、被測定物の平行度や平面度だけでな
く、面粗さ測定の際にも本実施の形体の装置を適用する
ことができる。
In the first and second embodiments described above, the spherical body 3 is used as the rolling element, but a cylindrical roller may be used. FIGS. 7 and 8 are views showing an apparatus using the roller 30. FIG. 7 shows an apparatus in which the measurement is performed by rotating the DUT 1, and FIG. The devices in each case are shown. In both cases, the regulating member 31 was attached to the lower surface of the measured object. Further, the apparatus of the present embodiment can be applied to measurement of not only the parallelism and flatness of an object to be measured but also surface roughness.

【0022】[0022]

【実施例】上述した図4に示すような構成で平行度を測
定した。定盤2としては寸法が500mm×500mmのガ
ラス製定盤を使用し、面2aの平面度は1μm以下の精
度を有している。被測定物1は直径200mm、厚さ5mm
の円板状セラミックス材であり、被測定物1の両面の研
磨加工と平行度測定とを繰り返して最終的な精度が要求
精度以下となるように加工した。被測定物1の部品とし
て要求される平行度は1μmであり、一方、研磨加工を
行う前の被測定物1の平行度は5μmであった。研磨加
工と測定を数回繰り返しながら平行度の精度を徐々に高
めて行くことにより、平行度0.4μmに加工すること
ができた。
EXAMPLE The parallelism was measured with the configuration shown in FIG. As the surface plate 2, a glass surface plate having dimensions of 500 mm × 500 mm is used, and the flatness of the surface 2a has an accuracy of 1 μm or less. DUT 1 is 200mm in diameter and 5mm in thickness
The polishing was repeated on both surfaces of the DUT 1 and the parallelism was measured so that the final accuracy was lower than the required accuracy. The degree of parallelism required as a part of the DUT 1 was 1 μm, while the degree of parallelism of the DUT 1 before polishing was 5 μm. By gradually increasing the precision of the parallelism while repeating the polishing and the measurement several times, the parallelism could be processed to 0.4 μm.

【0023】従来の定盤上を滑らせて測定する装置で
は、部品に付着した水気のために上述した吸い付きが起
きやすく測定値に数μmレベルのバラツキが生じやす
い。そのため、各測定前に乾燥工程を入れて作業を行っ
ており、平行度を5μmから2μmレベルに加工するの
に約3時間要していた。一方、上述した装置では約30
分で平行度0.4μmに加工することができた。このよ
うに時間短縮ができたのは、部品の乾燥を行う必要が無
いのと、測定精度の再現性が向上したことに依ってい
る。
In a conventional apparatus for measuring by sliding on a surface plate, the above-mentioned sticking is likely to occur due to the moisture adhering to the parts, and the measured values are likely to vary on the order of several μm. For this reason, a drying step was performed before each measurement to perform the operation, and it took about 3 hours to process the parallelism from 5 μm to 2 μm. On the other hand, about 30
It could be processed to a parallelism of 0.4 μm in minutes. The reason why the time can be shortened in this way is that there is no need to dry the parts and that the reproducibility of the measurement accuracy has been improved.

