JP2000234536A - Energy reserving cycle engine - Google Patents

Energy reserving cycle engine

Info

Publication number
JP2000234536A
JP2000234536A JP11049293A JP4929399A JP2000234536A JP 2000234536 A JP2000234536 A JP 2000234536A JP 11049293 A JP11049293 A JP 11049293A JP 4929399 A JP4929399 A JP 4929399A JP 2000234536 A JP2000234536 A JP 2000234536A
Authority
JP
Japan
Prior art keywords
energy storage
cycle engine
storage cycle
configuration
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11049293A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11049293A priority Critical patent/JP2000234536A/en
Publication of JP2000234536A publication Critical patent/JP2000234536A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease NOx and increase an output by disposing a heat exchanger for a nearly percolation boiler serving a diameter contracting main combustion chamber as a final point, and timely injecting steam generated therein through a steam injection valve to a wall surface of the combustion chamber for a short time. SOLUTION: A pair of diameter enlarged piston 21 is continuously connected to a crankshaft 16, and each diameter enlarged piston 21 is fitted to a pair of cylinder heads 15 disposed opposing to each other. A fuel injection valve 7B and an ignition device 8 are provided to be faced to a diameter contracted main combustion chamber 1 partitioned to each cylinder head 15, and air injected from an air flow path 9 and fuel injection from a fuel injection valve 7B are agitated and mixed with each other to carry out ignition combustion. Steam is injected from an outer periphery of a steam injection valve 6 through a steam supplying-out valve 4 and a steam reservoir 5, and a wall surface of a combustion chamber is cooled, and thereby, NOx is decreased, and an output is increased. A turbo supercharger 12 is operated by exhaust energy, and steam is generated by a heat exchanger 2. A rotary supercharger 14 is operated by an electric motor 17 and the like to supercharger intake air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ピストンの往復運
動を回転動力に変換する、ヒストンサイクルのエネルギ
変換効率を高めるため、力学的エネルギ保存の第3の法
則を利用して、死点近傍でのエネルギ放出量(ピストン
の行程容積)を僅少として、大部分の熱エネルギは縮径
主燃焼室内隔離燃焼(定容大接近燃焼)により保存貯金
増大して、ガソリン機関並み圧縮比でディーゼル機関並
み最高燃焼圧力として、例えば死点後クランク角度で3
0度以後に縮径主燃焼室内隔離燃焼解除して、エネルギ
変換効率を高めると共に、燃焼を大改善した、先の出願
のエネルギ保存サイクル内燃機関の機構の追加及び改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes the third law of conservation of mechanical energy in order to increase the energy conversion efficiency of the histone cycle, which converts the reciprocating motion of a piston into rotational power, by using the third law of mechanical energy conservation. The amount of energy released (stroke volume of the piston) is very small, and most of the heat energy is increased by saving the isolated combustion in the reduced diameter main combustion chamber (combustion near constant volume), saving the same compression ratio as gasoline engine and comparable to diesel engine. The maximum combustion pressure is, for example, 3 at the crank angle after dead center.
The present invention relates to the addition and improvement of the mechanism of the energy saving cycle internal combustion engine of the prior application, in which the isolated combustion in the reduced diameter main combustion chamber is released after 0 degree to enhance the energy conversion efficiency and greatly improve the combustion.

【0002】[0002]

【従来の技術】従来技術としては、通常の定容サイクル
機関や定圧サイクル機関があり、車両及び船舶及び農業
機械などの各種機械の駆動用、熱と電気の併給用などに
使用されており、CO2の低減を含む地球温暖化防止・
公害の低減が急務となっております。即ち、定容サイク
ル機関や定圧サイクル機関の燃焼室は、シリンダヘッド
内面とピストン上面との間に形成されるため、大径の燃
焼室に最高燃焼圧力や最高燃焼温度が加わり、冷却を必
須とするため冷却損失が大増大するのに加えて、最高燃
焼圧力を上昇すると出力当たりの重量及び摩擦損失が大
増大するため、軽量大出力及び熱効率の上昇が困難にな
る欠点がある。
2. Description of the Related Art As conventional techniques, there are ordinary constant volume cycle engines and constant pressure cycle engines, which are used for driving various machines such as vehicles, ships and agricultural machines, and for supplying heat and electricity together. Prevention of global warming including reduction of CO2
There is an urgent need to reduce pollution. That is, since the combustion chamber of a constant-volume cycle engine or a constant-pressure cycle engine is formed between the inner surface of the cylinder head and the upper surface of the piston, the maximum combustion pressure and the maximum combustion temperature are applied to the large-diameter combustion chamber, and cooling is essential. Therefore, in addition to a large increase in cooling loss, increasing the maximum combustion pressure results in a large increase in weight per unit output and friction loss.

【0003】燃焼に際しては、通常死点前後30度乃至
死点後60度の燃焼期間があり、この燃焼期間を極限ま
で有効利用する技術が待望されますが、従来技術では、
ピストンが死点から後退し始めると、燃焼室がシリンダ
内と連通した状態での燃焼であり、ピストン後退に伴っ
て燃焼室容積は急激に増大するため、極度の非定容燃焼
となり、同一圧縮比での最高燃焼圧力の低下を余儀なく
され、熱効率の低下に加えて燃焼圧力及び燃焼温度は急
激に低下して、最悪の燃焼条件に急移行するため、NO
xを低減する燃焼にすると未燃分が増大し、未燃分を低
減する燃焼にするとNOxが増大する、何れも公害増大
燃焼になる欠点がある。
[0003] In the combustion, there is usually a combustion period of about 30 degrees before and after the dead center to 60 degrees after the dead center, and a technology for effectively utilizing this combustion period to the utmost is expected.
When the piston starts to recede from the dead center, combustion is performed with the combustion chamber communicating with the inside of the cylinder.The volume of the combustion chamber rapidly increases with the retraction of the piston, resulting in extremely non-constant volume combustion and the same compression. Ratio, the combustion pressure and the combustion temperature in addition to the thermal efficiency decrease, and the combustion pressure and the combustion temperature decrease sharply, and the combustion condition suddenly shifts to the worst.
Combustion that reduces x increases the unburned content, and combustion that reduces the unburned content increases NOx.

【0004】加えて、従来技術の往復内燃機関は燃焼を
遅らせて熱効率の上昇を図るため、燃焼時間の大幅な不
足による各種公害の増大に加えて、更に燃焼の悪化によ
り熱効率が低下します。従って熱効率を上昇するため、
必然的に超高圧縮比・超長行程となって、熱効率55%
程度にするためには、出力当りの重量が超大重量となっ
て、自動車など軽量大出力を必要とする用途には使用不
可となり、無理に使用すると未燃微粒子公害が増大し、
燃焼を早めたガソリン機関では熱効率25%乃至15%
前後に大低下する欠点がある。
[0004] In addition, the reciprocating internal combustion engine of the prior art delays the combustion to increase the thermal efficiency. Therefore, in addition to an increase in various types of pollution due to a significant shortage of the combustion time, the thermal efficiency further decreases due to the deterioration of the combustion. Therefore, to increase thermal efficiency,
Inevitably results in an ultra-high compression ratio and ultra-long stroke, with a thermal efficiency of 55%
In order to make it to the extent, the weight per output becomes extremely large, it cannot be used for applications requiring light weight and large output such as automobiles, and if used forcibly, unburned fine particle pollution increases,
25% to 15% thermal efficiency for gasoline engines with faster combustion
There is a disadvantage that it is greatly reduced before and after.

【0005】[0005]

【発明が解決しようとする課題】CO2低減地球温暖化
防止を含む公害の低減が急務となっており、この発明
は、自然法則の有効利用を極限まで探求したエネルギ保
存サイクルとして、ピストンの往復運動を回転運動に変
換する、ピストンサイクルのエネルギ変換効率を高め
て、CO2の低減を含む公害の大低減を図る、先の出願
の各種エネルギ保存サイクル内燃機関を超大型から超小
型まで拡大して、機構を追加・改良することを目的とす
る。
There is an urgent need to reduce pollution including CO2 reduction and global warming prevention. The present invention relates to a reciprocating motion of a piston as an energy conservation cycle that seeks the maximum use of the law of nature to the utmost. To increase the energy conversion efficiency of the piston cycle to greatly reduce pollution including CO2 reduction. The purpose is to add and improve the mechanism.

【0006】[0006]

【課題を解決するための手段】本発明は以上の課題に鑑
み、CO2の低減を含む公害の低減が困難な、従来技術
の定容サイクル機関及び定圧サイクル機関に換えて、各
種エネルギ保存サイクル内燃機関を超大型から超小型ま
で拡大して、船舶・航空機・車両・各種車輪・各種機械
の駆動用及び汎用及び発電用内燃機関として使用可能と
するため、機構を追加・改良します。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, the present invention provides various types of energy storage cycle internal combustion engines in place of conventional constant volume cycle engines and constant pressure cycle engines, in which it is difficult to reduce pollution including CO2 reduction. We will add and improve the mechanism to expand the engine from ultra-large to ultra-small and use it as an internal combustion engine for driving, general-purpose and power generation of ships, aircraft, vehicles, various wheels, various machines.

【0007】エネルギ保存サイクル内燃機関は図1の如
く縮径主燃焼室1と拡径燃焼室10の2段燃焼が、点火
時期大前進・定容大接近燃焼+隔離解除時超高速撹拌燃
焼となり、燃焼が大改善されるため、構造が簡単な2サ
イクルを主流として、加えて定容大接近燃焼により同一
圧縮比の最大燃焼圧力も大上昇し、その速度形エネルギ
+容積形エネルギを有効利用するため、大幅な拡径ピス
トン21及び縮径ピストン22とした超短行程超高速
の、構造簡単なクランク軸16による拡径ピストン21
の直接駆動を主流として、D型エネルギ保存サイクル内
燃機関で説明しますが、2サイクルD型エネルギ保存サ
イクル内燃機関に限定するものではなく、用途により各
種エネルギ保存サイクル内燃機関に応用するものです。
In the energy saving cycle internal combustion engine, as shown in FIG. 1, the two-stage combustion of the reduced-diameter main combustion chamber 1 and the expanded-diameter combustion chamber 10 is a large-advancing ignition timing, a constant-volume large-approach combustion, and an ultra-high-speed agitation combustion when the isolation is released. Since combustion is greatly improved, the mainstream is two cycles with a simple structure. In addition, the maximum combustion pressure at the same compression ratio is greatly increased by constant-volume large-approach combustion, and the speed-type energy + volume-type energy is used effectively. In order to reduce the diameter of the piston 21, the diameter of the piston 21 is increased by a very short stroke, a very high speed, and a simple structure of the crankshaft 16.
In the following, the D-type energy-storing cycle internal combustion engine will be described with the mainstream of direct drive, but it is not limited to the 2-cycle D-type energy-storing cycle internal-combustion engine, but is applied to various energy-storing cycle internal-combustion engines depending on the application.

【0008】エネルギ保存サイクル内燃機関は、図1乃
至図8の如く、拡径燃焼室10が従来技術より大幅に低
圧の超高速燃焼室として、拡径ピストン21も大幅に拡
径し、ピストン径よりピストン行程が小さい超短行程
の、同一ピストン径では従来技術回転数より高回転の、
超高速機関を主流として、 一定容積以上の縮径主燃
焼室では先の出願で開示している、近似貫流ボイラ様の
熱交換器2及び一方向空気流路9を含む縮径主燃焼室1
に、蒸気送出弁4及び蒸気送出電磁弁4A及び蒸気噴射
茸弁6及び蒸気噴射電磁茸弁6A及び燃料蒸気噴射電磁
弁7及び蒸気噴射電磁弁7A及び公知燃料噴射弁7B及
び燃料噴射電磁弁7C及び蒸気水噴射電磁弁7D及び水
噴射電磁弁7E及び公知点火装置8及び予熱点火装置8
Aを適宜に追加し、ターボ過給機12及び回転式過給機
14を含む過給サイクルの構成に、制御装置等の新機構
を適宜に追加し、 一定容積以下の縮径主燃焼室で
は、追加した構成や機構を適宜に削減し、適宜に新機構
を追加します。
As shown in FIGS. 1 to 8, in the energy storage cycle internal combustion engine, the expanded combustion chamber 10 is an ultra-high-speed combustion chamber having a significantly lower pressure than that of the prior art, and the expanded piston 21 is also greatly expanded. Ultra-short stroke with smaller piston stroke, higher revolution than conventional technology with the same piston diameter,
With the ultra-high-speed engine as the mainstream, the reduced-diameter main combustion chamber 1 having a certain volume or more and the reduced-diameter main combustion chamber 1 including the approximate once-through boiler-like heat exchanger 2 and the one-way air passage 9 disclosed in the earlier application.
The steam delivery valve 4, the steam delivery solenoid valve 4A, the steam injection mushroom valve 6, the steam injection solenoid mushroom valve 6A, the fuel steam injection solenoid valve 7, the steam injection solenoid valve 7A, the known fuel injection valve 7B, and the fuel injection solenoid valve 7C And solenoid valve 7D, water injection solenoid valve 7E, known ignition device 8, and preheating ignition device 8
A is appropriately added, and a new mechanism such as a control device is appropriately added to the configuration of the supercharging cycle including the turbocharger 12 and the rotary supercharger 14, and in the reduced-diameter main combustion chamber having a certain volume or less, , We will appropriately reduce the added configurations and mechanisms and add new ones as appropriate.

【0009】[0009]

【発明の実施の形態】**発明の実施の形態を図1乃至
図8に従って説明すると、エネルギ保存サイクル内燃機
関は図1に示すように、非常に簡単に構成可能であり、
大径燃焼室は低圧にする程軽量に出来るのに加えて、ピ
ストン行程Sとシリンダ内径Dの比S/D=1/4等と
小さい程軽量大出力にでき、出力当りの製造原価も大低
減が可能になるため、エネルギ保存サイクル内燃機関を
軽量大出力の極限と、製造原価低減の極限と、CO2低
減地球温暖化防止公害低減の極限を、同時に達成可能な
内燃機関として、超大型より超小型まで各種機構を追加
して対応する過程で、説明も順次追加補強します。
DESCRIPTION OF THE PREFERRED EMBODIMENTS ** An embodiment of the present invention will be described with reference to FIGS. 1 to 8. As shown in FIG. 1, an energy storage cycle internal combustion engine can be configured very simply.
The large-diameter combustion chamber can be made lighter by lowering the pressure, and in addition, the smaller the ratio of piston stroke S to the cylinder inner diameter S, S / D = 1/4, etc., the lighter the output and the greater the production cost per output. The energy-saving cycle internal combustion engine is capable of simultaneously achieving the extremes of light weight and large output, the extremes of manufacturing cost reduction, and the extreme reduction of CO2 reduction and prevention of global warming. In the process of adding various mechanisms to the ultra-small size, the explanation will be reinforced sequentially.

【0010】以上のように、図1乃至図5のエネルギ保
存サイクル内燃機関は、同一シリンダ内径では従来技術
より大幅に回転数の大きい大出力高速機関にでき、縮径
主燃焼室1内の隔離燃焼も、従来技術より大幅に点火時
期の前進した定容大接近燃焼に出来るため、同一圧縮比
での最大燃焼圧力も大上昇出来る等、縮径主燃焼室に熱
負荷が集中して熱エネルギが大増大し、拡径燃焼室は熱
負荷が大低減して軽量大出力高速機関となるため、一定
容積以上の縮径主燃焼室ではNOx低減出力増大用に熱
交換器2及び蒸気噴射装置を設け、この熱交換器2は一
本以上の導水蒸気管3による貫流ボイラ様の熱交換器2
が好ましく、導水蒸気管3の終点には蒸気送出弁4を設
けて、蒸気溜5に適時開口可能な蒸気送出弁4として、
最適開閉制御選択可能とし、縮径主燃焼室1に適時開口
可能に蒸気噴射茸弁6及び燃料噴射弁7Bを、適時着火
可能に点火装置8を設けて、最適開閉着火制御選択可能
とし、夫夫を適宜に図8のエネルギ保存サイクル総括制
御装置20に連絡して、一方向空気流路9から噴射され
る空気流と燃料を撹拌混合燃焼させ、適宜に蒸気噴射し
てNOxを低減皆無に近づけます。
As described above, the energy saving cycle internal combustion engine shown in FIGS. 1 to 5 can be a high-power high-speed engine having a significantly larger number of revolutions than the prior art with the same cylinder inner diameter. Combustion can also be performed at a constant volume and large-close combustion with ignition timing significantly advanced compared to the conventional technology, so that the maximum combustion pressure at the same compression ratio can be greatly increased. The heat load of the expanded combustion chamber is greatly reduced, and the engine becomes a lightweight, high-output high-speed engine. Therefore, in the reduced-diameter main combustion chamber having a certain volume or more, the heat exchanger 2 and the steam injection device are used to increase the NOx reduction output. The heat exchanger 2 is a heat exchanger 2 like a once-through boiler using at least one steam pipe 3.
Preferably, a steam delivery valve 4 is provided at the end point of the steam guide pipe 3, and the steam delivery valve 4 can be opened in the steam reservoir 5 as needed.
The optimal opening / closing control is selectable, and the steam injection mushroom valve 6 and the fuel injection valve 7B are provided with the ignition device 8 so as to be able to timely open the reduced-diameter main combustion chamber 1, and the optimal opening / closing ignition control is selectable. The husband is appropriately connected to the energy conservation cycle general controller 20 shown in FIG. 8, and the air flow and the fuel injected from the one-way air flow path 9 are mixed and combusted, and the steam is appropriately injected to reduce NOx. Move closer.