【0024】以上説明した実施の形態と特許請求の範囲
の要素との対応において、球体3およびコロ30は転動
体を、面2aは基準面を、ワッシャー4は規制部材を、
電気マイクロメータ5は検出器をそれぞれ構成する。
In the correspondence between the embodiment described above and the elements of the claims, the sphere 3 and the roller 30 are rolling elements, the surface 2a is a reference surface, the washer 4 is a regulating member,
The electric micrometers 5 each constitute a detector.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
被測定物は基準面上を転動する転動体を介して基準面上
を移動するので、測定時に被測定物が基準面に吸い付い
たりスティックスリップを起こしたりしない。その結
果、再現性が良く精度の高い測定を行うことができると
ともに、測定作業時間の短縮化を図ることができる。さ
らに、従来のようにリニアガイドや回転テーブルを用い
る場合と比べて簡単な構成となるため、装置のコスト低
減を図ることができる。また、基準面上における転動体
の配置を変更することにより、大きさの異なる被測定物
に容易に対応することができる。特に、請求項2の発明
では規制部材を用いて転動体が所定位置から移動するこ
とを防止しているので、再現性および作業性の良い安定
した測定を行うことが可能となる。
As described above, according to the present invention,
Since the object to be measured moves on the reference plane via the rolling element rolling on the reference plane, the object to be measured does not stick to the reference plane or cause stick-slip during measurement. As a result, the measurement can be performed with good reproducibility and high accuracy, and the measurement operation time can be reduced. Further, since the configuration is simpler than the conventional configuration using a linear guide or a rotary table, the cost of the apparatus can be reduced. Further, by changing the arrangement of the rolling elements on the reference plane, it is possible to easily cope with objects to be measured having different sizes. In particular, since the rolling element is prevented from moving from the predetermined position by using the regulating member in the invention of claim 2, stable measurement with good reproducibility and workability can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による面形体測定装置の第1の実施の形
態を示す図であり、(a)は平面図、(b)は(a)の
A−A断面図。
FIG. 1 is a view showing a first embodiment of a planar shape measuring apparatus according to the present invention, wherein (a) is a plan view and (b) is a cross-sectional view taken along line AA of (a).

【図2】球体3の動作を説明する図。FIG. 2 is a view for explaining the operation of a sphere 3;

【図3】被測定物11を測定する場合を説明する図。FIG. 3 is a diagram illustrating a case in which an object to be measured 11 is measured.

【図4】Vブロック12を用いた測定を示す図であり、
(a)は平面図、(b)は(a)のC−C断面図。
FIG. 4 is a diagram showing a measurement using a V block 12,
(A) is a top view, (b) is CC sectional view of (a).

【図5】本発明による面形体測定装置の第2の実施の形
態を示す図であり、(a)は平面図、(b)は(a)の
D−D断面図。
FIGS. 5A and 5B are diagrams showing a second embodiment of the planar shape measuring device according to the present invention, wherein FIG. 5A is a plan view and FIG.

【図6】面形体測定装置の変形例を示す図であり,
(a)は平面図、(b)はE−E断面図。
FIG. 6 is a view showing a modification of the planar shape measuring device;
(A) is a top view, (b) is EE sectional drawing.

【図7】転動体としてコロ30を用いた面形体測定装置
の他の例を示す図であり、(a)は平面図、(b)はF
−F断面図。
7A and 7B are diagrams showing another example of the planar shape measuring device using the rollers 30 as rolling elements, wherein FIG. 7A is a plan view and FIG.
-F sectional drawing.

【図8】転動体としてコロ30を用いた面形体測定装置
を示す図であり、(a)は平面図、(b)は正面図。
8A and 8B are diagrams showing a planar shape measuring device using a roller 30 as a rolling element, wherein FIG. 8A is a plan view and FIG. 8B is a front view.

【符号の説明】[Explanation of symbols]