【0011】従って図1・図8では、シリンダヘッド1
5の縮径主燃焼室1に、開閉及び点火する燃料噴射弁7
B及び点火装置8を設けて、一方向空気流路9からの噴
射空気と燃料噴射弁7Bからの燃料と撹拌混合して、点
火装置8により点火燃焼し、適時に蒸気を導水蒸気管3
・蒸気送出弁4・蒸気溜5を介して、蒸気噴射茸弁6の
外周より縮径主燃焼室1の壁面に向かって、高速超短時
間に所定量の蒸気を噴射して、比重の大きい水分や湿り
蒸気により直接壁面を冷却して、輻射熱を乾き蒸気に変
換し、乾き蒸気等によりNOxの低減と出力の増大を図
り、拡径燃焼室10から排気ダクト11に排気し、排気
エネルギによりターボ過給機12を運転して、給気ダク
ト13の給気圧力を上昇し、直接または機械式過給機1
4を運転して拡径燃焼室10に給気します。回転式過給
機14の運転は、運転中はクランク軸16の回転を、始
動電動機兼発電機17の入力軸18及び出力軸19の回
転として、回転式過給機14を運転しながら適宜に発電
して蓄電装置28に蓄電し、始動時は始動電動機17を
蓄電装置28の蓄電力により運転して、機械式過給機1
4及びクランク軸16を回転して、拡径燃焼室10に給
気してエネルギ保存サイクル内燃機関を始動します。従
って、入力軸18及び出力軸19は用途により、変速選
択可能とするのが好ましい。
Therefore, in FIG. 1 and FIG.
The fuel injection valve 7 that opens and closes and ignites the reduced-diameter main combustion chamber 1
B and an igniter 8 are provided, and the air injected from the one-way air flow path 9 and the fuel from the fuel injection valve 7B are mixed and agitated, ignited and burned by the igniter 8, and the steam is supplied in a timely manner to the steam pipe 3.
A predetermined amount of steam is injected from the outer periphery of the steam injection mushroom valve 6 toward the wall surface of the reduced-diameter main combustion chamber 1 via a steam delivery valve 4 and a steam reservoir 5 toward the wall surface of the reduced-diameter main combustion chamber 1 in a very short time, and has a large specific gravity. The wall surface is directly cooled by moisture or wet steam, radiant heat is converted to dry steam, NOx is reduced and output is increased by dry steam or the like, exhausted from the expanded combustion chamber 10 to the exhaust duct 11, and exhausted by exhaust energy. By operating the turbocharger 12, the supply pressure of the supply duct 13 is increased, and the direct or mechanical supercharger 1 is increased.
4 is operated to supply air to the expanded combustion chamber 10. During the operation of the rotary supercharger 14, the rotation of the crankshaft 16 is set as the rotation of the input shaft 18 and the output shaft 19 of the starting motor / generator 17 during the operation, and the rotation of the rotary supercharger 14 is appropriately performed. Electric power is generated and stored in the power storage device 28, and at the time of starting, the starting motor 17 is operated by the stored power of the power storage device 28, and the mechanical supercharger 1 is operated.
By rotating the crankshaft 4 and 4 and supplying air to the expanded combustion chamber 10, the internal combustion engine for energy conservation cycle is started. Therefore, it is preferable that the input shaft 18 and the output shaft 19 can be changed in speed depending on the application.

【0012】図1のシリンダヘッド15の第一実施例に
換えて、図2のシリンダヘッド15A第2実施例を使用
した場合で説明すると、近似貫流ボイラ様の熱交換器2
の導水蒸気管3の終点に、蒸気噴射電磁茸弁6Aの蒸気
溜5に開閉可能に蒸気送出電磁弁4Aを設け、縮径主燃
焼室1に夫夫開閉・点火可能に、蒸気噴射電磁茸弁6A
・燃料噴射弁7B・点火装置8を設けて、一方向空気流
路9から噴射される空気と公知技術の燃料噴射弁7Bか
ら噴射される燃料と撹拌混合して、点火装置8により点
火して、縮径主燃焼室定容大接近隔離燃焼として/蒸気
噴射電磁茸弁6Aの旋回羽根27を含む茸弁外周より高
速旋回蒸気噴射して/NOx低減・出力増大燃焼とし
て、拡径燃焼室10より排気ダクト11側に排気しま
す。蒸気噴射電磁茸弁6A及び蒸気送出電磁弁4Aの磁
石部は、夫夫の弁棒23に永久磁石25を固着して、夫
夫の弁箱24に電磁石26を固着して、夫夫1以上の電
磁石26と2以上の永久磁石25により磁石部を構成し
ます。
A description will be given of a case where a second embodiment of the cylinder head 15A of FIG. 2 is used instead of the first embodiment of the cylinder head 15 of FIG.
A steam delivery solenoid valve 4A is provided at the end point of the steam guiding pipe 3 so as to be openable and closable in the steam reservoir 5 of the steam injection solenoid mushroom valve 6A. Valve 6A
A fuel injection valve 7B and an ignition device 8 are provided, and the air injected from the one-way air flow path 9 and the fuel injected from the fuel injection valve 7B of the related art are agitated and mixed, and ignited by the ignition device 8. The reduced diameter main combustion chamber has a constant volume, large close-separation combustion, and the high-speed swirling steam injection from the outer circumference of the mushroom valve including the swirling blade 27 of the steam injection electromagnetic mushroom valve 6A. Exhaust to the exhaust duct 11 side. The magnets of the steam injection solenoid valve 6A and the steam delivery solenoid valve 4A have a permanent magnet 25 fixed to their respective valve rods 23 and an electromagnet 26 fixed to their respective valve boxes 24. The electromagnet 26 and two or more permanent magnets 25 constitute a magnet section.

【0013】図1のシリンダヘッド15に換えて、図3
のシリンダヘッド15B第3実施例を使用した場合で説
明すると、縮径主燃焼室1に燃料及び蒸気を噴射して点
火可能に、導水蒸気管3の終点に燃料蒸気噴射電磁弁7
を、適宜に予熱点火装置8Aを設けて、一方向空気流路
9から噴射される空気と燃料蒸気噴射電磁弁7から噴射
される燃料と撹拌混合して、予熱点火装置8Aにより圧
縮高温点火して、縮径主燃焼室内定容大接近隔離燃焼に
より、同一圧縮比での最高燃焼圧力を従来技術より大上
昇して、最適時に燃料蒸気噴射電磁弁7より蒸気噴射・
NOx低減・出力増大燃焼として、拡径燃焼室10より
排気ダクト11側に排気します。燃料蒸気噴射電磁弁7
の磁石部は、夫夫の弁棒23・23Aに永久磁石25を
固着して、夫夫の弁箱24に電磁石26を固着して、夫
夫1以上の電磁石26と2以上の永久磁石25により磁
石部を構成します。
[0013] Instead of the cylinder head 15 of FIG.
When the third embodiment of the cylinder head 15B is used, fuel and steam are injected into the reduced-diameter main combustion chamber 1 so that the fuel can be ignited.
Is appropriately mixed with the air injected from the one-way air flow path 9 and the fuel injected from the fuel vapor injection solenoid valve 7, and the high-temperature compression ignition is performed by the preheat ignition device 8A. Therefore, the maximum combustion pressure at the same compression ratio is greatly increased compared with the prior art by the constant-diameter main combustion chamber constant-volume close-separation combustion.
As NOx reduction and output increase combustion, the exhaust gas is exhausted from the expanded combustion chamber 10 to the exhaust duct 11 side. Fuel vapor injection solenoid valve 7
The permanent magnet 25 is fixed to each of the valve stems 23 and 23A, the electromagnet 26 is fixed to each of the valve boxes 24, and one or more electromagnets 26 and two or more permanent magnets 25 are provided. Constitutes the magnet section.

【0014】図1のシリンダヘッド15に換えて、図4
のシリンダヘッド15C第4実施例を使用した場合で説
明すると、縮径主燃焼室1に燃料及び蒸気を噴射して点
火可能に、導水蒸気管3の終点に蒸気噴射電磁弁7A
を、適宜に燃料噴射電磁弁7C及び点火装置8を設け
て、一方向空気流路9から噴射される空気と燃料噴射電
磁弁7Cから噴射される燃料と撹拌混合して、公知の点
火装置8により点火して、縮径主燃焼室内定容大接近隔
離燃焼により、同一圧縮比での最高燃焼圧力を従来技術
より大上昇して、最適時に蒸気噴射電磁弁7Aより蒸気
噴射・NOx低減・出力増大燃焼として、拡径燃焼室1
0より排気ダクト11側に排気します。蒸気噴射電磁弁
7A及び燃料噴射電磁弁7Cの磁石部は、夫夫の弁棒2
3・23に永久磁石25を固着して、夫夫の弁箱24に
電磁石26を固着して、夫夫1以上の電磁石26と2以
上の永久磁石25により磁石部を構成します。
Instead of the cylinder head 15 of FIG. 1, FIG.
When the fourth embodiment of the cylinder head 15C is used, fuel and steam are injected into the reduced-diameter main combustion chamber 1 so as to be ignitable.
A fuel injection electromagnetic valve 7C and an ignition device 8 are provided as appropriate, and the air injected from the one-way air flow path 9 and the fuel injected from the fuel injection electromagnetic valve 7C are agitated and mixed to form a known ignition device 8C. The maximum combustion pressure at the same compression ratio is greatly increased compared to the conventional technology by the constant-diameter main combustion chamber constant-volume close-separated combustion, and the steam injection, NOx reduction, and output from the steam injection solenoid valve 7A at the optimum time. As the increased combustion, the expanded combustion chamber 1
Exhaust from 0 to exhaust duct 11 side. The magnet parts of the steam injection solenoid valve 7A and the fuel injection solenoid valve 7C are
A permanent magnet 25 is fixed to 3 and 23, and an electromagnet 26 is fixed to each of the valve boxes 24. A magnet unit is constituted by one or more electromagnets 26 and two or more permanent magnets 25.

【0015】図1のシリンダヘッド15に換えて、図5
のシリンダヘッド15D第5実施例を使用した場合で説
明すると、縮径主燃焼室1に燃料及び蒸気を噴射して点
火可能に、導水蒸気管3の終点に蒸気噴射電磁弁7A
を、適宜に公知の燃料噴射弁7B及び点火装置8又は予
熱点火装置8Aを設けて、一方向空気流路9から噴射さ
れる空気と燃料噴射弁7Bから噴射される燃料と、燃料
の種類を問わずガソリン・軽油・重油・プロパン・水素
・天然ガス・メタノールのいずれかと撹拌混合して、点
火装置8または予熱点火装置8Aにより圧縮点火して、
縮径主燃焼室内定容大接近隔離燃焼により、同一圧縮比
での最高燃焼圧力を従来技術より大上昇して、最適時に
蒸気噴射電磁弁7Aより蒸気噴射・NOx低減・出力増
大燃焼として、拡径燃焼室10より排気ダクト11側に
排気します。
Instead of the cylinder head 15 of FIG. 1, FIG.
When the fifth embodiment of the cylinder head 15D is used, the fuel and steam are injected into the reduced-diameter main combustion chamber 1 so that they can be ignited.
A known fuel injection valve 7B and an igniter 8 or a preheating igniter 8A are provided as appropriate, and the air injected from the one-way air flow path 9, the fuel injected from the fuel injection valve 7B, and the type of the fuel are determined. Regardless of gasoline, light oil, heavy oil, propane, hydrogen, natural gas, or methanol, the mixture is stirred and mixed, and compression ignition is performed by the ignition device 8 or the preheating ignition device 8A.
The maximum combustion pressure at the same compression ratio is greatly increased from the conventional technology by the constant-diameter main combustion chamber constant-volume, large-volume close-separation combustion, and is expanded as steam injection, NOx reduction, and output increase combustion from the steam injection solenoid valve 7A at the optimum time. Exhaust from the radial combustion chamber 10 to the exhaust duct 11 side.

【0016】図1のシリンダヘッド15の第1実施例に
換えて、図6のシリンダヘッド15E第6実施例を使用
した場合で説明すると、縮径主燃焼室1に燃料及び水を
噴射して点火可能に、燃料水噴射電磁弁7D及び点火装
置8を設けて、一方向空気流路9から噴射される空気と
燃料水噴射電磁弁7Dから噴射される燃料と撹拌混合し
て、公知の点火装置8により点火して、縮径主燃焼室内
定容大接近隔離燃焼により、同一圧縮比での最高燃焼圧
力を従来技術より大上昇して、最適時に水溜5Aの高圧
水を、燃料水噴射電磁弁7Dより水噴射・NOx低減燃
焼として、拡径燃焼室10より排気ダクト11側に排気
します。燃料水噴射電磁弁7Dの磁石部は、1以上の弁
棒23・23Aに永久磁石25を固着して、弁箱24に
電磁石26を固着して、夫夫1以上の電磁石26と2以
上の永久磁石25により磁石部を構成します。
A description will be given of a case in which the cylinder head 15E of FIG. 6 is used instead of the cylinder head 15 of FIG. 1 according to the sixth embodiment. Fuel and water are injected into the reduced-diameter main combustion chamber 1. A fuel water injection solenoid valve 7D and an ignition device 8 are provided so as to be ignitable, and the air injected from the one-way air flow path 9 and the fuel injected from the fuel water injection solenoid valve 7D are agitated and mixed to form a known ignition. By igniting by the device 8, the maximum combustion pressure at the same compression ratio is greatly increased by the close compression combustion in the reduced diameter main combustion chamber as compared with the conventional technology, and the high pressure water in the water reservoir 5A is optimally discharged by the fuel water injection electromagnetic. As the water injection and NOx reduction combustion from the valve 7D, the exhaust gas is exhausted from the expanded combustion chamber 10 to the exhaust duct 11 side. The magnet portion of the fuel water injection solenoid valve 7D has a permanent magnet 25 fixed to one or more valve rods 23, 23A, an electromagnet 26 fixed to a valve box 24, and one or more electromagnets 26 and two or more The permanent magnet 25 forms the magnet section.

【0017】図1のシリンダヘッド15の第1実施例に
換えて、図7のシリンダヘッド15F第7実施例を使用
した場合で説明すると、縮径主燃焼室1に燃料及び水を
噴射して点火可能に、水噴射電磁弁7E及び燃料噴射弁
7B及び点火装置8を設けて、一方向空気流路9から噴
射される空気と燃料噴射弁7Bから噴射される燃料と撹
拌混合して、公知の点火装置8により点火して、縮径主
燃焼室内定容大接近隔離燃焼により、同一圧縮比での最
高燃焼圧力を従来技術より大上昇して、最適時に水噴射
電磁弁7Eより水噴射・NOx低減燃焼として、拡径燃
焼室10より排気ダクト11側に排気します。水噴射電
磁弁7Eの磁石部は、弁棒23に永久磁石25を固着し
て、弁箱24に電磁石26を固着して、1以上の電磁石
26と2以上の永久磁石25により磁石部を構成しま
す。
A description will be given of a case where a seventh embodiment of the cylinder head 15F shown in FIG. 7 is used instead of the first embodiment of the cylinder head 15 shown in FIG. 1. Fuel and water are injected into the reduced-diameter main combustion chamber 1. A water injection solenoid valve 7E, a fuel injection valve 7B, and an ignition device 8 are provided so as to be ignitable, and the air injected from the one-way air flow path 9 and the fuel injected from the fuel injection valve 7B are agitated and mixed. And the maximum combustion pressure at the same compression ratio is greatly increased compared with the prior art by the constant-diameter, large-volume close-separation combustion, and the water injection from the water injection solenoid valve 7E is performed at the optimum time. As NOx reduction combustion, the exhaust gas is exhausted from the expanded combustion chamber 10 to the exhaust duct 11 side. The magnet portion of the water injection solenoid valve 7E has a permanent magnet 25 fixed to the valve rod 23, an electromagnet 26 fixed to the valve box 24, and a magnet portion configured by one or more electromagnets 26 and two or more permanent magnets 25. To do.

【0018】図8を参照して制御装置を説明すると、一
つに纏めた制御装置として、エネルギ保存サイクル総括
制御装置20に各種制御装置を内蔵して、感知部・計算
部・規制部等を設けて各部の温度・圧力・回転数等を検
出・計算・規制し、最適燃焼制御等を含めて公害の低減
・熱効率の大上昇を図ります。即ち、燃料蒸気噴射電磁
弁7又は燃料噴射弁7B又は燃料噴射電磁弁7C及び点
火装置8又は予熱点火装置8Aからの燃料噴射圧縮点火
燃焼を、検出計算規制等により最適燃料噴射点火制御及
び最適燃焼制御として、更に燃料蒸気噴射電磁弁7又は
蒸気噴射電磁弁7A又は蒸気噴射電磁茸弁6A又は蒸気
噴射茸弁6からの高速蒸気噴射を、検出計算規制等によ
り最適蒸気噴射制御として、NOxを低減して近似皆無
燃焼とし/更に蒸気エネルギ追加出力増大定容大接近隔
離燃焼として、公害の低減・熱効率の大上昇を図りま
す。また熱交換器2の無い小型安価なエネルギ保存サイ
クル内燃機関では、蒸気噴射に換えて水噴射とし、水噴
射電磁弁7Dからの高速水噴射を、検出計算規制等によ
り最適水噴射制御として、縮径主燃焼室1内定容大接近
隔離燃焼として公害の低減・熱効率の上昇を図ります。
The control device will be described with reference to FIG. 8. As a united control device, various control devices are built in the energy saving cycle general control device 20, and a sensing unit, a calculation unit, a regulation unit, and the like are included. Detect, calculate, and regulate the temperature, pressure, rotation speed, etc. of each part to reduce pollution and greatly increase thermal efficiency, including optimal combustion control. That is, the fuel injection compression ignition combustion from the fuel vapor injection solenoid valve 7 or the fuel injection valve 7B or the fuel injection solenoid valve 7C and the igniter 8 or the preheating igniter 8A is controlled by the optimal fuel injection ignition control and the optimal combustion by the detection calculation regulation or the like. As control, high-speed steam injection from the fuel vapor injection solenoid valve 7 or the steam injection solenoid valve 7A or the steam injection solenoid mushroom valve 6A or the steam injection mushroom valve 6 is reduced as NOx by performing optimal steam injection control based on detection calculation regulation and the like. To achieve almost no combustion / additional increase in steam energy additional output and constant-volume close-separation combustion to reduce pollution and greatly increase thermal efficiency. In a small and inexpensive energy storage cycle internal combustion engine without the heat exchanger 2, water injection is used instead of steam injection, and high-speed water injection from the water injection solenoid valve 7D is reduced as optimal water injection control by detection calculation regulations and the like. Reduces pollution and increases thermal efficiency as large-diameter isolated combustion in the main diameter combustion chamber 1.

【0019】即ち、縮径主燃焼室1内定容大接近隔離燃
焼により、同一圧縮比での最大燃焼圧力を従来技術より
大上昇して、大増大した熱エネルギを隔離燃焼解除によ
り拡径ピストン21に高速噴射して、超高速公害低減皆
無再燃焼とすると共に、動圧熱エネルギと静圧熱エネル
ギにより拡径ピストンを強力に移動して、回転動力変換
効率の絶好機(死点後90度前)に熱エネルギ放出を集
中して、公害低減・熱効率大上昇を図り、排気は拡径燃
焼室10より排気ダクト11のターボ過給機12を運転
して、熱交換器2側又は直接大気側に排出し、ターボ過
給機12から吸入された空気は、給気ダクト13を通っ
て直接又は回転式過給機14により、拡径燃焼室10に
給気します。従って、運転中はクランク軸16の回転力
により機械式過給機14を運転し、始動時は始動電動機
兼発電機17により、クランク軸16及び機械式過給機
14を回転して始動しますが、外気温度ゃ停止時や長時
間運転時等各種条件が変化するため、総括制御装置20
に回転数制御装置を内蔵して、各部の温度や回転数や蓄
電装置28の蓄電量等を検出・計算・規制して、始動電
動機兼発電機17及び入力軸18及び出力軸19を最適
回転数制御して、始動時や各種運転状態に合わせた制御
装置とします。
That is, the maximum combustion pressure at the same compression ratio is greatly increased as compared with the prior art by the constant-volume large-close-separation combustion in the reduced-diameter main combustion chamber 1, and the greatly increased heat energy is removed by the isolated combustion to expand the piston 21. High-speed injection to reduce ultra-high-speed pollution and eliminate reburning, and at the same time, dynamically expand the piston with dynamic pressure heat energy and static pressure heat energy to achieve the best rotational power conversion efficiency (90 degrees after dead center). Concentrating the heat energy release in the previous section, reduce the pollution and increase the thermal efficiency greatly, and operate the turbocharger 12 of the exhaust duct 11 from the expanded combustion chamber 10 to discharge the exhaust gas to the heat exchanger 2 side or directly to the atmosphere. The air discharged from the turbocharger 12 and sucked from the turbocharger 12 is supplied to the expanded combustion chamber 10 directly through the air supply duct 13 or by the rotary supercharger 14. Therefore, during operation, the mechanical supercharger 14 is operated by the rotational force of the crankshaft 16, and at the time of starting, the crankshaft 16 and the mechanical supercharger 14 are rotated by the starting motor / generator 17 to start. However, since various conditions change, such as when the outside air temperature ゃ stoppage or long-time operation,
In order to detect, calculate and regulate the temperature, the number of revolutions of each part, the amount of electricity stored in the electricity storage device 28, etc., the starting motor / generator 17, the input shaft 18 and the output shaft 19 are optimally rotated. A number of controls are used to make the controller suitable for starting and various operating conditions.