1,11,21 被測定物 2 定盤 3 球体 4 ワッシャー 5 電気マイクロメータ 30 コロ 22,31 規制部材 1,11,21 DUT 2 surface plate 3 sphere 4 washer 5 electric micrometer 30 roller 22,31 regulating member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定の基準となる基準面上を転動する複
数の転動体と、 前記転動体を介して前記基準面上を移動する被測定物の
被測定面と前記基準面との距離の変化を検出する検出器
とを備えることを特徴とする面形体測定装置。
1. A plurality of rolling elements rolling on a reference plane serving as a measurement reference, and a distance between a measured surface of an object to be measured moving on the reference plane via the rolling elements and the reference plane. And a detector for detecting a change in the surface profile.
【請求項2】 請求項1に記載の面形体測定装置におい
て、 前記転動体を所定位置から移動しないように規制する規
制部材を設けたことを特徴とする面形体測定装置。
2. The planar shape measuring device according to claim 1, further comprising a regulating member that regulates the rolling element from moving from a predetermined position.
【請求項3】 部品の平面度または平行度を所定精度に
加工する部品製造方法において、 前記部品の平面加工を行う第1の工程と、 前記平面加工が行われた面の面形体を請求項1または請
求項2に記載の面形体測定装置により測定する第2の工
程とを交互に繰り返し行い前記所定精度に加工すること
を特徴とする部品製造方法。
3. A component manufacturing method for processing the flatness or parallelism of a component with a predetermined accuracy, wherein: a first step of performing the flat processing of the component; and a surface feature of the surface on which the flat processing is performed. 3. A method for manufacturing a component, comprising: alternately and repeatedly performing the second step of measuring with the planar shape measuring device according to claim 1 or 2 to perform processing with the predetermined accuracy.
JP11036059A 1999-02-15 1999-02-15 Surface profile measuring device and part measuring method Pending JP2000234923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11036059A JP2000234923A (en) 1999-02-15 1999-02-15 Surface profile measuring device and part measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11036059A JP2000234923A (en) 1999-02-15 1999-02-15 Surface profile measuring device and part measuring method

Publications (1)

Publication Number Publication Date
JP2000234923A true JP2000234923A (en) 2000-08-29

Family

ID=12459160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11036059A Pending JP2000234923A (en) 1999-02-15 1999-02-15 Surface profile measuring device and part measuring method

Country Status (1)

Country Link
JP (1) JP2000234923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779550B2 (en) 2006-12-29 2010-08-24 Shenzhen Futaihong Precision Industry Co., Ltd. Micrometer-based measuring system and method of using same
CN111829461A (en) * 2020-07-23 2020-10-27 菲烁易维(重庆)科技有限公司 Positioning target, vision measurement system and method for acquiring flatness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779550B2 (en) 2006-12-29 2010-08-24 Shenzhen Futaihong Precision Industry Co., Ltd. Micrometer-based measuring system and method of using same
CN111829461A (en) * 2020-07-23 2020-10-27 菲烁易维(重庆)科技有限公司 Positioning target, vision measurement system and method for acquiring flatness

Similar Documents

Publication Publication Date Title
CN108700405B (en) Wafer carrier thickness measuring device
US6442857B1 (en) Portable surface inspector
CN107073683B (en) The processing unit (plant) of workpiece
JP6419380B1 (en) Inspection master
JP2000234923A (en) Surface profile measuring device and part measuring method
US7146850B2 (en) Roll contour measuring apparatus and method
WO2019130757A1 (en) Double-side polishing device and double-side polishing method for workpiece
JPS614655A (en) Grinder
Hansen et al. A combined optical and mechanical reference artefact for coordinate measuring machines
JP2007240201A (en) Taper angle measuring method and apparatus
JP2972203B2 (en) Surface waviness measuring method and apparatus
CN115091287A (en) Ultra-precise grinding parameter adjusting method and grinding system
JPH0368321B2 (en)
US6354910B1 (en) Apparatus and method for in-situ measurement of polishing pad thickness loss
JP3512789B2 (en) Wafer shape measuring device
JPS62135711A (en) Measuring instrument for sphere
KR102234500B1 (en) Apparatus for inspection of the material chip
JPH0729402U (en) Parallelism measuring device
JP2504561B2 (en) Shape measuring device
JPH02159502A (en) Jig for fixing spherical body
JP3956008B2 (en) Object moving device for comparing the dimensions of an object and a method for comparing dimensions using the device
JPH10554A (en) Local polishing device
JP2007047097A (en) Automatic inspection device of cylindricity and roundness of ring-like material
JPH02208553A (en) Apparatus and method for acoustic inspection of ball bearing
Wieczorowski et al. Surface topography inspection in multisensor approach