【0020】図9を参照して、模型飛行機など小型の極
限に近い、各種のエンジンとして使用する場合、エネル
ギ保存サイクル機関は、往復運動や回転運動の、運動方
向が急反転して運動エネルギを消費する、運動エネルギ
減少損失を大低減する構成として、完全弾性衝突往復運
動をする構成及び、すべての運動部分が同一方向回転運
動をする構成を採用しており、また、摩擦損失の増大や
逆回転方向に作用する力等、回転を阻止する力が増大す
る損失の、不回転放出熱エネルギ損失を大低減する構成
として、エネルギ保存サイクル方式を採用しており、主
としてエネルギ保存サイクル方式採用例について、特許
出願してきましたが、運動エネルギ減少損失を大低減す
る構成のみの採用例について、小型模型飛行機用エンジ
ンを引用して説明する。 即ち、小型の極限に近い模型
飛行機用エンジンなど、エネルギ保存サイクル方式を不
採用の場合は、完全弾性衝突往復運動の採用として、図
9のように、2サイクル両頭ピストンとして、右死点も
左死点も爆発行程とした、完全弾性衝突往復運動とする
のが良く、過給機は回転式過給機14のみとして、運転
可能にエンジン本体給気ダクト13に取り付けるのが、
運動エネルギ減少損失低減に良く、その他は随時従来技
術を使用します。
Referring to FIG. 9, when used as various types of engines, such as model airplanes, which are close to the extreme limit, the energy preservation cycle engine reverses the direction of motion of reciprocating motion and rotational motion to rapidly reduce kinetic energy. As a configuration that greatly reduces the loss of kinetic energy consumed, a configuration that performs a full elastic collision reciprocating motion and a configuration that all the moving parts rotate in the same direction are adopted. The energy conservation cycle method is used as a configuration that greatly reduces non-rotational release heat energy loss, which is a loss that increases the force that inhibits rotation, such as the force acting in the rotation direction. Has applied for a patent, but describes an example of adopting only a configuration that greatly reduces the loss of kinetic energy reduction, citing a small model airplane engine. That. In other words, when the energy conservation cycle system is not adopted, such as a small-sized model airplane engine that is close to the limit, a completely elastic collision reciprocating motion is adopted, and as shown in FIG. It is preferable that the dead center is also an explosion stroke, and it is a perfect elastic collision reciprocating motion. The supercharger is only the rotary supercharger 14 and is operably attached to the engine main body air supply duct 13.
It is good for kinetic energy reduction and loss reduction, and others use conventional technology as needed.

【0021】図10を参照して、刈払機用など小型に近
い各種用途用の、D型エネルギ保存サイクル機関として
使用する場合、エネルギ保存サイクル機関は、運動エネ
ルギ減少損失を大低減する構成として、完全弾性衝突往
復運動をする構成及び、すべての運動部分が同一方向回
転運動をする構成を採用しており、不回転放出熱エネル
ギ損失を大低減する構成として、エネルギ保存サイクル
方式を採用しており、エネルギ保存サイクル方式及び完
全弾性衝突往復運動方式及びすべての運動部分が同一方
向回転運動をする方式を説明する。 即ち、刈払機用D
型エネルギ保存サイクル機関など、エネルギ保存サイク
ル方式及び完全弾性衝突往復運動方式及びすべての運動
部分が同一方向回転運動をする方式の併用の場合は、図
10のように、2サイクル両頭ピストンとして、右死点
も左死点も爆発行程とした、完全弾性衝突往復運動とす
ると共に、過給機は回転式過給機14のみとして、運転
可能にエンジン本体給気ダクト13に取り付けるのが、
運動エネルギ減少損失低減に良く、縮径主燃焼室1内燃
料噴射時期は、吸入行程終了点より圧縮行程終了点まで
の間で、燃料噴射圧力に応じて適宜に選択し、例えばプ
ロパンガス等の圧力ガスを、其の儘燃料噴射弁噴射する
ときは、吸入行程終了点より圧縮行程前半までに噴射終
了し、その他は随時従来技術を使用します。
Referring to FIG. 10, when used as a D-type energy storage cycle engine for various small-sized applications such as a brush cutter, the energy storage cycle engine has a configuration that greatly reduces kinetic energy reduction loss. An energy-conserving cycle system is adopted as a configuration that performs full elastic collision reciprocating motion and a configuration in which all moving parts rotate in the same direction. The energy storage cycle method, the fully elastic collision reciprocating movement method, and the method in which all moving parts rotate in the same direction will be described. That is, D for the brush cutter
In the case of a combined use of the energy storage cycle system, the fully elastic collision reciprocating motion system, and the system in which all the moving parts rotate in the same direction, such as a type energy storage cycle engine, as shown in FIG. Both the dead center and the left dead center have a full elastic collision reciprocating motion with an explosion stroke, and the supercharger is only a rotary supercharger 14 and is operably attached to the engine main body air supply duct 13.
The fuel injection timing in the reduced-diameter main combustion chamber 1 is appropriately selected in accordance with the fuel injection pressure from the end point of the suction stroke to the end point of the compression stroke. When injecting the pressure gas as it is, the fuel injection valve ends injection from the end point of the suction stroke to the first half of the compression stroke, and the other conventional technology is used as needed.

【0022】図1・図10を参照して、船外機用など小
型・中型に近い各種用途用の、D型エネルギ保存サイク
ル機関として使用する場合、エネルギ保存サイクル機関
は、運動エネルギ減少損失を大低減する構成として、完
全弾性衝突往復運動をする構成及び、すべての運動部分
が同一方向回転運動をする構成を採用しており、不回転
放出熱エネルギ損失を大低減する構成として、エネルギ
保存サイクル方式を採用しており、エネルギ保存サイク
ル方式及び完全弾性衝突往復運動方式及びすべての運動
部分が同一方向回転運動をする方式を説明する。 即
ち、船外機用D型エネルギ保存サイクル機関など、エネ
ルギ保存サイクル方式及び完全弾性衝突往復運動方式及
びすべての運動部分が同一方向回転運動をする方式の併
用の場合は、図1・図10のように、2サイクル両頭ピ
ストンとして、右死点も左死点も爆発行程とした、完全
弾性衝突往復運動とすると共に、過給機は回転式過給機
14のみ又は、ターボ過給機12との併用として、運転
可能にエンジン本体給気ダクト13及び、排気ダクト1
1にターボ過給機12を取り付けるのが、運動エネルギ
減少損失低減と熱効率上昇に良く、縮径主燃焼室1内燃
料噴射時期は、吸入行程終了点より圧縮行程終了点まで
の間で、燃料噴射圧力に応じて適宜に選択し、例えばプ
ロパンガス等の圧力ガスを、其の儘燃料噴射弁噴射する
ときは、吸入行程終了点より圧縮行程前半までに噴射終
了し、その他は随時従来技術を使用します。
Referring to FIGS. 1 and 10, when used as a D-type energy conservation cycle engine for various uses close to small and medium-sized ones, such as for an outboard motor, the energy conservation cycle engine has a kinetic energy reduction loss. As a configuration for greatly reducing the energy, a configuration in which the reciprocating motion of a completely elastic collision and a configuration in which all the moving parts rotate in the same direction are adopted. The energy saving cycle method, the fully elastic collision reciprocating movement method, and the method in which all the moving parts rotate in the same direction will be described. That is, in the case of using the energy storage cycle system such as the D-type energy storage cycle engine for an outboard motor, the fully elastic collision reciprocating motion system, and the system in which all the moving parts rotate in the same direction, FIG. Thus, as a two-stroke double-headed piston, the right dead center and the left dead center are both in an explosion stroke, a completely elastic collision reciprocating motion, and the supercharger is only the rotary supercharger 14 or the turbocharger 12 Operable as the engine air supply duct 13 and the exhaust duct 1
The turbocharger 12 is attached to the fuel injection valve 1 to reduce the kinetic energy loss and increase the thermal efficiency. The fuel injection timing in the reduced-diameter main combustion chamber 1 is set between the end point of the intake stroke and the end point of the compression stroke. The injection gas is appropriately selected in accordance with the injection pressure.For example, when injecting a fuel gas such as propane gas into the fuel injection valve as it is, the injection is completed from the end point of the suction stroke to the first half of the compression stroke, and the other conventional technology is used as needed. Use

【0023】図1・図10を参照して、汎用エンジン用
など小型・中型に近い各種用途用の、D型エネルギ保存
サイクル機関として使用する場合、エネルギ保存サイク
ル機関は、運動エネルギ減少損失を大低減する構成とし
て、完全弾性衝突往復運動をする構成及び、すべての運
動部分が同一方向回転運動をする構成を採用しており、
不回転放出熱エネルギ損失を大低減する構成として、エ
ネルギ保存サイクル方式を採用しており、エネルギ保存
サイクル方式及び完全弾性衝突往復運動方式及びすべて
の運動部分が同一方向回転運動をする方式を説明する。
即ち、汎用エンジン用D型エネルギ保存サイクル機関
など、エネルギ保存サイクル方式及び完全弾性衝突往復
運動方式及びすべての運動部分が同一方向回転運動をす
る方式の併用の場合は、図1・図10のように、2サイ
クル両頭ピストンとして、右死点も左死点も爆発行程と
した、完全弾性衝突往復運動とすると共に、過給機は回
転式過給機14のみ又は、ターボ過給機12との併用と
して、運転可能にエンジン本体給気ダクト13及び、排
気ダクト11にターボ過給機12を取り付けるのが、運
動エネルギ減少損失低減と熱効率上昇に良く、縮径主燃
焼室1内燃料噴射時期は、吸入行程終了点より圧縮行程
終了点までの間で、燃料噴射圧力に応じて適宜に選択
し、例えばプロパンガス等の圧力ガスを、其の儘燃料噴
射弁噴射するときは、吸入行程終了点より圧縮行程前半
までに噴射終了し、一定容積以上の縮径主燃焼室では、
随時蒸気内燃合体機関燃焼室とします。
Referring to FIG. 1 and FIG. 10, when used as a D-type energy storage cycle engine for various uses close to a small or medium-sized one such as a general-purpose engine, the energy storage cycle engine has a large kinetic energy reduction loss. As a configuration to reduce, a configuration that makes a full elastic collision reciprocating motion and a configuration that all the moving parts make a rotational motion in the same direction are adopted,
As a configuration for greatly reducing the non-rotation release heat energy loss, an energy storage cycle system is adopted, and an energy storage cycle system, a completely elastic collision reciprocating motion system, and a system in which all the moving parts rotate in the same direction will be described. .
That is, as shown in FIG. 1 and FIG. 10, when the energy storage cycle system such as a D-type energy storage cycle engine for a general-purpose engine, the fully elastic collision reciprocating system, and the system in which all the moving parts rotate in the same direction are used. In addition, as a two-cycle double-headed piston, a completely elastic collision reciprocating motion in which both the right dead center and the left dead center have an explosion stroke, and the supercharger is only the rotary supercharger 14 or the turbocharger 12 As a combined use, the turbocharger 12 is operably attached to the air supply duct 13 and the exhaust duct 11 for reducing the kinetic energy reduction loss and increasing the thermal efficiency, and the fuel injection timing in the reduced diameter main combustion chamber 1 is improved. From the suction stroke end point to the compression stroke end point, appropriately select according to the fuel injection pressure, for example, when injecting a fuel gas such as propane gas, the fuel injection valve as it is, Injection ended up first half of the compression stroke than input stroke end point, the condensation 径主 combustion chamber above a certain volume,
The combustion chamber of the steam internal combustion engine is used as needed.

【0024】図1・図11を参照して、従来ガソリンエ
ンジン自動車用など中型に近い各種用途用の、D型及び
E型エネルギ保存サイクル機関として使用する場合、エ
ネルギ保存サイクル機関は、運動エネルギ減少損失を大
低減する構成として及び、不回転放出熱エネルギ損失を
大低減する構成として、完全弾性衝突往復運動方式及び
完全弾性衝突対向往復運動方式及びすべての運動部分が
同一方向回転運動をする方式及びエネルギ保存サイクル
方式を採用しております。 即ち、従来ガソリンエンジ
ン自動車用D型及びE型エネルギ保存サイクル機関な
ど、エネルギ保存サイクル方式及び完全弾性衝突往復運
動方式及びすべての運動部分が同一方向回転運動をする
方式の併用の場合は、図1・図11のように、2サイク
ル両頭ピストンとして、右死点も左死点も爆発行程とし
たD型又は、D型を対向に設けて振動大低減を図る、E
型エネルギ保存サイクル機関として、完全弾性衝突往復
運動又は、完全弾性衝突対向往復運動とすると共に、過
給機は回転式過給機14及び、ターボ過給機12との併
用として、運転可能にエンジン本体給気ダクト13及
び、排気ダクト11にターボ過給機12を取り付けるの
が、運動エネルギ減少損失低減と熱効率上昇に良く、縮
径主燃焼室1内燃料噴射時期は、吸入行程終了点より圧
縮行程終了点までの間で、燃料噴射圧力に応じて適宜に
選択し、例えばプロパンガス等の圧力ガスを、其の儘燃
料噴射弁噴射するときは、吸入行程終了点より圧縮行程
前半までに噴射終了し、一定容積以上の縮径主燃焼室で
は、随時蒸気内燃合体機関燃焼室とします。
Referring to FIG. 1 and FIG. 11, when used as D-type and E-type energy conservation cycle engines for various near-medium-sized applications such as conventional gasoline engine automobiles, the energy conservation cycle engines reduce kinetic energy. As a configuration for greatly reducing the loss, and as a configuration for greatly reducing the non-rotational release heat energy loss, a fully elastic collision reciprocating motion system, a fully elastic collision opposing reciprocating motion system, a system in which all moving parts rotate in the same direction, and Energy conservation cycle system is adopted. That is, in the case of a conventional D-type and E-type energy conservation cycle engine for a gasoline engine automobile, a combination of an energy conservation cycle system, a fully elastic collision reciprocating motion system, and a system in which all motion parts rotate in the same direction is used. -As shown in Fig. 11, a D-type or a D-type, in which both the right dead center and the left dead center have an explosion stroke, are provided opposite each other as a two-cycle double-headed piston to achieve a large reduction in vibration.
A fully elastic collision reciprocating motion or a fully elastic collision opposing reciprocating motion as a type energy storage cycle engine, and the supercharger is operable in combination with the rotary supercharger 14 and the turbocharger 12 to enable the engine to operate. Attaching the turbocharger 12 to the main body air supply duct 13 and the exhaust duct 11 is good for reducing the kinetic energy loss and increasing the thermal efficiency, and the fuel injection timing in the reduced diameter main combustion chamber 1 is compressed from the end point of the intake stroke. Until the end point of the stroke, an appropriate selection is made in accordance with the fuel injection pressure.For example, when injecting a fuel gas such as propane gas into the fuel injection valve as it is, the injection is performed from the end point of the intake stroke to the first half of the compression stroke. The closed main combustion chamber with a certain volume or more will be switched to the steam internal combustion engine combustion chamber as needed.

【0025】図1・図11を参照して、従来ディーゼル
エンジン自動車用など中型に近い各種用途用の、D型及
びE型エネルギ保存サイクル機関として使用する場合、
エネルギ保存サイクル機関は、運動エネルギ減少損失を
大低減する構成として及び、不回転放出熱エネルギ損失
を大低減する構成として、完全弾性衝突往復運動方式及
び完全弾性衝突対向往復運動方式及びすべての運動部分
が同一方向回転運動をする方式及びエネルギ保存サイク
ル方式を採用しております。 即ち、従来ディーゼルエ
ンジン自動車用D型及びE型エネルギ保存サイクル機関
など、エネルギ保存サイクル方式及び完全弾性衝突往復
運動方式及びすべての運動部分が同一方向回転運動をす
る方式の併用の場合は、図1・図11のように、2サイ
クル両頭ピストンとして、右死点も左死点も爆発行程と
したD型又は、D型を対向に設けて振動大低減を図る、
E型エネルギ保存サイクル機関として、完全弾性衝突往
復運動又は、完全弾性衝突対向往復運動とすると共に、
過給機は回転式過給機14及び、ターボ過給機12との
併用として、運転可能にエンジン本体給気ダクト13及
び、排気ダクト11にターボ過給機12を取り付けるの
が、運動エネルギ減少損失低減と熱効率上昇に良く、縮
径主燃焼室1内燃料噴射時期は、吸入行程終了点より圧
縮行程終了点までの間で、燃料噴射圧力に応じて適宜に
選択し、例えばプロパンガス等の圧力ガスを、其の儘燃
料噴射弁噴射するときは、吸入行程終了点より圧縮行程
前半までに噴射終了し、一定容積以上の縮径主燃焼室で
は、随時蒸気内燃合体機関燃焼室とします。
Referring to FIGS. 1 and 11, when used as a D-type and E-type energy conservation cycle engine for various uses close to a medium size such as a conventional diesel engine automobile,
The energy conservation cycle engine is designed to greatly reduce the kinetic energy reduction loss and to greatly reduce the non-rotationally released heat energy loss. Adopts the method of rotating in the same direction and the energy conservation cycle method. That is, in the case of a conventional D-type and E-type energy storage cycle engine for a diesel engine vehicle, when the energy storage cycle system, the fully elastic collision reciprocating motion system, and the system in which all the moving parts rotate in the same direction are used together, FIG. -As shown in Fig. 11, as a two-cycle double-headed piston, a D-type or a D-type in which both the right dead center and the left dead center have an explosion stroke is provided oppositely to greatly reduce vibration.
As an E-type energy conservation cycle engine, a fully elastic collision reciprocating motion or a fully elastic collision opposing reciprocating motion,
As the turbocharger is used together with the rotary supercharger 14 and the turbocharger 12, the turbocharger 12 is operably attached to the supply duct 13 and the exhaust duct 11 of the engine to reduce kinetic energy. Good for reducing loss and increasing thermal efficiency, the fuel injection timing in the reduced-diameter main combustion chamber 1 is appropriately selected according to the fuel injection pressure between the end point of the intake stroke and the end point of the compression stroke. When injecting the fuel gas directly into the fuel injection valve, the injection is completed from the end point of the intake stroke to the first half of the compression stroke, and the reduced-diameter main combustion chamber with a certain volume or more is used as the steam-internal combustion combined engine combustion chamber as needed.

【0026】図1・図11を参照して、従来小型船舶用
など小型・中型に近い各種用途用の、D型及びE型エネ
ルギ保存サイクル機関として使用する場合、エネルギ保
存サイクル機関は、運動エネルギ減少損失を大低減する
構成として及び、不回転放出熱エネルギ損失を大低減す
る構成として、完全弾性衝突往復運動方式及び完全弾性
衝突対向往復運動方式及びすべての運動部分が同一方向
回転運動をする方式及びエネルギ保存サイクル方式を採
用しております。 即ち、従来小型船舶用など各種用途
用の、D型及びE型エネルギ保存サイクル機関など、エ
ネルギ保存サイクル方式及び完全弾性衝突往復運動方式
及びすべての運動部分が同一方向回転運動をする方式の
併用の場合は、図1・図11のように、2サイクル両頭
ピストンとして、右死点も左死点も爆発行程としたD型
又は、D型を対向に設けて振動大低減を図る、E型エネ
ルギ保存サイクル機関として、完全弾性衝突往復運動又
は、完全弾性衝突対向往復運動とすると共に、過給機は
回転式過給機14及び、ターボ過給機12との併用とし
て、運転可能にエンジン本体給気ダクト13及び、排気
ダクト11にターボ過給機12を取り付けるのが、運動
エネルギ減少損失低減と熱効率上昇に良く、縮径主燃焼
室1内燃料噴射時期は、吸入行程終了点より圧縮行程終
了点までの間で、燃料噴射圧力に応じて適宜に選択し、
例えばプロパンガス等の圧力ガスを、其の儘燃料噴射弁
噴射するときは、吸入行程終了点より圧縮行程前半まで
に噴射終了し、一定容積以上の縮径主燃焼室では、随時
蒸気内燃合体機関燃焼室とします。
Referring to FIG. 1 and FIG. 11, when used as D-type and E-type energy conservation cycle engines for various uses close to small and medium-sized ones, such as conventional small boats, the energy conservation cycle engines have kinetic energy Full elastic collision reciprocating motion system, full elastic collision opposing reciprocating motion system, and a system in which all moving parts rotate in the same direction as a configuration that greatly reduces the reduction loss and a configuration that greatly reduces the non-rotational release heat energy loss And energy conservation cycle system. In other words, the D-type and E-type energy storage cycle engines for various applications such as conventional small boats, such as the energy storage cycle system, the fully elastic collision reciprocating motion system, and the system in which all the motion parts rotate in the same direction are used in combination. In this case, as shown in FIG. 1 and FIG. 11, a D-type or a D-type in which a right dead center and a left dead center have an explosion stroke as a two-cycle double-headed piston are provided to oppose each other to greatly reduce vibration. The storage cycle engine is a fully elastic collision reciprocating motion or a fully elastic collision opposing reciprocating motion, and the supercharger is operable in combination with the rotary supercharger 14 and the turbocharger 12 so that the engine body can be operated. Attaching the turbocharger 12 to the air duct 13 and the exhaust duct 11 is good for reducing the loss of kinetic energy and increasing the thermal efficiency, and the fuel injection timing in the reduced-diameter main combustion chamber 1 ends the suction stroke. In more until the end of the compression stroke point, selected appropriately according to the fuel injection pressure,
For example, when injecting a fuel gas such as propane gas directly into the fuel injection valve, the injection is completed from the end of the suction stroke to the first half of the compression stroke. It will be a combustion chamber.

【0027】図1・図11を参照して、従来中型・大型
船舶用など大型・中型に近い発電用など各種用途用の、
D型及びE型エネルギ保存サイクル機関として使用する
場合、エネルギ保存サイクル機関は、運動エネルギ減少
損失を大低減する構成として及び、不回転放出熱エネル
ギ損失を大低減する構成として、完全弾性衝突往復運動
方式及び完全弾性衝突対向往復運動方式及びすべての運
動部分が同一方向回転運動をする方式及びエネルギ保存
サイクル方式を採用しております。 即ち、従来中型・
大型船舶用など各種用途用の、D型及びE型エネルギ保
存サイクル機関など、エネルギ保存サイクル方式及び完
全弾性衝突往復運動方式及びすべての運動部分が同一方
向回転運動をする方式の併用の場合は、図1・図11の
ように、2サイクル両頭ピストンとして、右死点も左死
点も爆発行程としたD型又は、D型を対向に設けて振動
大低減を図る、E型エネルギ保存サイクル機関として、
完全弾性衝突往復運動又は、完全弾性衝突対向往復運動
とすると共に、過給機は回転式過給機14及び、ターボ
過給機12との併用として、運転可能にエンジン本体給
気ダクト13及び、排気ダクト11にターボ過給機12
を取り付けるのが、運動エネルギ減少損失低減と熱効率
上昇に良く、縮径主燃焼室1内燃料噴射時期は、吸入行
程終了点より圧縮行程終了点までの間で、燃料噴射圧力
に応じて適宜に選択し、例えばプロパンガス等の圧力ガ
スを、其の儘燃料噴射弁噴射するときは、吸入行程終了
点より圧縮行程前半までに噴射終了し、一定容積以上の
縮径主燃焼室では、随時蒸気内燃合体機関燃焼室としま
す。
Referring to FIG. 1 and FIG. 11, for various applications such as power generation for large and nearly medium-sized vehicles such as those for conventional medium-sized and large-sized ships,
When used as a D-type or E-type energy storage cycle engine, the energy storage cycle engine is configured to completely reduce the kinetic energy reduction loss and to reduce the non-rotationally released heat energy loss to a completely elastic collision reciprocating motion. It adopts the method of reciprocating motion with complete elastic collision, the method of rotating all moving parts in the same direction, and the energy conservation cycle method. That is, conventional medium-sized
In the case of the D-type and E-type energy storage cycle engines for various applications such as large ships, such as the energy storage cycle system, the fully elastic collision reciprocating motion system, and the system in which all motion parts rotate in the same direction, As shown in FIGS. 1 and 11, an E-type energy conservation cycle engine in which a D-type or a D-type is provided as a two-cycle double-headed piston having both a right dead center and a left dead center in an explosion stroke, or a D-type is provided oppositely to greatly reduce vibration. As
With the full elastic collision reciprocating motion or the full elastic collision opposing reciprocating motion, the supercharger is operably used in combination with the rotary supercharger 14 and the turbocharger 12, and the engine main body air supply duct 13 and Turbocharger 12 in exhaust duct 11
Is good for reducing the kinetic energy loss and increasing the thermal efficiency. The fuel injection timing in the reduced-diameter main combustion chamber 1 is appropriately adjusted according to the fuel injection pressure between the end point of the intake stroke and the end point of the compression stroke. For example, when injecting a pressure gas such as propane gas into the fuel injection valve as it is, the injection is completed from the end point of the suction stroke to the first half of the compression stroke. It is a combustion chamber of an internal combustion engine.

【0028】[0028]

【発明の効果】本発明により以上説明の構成を追加した
ため、以下の効果を奏する。 1,エネルギ保存サイクル総括制御装置を追加したた
め、エネルギ保存サイクル機関の制御が容易になる。 2,各種電磁弁等を追加したため、エネルギ保存サイク
ル総括制御が可能または容易になる。 3,蒸気送出電磁弁及び蒸気噴射電磁茸弁を追加したた
め、蒸気噴射を最適時に集中できるため、NOxを含む
公害の低減および熱効率の上昇が容易になる。 4,蒸気送出電磁弁及び蒸気噴射電磁茸弁を追加したた
め、縮径主燃焼室を均一に冷却すると共に、噴射蒸気量
を増大可能となり、水素燃料の燃焼室としても最適の縮
径主燃焼室にできる。 5,エネルギ保存サイクル総括制御装置を追加したた
め、各種船舶・各種航空機・各種車両・各種車輪・各種
機械・各種発電機・を駆動する及び各種汎用のエネルギ
保存サイクル機関としての使用が容易になる。 6,エネルギ保存サイクル総括制御装置を追加したた
め、ガソリン・軽油・重油・プロパン・水素・天然ガス
・メタノール等の燃焼制御が容易になる。 7,エネルギ保存サイクル機関が最重要視している損失
が、不回転放出熱エネルギ損失と運動エネルギ減少損失
であり、大低減対策として、エネルギ保存サイクル方式
及び、完全弾性衝突往復運動をする構成及び、すべての
運動部分が同一方向回転運動をする構成を採用している
ことを明確にしたため、各種用途別の研究開発が容易に
なる。
According to the present invention, the configuration described above is added, and the following effects can be obtained. 1. The control of the energy conservation cycle engine is facilitated by adding the energy conservation cycle general control device. 2. Since various solenoid valves are added, overall control of the energy storage cycle is possible or easy. 3. Since the steam delivery solenoid valve and the steam injection solenoid valve are added, the steam injection can be concentrated at the optimum time, so that the pollution including NOx and the thermal efficiency can be easily reduced. 4. The addition of a steam delivery solenoid valve and a steam injection solenoid mushroom valve makes it possible to uniformly cool the reduced diameter main combustion chamber and increase the amount of injected steam, making it the optimal reduced diameter main combustion chamber as a hydrogen fuel combustion chamber. Can be. 5. The addition of the energy saving cycle general control device makes it easy to drive various vessels, various aircraft, various vehicles, various wheels, various machines, various generators, and as various general-purpose energy storage cycle engines. 6. The addition of the energy conservation cycle control device makes it easy to control the combustion of gasoline, light oil, heavy oil, propane, hydrogen, natural gas, methanol, etc. 7. The most important losses of the energy conservation cycle engine are the non-rotational heat energy loss and the kinetic energy reduction loss. In addition, it has been clarified that all the moving parts adopt the configuration of rotating in the same direction, thereby facilitating research and development for various applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のエネルギ保存サイクル機関の第1例を
示す概略全体構成図で一部断面で示す。
FIG. 1 is a schematic overall configuration diagram showing a first example of an energy conservation cycle engine of the present invention, and is shown in a partial cross section.

【図2】図1のシリンダヘッド15の第2実施例のシリ
ンダヘッド15Aを示す一部概略断面図である。
FIG. 2 is a partially schematic sectional view showing a cylinder head 15A of a second embodiment of the cylinder head 15 of FIG.

【図3】図1のシリンダヘッド15の第3実施例のシリ
ンダヘッド15Bを示す一部概略断面図である。
FIG. 3 is a partially schematic sectional view showing a cylinder head 15B of a third embodiment of the cylinder head 15 of FIG.

【図4】図1のシリンダヘッド15の第4実施例のシリ
ンダヘッド15Cを示す一部概略断面図である。
FIG. 4 is a partial schematic sectional view showing a cylinder head 15C of a fourth embodiment of the cylinder head 15 of FIG.

【図5】図1のシリンダヘッド15の第5実施例のシリ
ンダヘッド15Dを示す一部概略断面図である。
FIG. 5 is a partially schematic sectional view showing a cylinder head 15D of a fifth embodiment of the cylinder head 15 of FIG.

【図6】図1のシリンダヘッド15の第6実施例のシリ
ンダヘッド15Eを示す一部概略断面図である。
FIG. 6 is a partially schematic sectional view showing a cylinder head 15E of a sixth embodiment of the cylinder head 15 of FIG. 1;

【図7】図1のシリンダヘッド15の第7実施例のシリ
ンダヘッド15Fを示す一部概略断面図である。
FIG. 7 is a partial schematic sectional view showing a cylinder head 15F of a seventh embodiment of the cylinder head 15 of FIG.

【図8】本発明の各種エネルギ保存サイクル総括制御装
置の概要を説明するための全体構成図である。
FIG. 8 is an overall configuration diagram for explaining the outline of the overall control system for various energy storage cycles of the present invention.

【図9】本発明のエネルギ保存サイクル機関の第2例を
示す概略全体構成図で一部断面で示す。
FIG. 9 is a schematic overall configuration diagram showing a second example of the energy storage cycle engine of the present invention, which is partially shown in section.

【図10】本発明のエネルギ保存サイクル機関の第3例
を示す概略全体構成図で一部断面で示す。
FIG. 10 is a schematic overall configuration diagram showing a third example of the energy storage cycle engine of the present invention, and is partially shown in section.

【図11】本発明のエネルギ保存サイクル機関の第4例
を示す概略全体構成図で一部断面で示す。
FIG. 11 is a schematic overall configuration diagram showing a fourth example of the energy storage cycle engine of the present invention, and is partially shown in section.

【符号の説明】[Explanation of symbols]

1,縮径主燃焼室、 2,熱交換器、 3,導水蒸気
管、 4,蒸気送出弁、4A,蒸気送出電磁弁、 5,
蒸気溜、 5A,水溜、 6,蒸気噴射茸弁、6A,蒸
気噴射電磁茸弁、 7,燃料蒸気噴射電磁弁、 7A,
蒸気噴射電磁弁、 7B,燃料噴射弁、 7C,燃料噴
射電磁弁、 7D,燃料水噴射電磁弁、 7E,水噴射
電磁弁、 8,点火装置、 8A,予熱点火装置、
9,一方向空気流路、 10,拡径燃焼室、 11,排
気ダクト、 12,ターボ過給機、 13,給気ダク
ト、 14,回転式過給機、 15,シリンダヘッド、
16,クランク軸、 17,始動電動機兼発電機、
18,入力軸、 19,出力軸、 20,エネルギ保存
サイクル総括制御装置、 21,拡径ピストン、 2
2,縮径ピストン、 23,弁棒、 23A,弁棒、
24,弁箱、 25,永久磁石、 26,電磁石、 2
7,旋回羽根、 28,蓄電装置、 29,機関本体、
1, a reduced diameter main combustion chamber, 2, a heat exchanger, 3, a steam pipe, 4, a steam delivery valve, 4A, a steam delivery solenoid valve, 5,
Steam reservoir, 5A, water reservoir, 6, steam injection mushroom valve, 6A, steam injection solenoid mushroom valve, 7, fuel vapor injection solenoid valve, 7A,
7B, fuel injection solenoid valve, 7C, fuel injection solenoid valve, 7D, fuel water injection solenoid valve, 7E, water injection solenoid valve, 8, ignition device, 8A, preheating ignition device,
9, one-way air flow passage, 10, expanded combustion chamber, 11, exhaust duct, 12, turbocharger, 13, air supply duct, 14, rotary supercharger, 15, cylinder head,
16, crankshaft 17, starting motor and generator,
18, input shaft, 19, output shaft, 20, energy storage cycle general control device, 21, expanding piston, 2
2, reduced diameter piston, 23, stem, 23A, stem,
24, valve box, 25, permanent magnet, 26, electromagnet, 2
7, turning blade, 28, power storage device, 29, engine body,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02B 47/04 F02B 47/04 75/28 75/28 D B F02M 21/02 F02M 21/02 N 25/032 25/02 C 25/022 H Fターム(参考) 3G005 DA04 DA05 EA06 EA16 EA19 EA23 FA37 3G023 AA02 AB01 AB07 AC03 AC04 AC05 AC06 AC07 AD02 AD03 AD26 AD29 AF02 AF03 3G092 AA01 AA03 AA06 AA07 AA18 AB02 AB03 AB05 AB07 AB08 AB09 AB17 AC05 AC09 AC10 DB02 DB03 DB05 DD09 DE03S FA24 FA50 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02B 47/04 F02B 47/04 75/28 75/28 DB F02M 21/02 F02M 21/02 N 25 / 032 25/02 C 25/022 HF term (reference) 3G005 DA04 DA05 EA06 EA16 EA19 EA23 FA37 3G023 AA02 AB01 AB07 AC03 AC04 AC05 AC06 AC07 AD02 AD03 AD26 AD29 AF02 AF03 3G092 AA01 AA03 AA06 AA07 AA18 AB02 AB03 AB05 AB03 AB05 AC05 AC09 AC10 DB02 DB03 DB05 DD09 DE03S FA24 FA50

Claims (62)

【特許請求の範囲】[Claims] 【請求項1】 縮径主燃焼室(1)を終点とした近似貫
流ボイラ様の熱交換器(2)を設け、該導水蒸気管
(3)の終点に蒸気送出弁(4)を設けて蒸気溜(5)
に適時開口可能にし、該蒸気溜(5)には縮径主燃焼室
(1)に適時開口可能に蒸気噴射茸弁(6A)を設け、
該縮径主燃焼室(1)に適時開口作動する燃料噴射弁
(7B)及び点火装置(8)を設けて、一方向空気流路
(9)からの噴流により撹拌燃焼を行なうエネルギ保存
サイクル機関。
An approximate once-through boiler-like heat exchanger (2) ending at a reduced diameter main combustion chamber (1) is provided, and a steam delivery valve (4) is provided at an ending point of the steam guide pipe (3). Steam reservoir (5)
The steam reservoir (5) is provided with a steam injection mushroom valve (6A) in the reduced-diameter main combustion chamber (1) so that it can be opened in a timely manner.
An energy preserving cycle engine in which the reduced-diameter main combustion chamber (1) is provided with a fuel injection valve (7B) and an igniter (8) which are opened and operated as needed, and performs agitated combustion by a jet from a one-way air flow path (9). .
【請求項2】 縮径主燃焼室(1)を終点とした近似貫
流ボイラ様の熱交換器(2)を設け、該導水蒸気管
(3)の終点に蒸気送出電磁弁(4A)を設けて蒸気溜
(5)に適時開口可能にし、該蒸気溜(5)には縮径主
燃焼室(1)に適時開口可能に蒸気噴射電磁茸弁(6
A)を設け、該縮径主燃焼室(1)に適時開口作動する
燃料噴射弁(7B)及び点火装置(8)を設けて、一方
向空気流路(9)からの噴流により撹拌燃焼を行なうエ
ネルギ保存サイクル機関。
2. An approximate once-through boiler-like heat exchanger (2) having the reduced-diameter main combustion chamber (1) as an end point is provided, and a steam delivery solenoid valve (4A) is provided at an end point of the steam guide pipe (3). The steam injection solenoid valve (6) can be opened to the steam reservoir (5) in a timely manner, and the steam reservoir (5) can be opened in the reduced-diameter main combustion chamber (1) in a timely manner.
A), and a fuel injection valve (7B) and an igniter (8), which are opened and operated in a timely manner, are provided in the reduced-diameter main combustion chamber (1), and agitated combustion is performed by a jet from a one-way air passage (9). Energy conservation cycle organization to perform.
【請求項3】 縮径主燃焼室(1)を終点とした近似貫
流ボイラ様の熱交換器(2)を設け、該導水蒸気管
(3)の終点に蒸気送出電磁弁(4A)を設けて蒸気溜
(5)に適時開口可能にし、該蒸気溜(5)には縮径主
燃焼室(1)に適時開口可能に高速旋回噴射可能に蒸気
噴射電磁茸弁(6A)及び旋回羽根(27)を設け、該
縮径主燃焼室(1)に適時開口作動する燃料噴射弁(7
B)及び点火装置(8)を設けて、一方向空気流路
(9)からの噴流により撹拌燃焼を行なうエネルギ保存
サイクル機関。
3. An approximate once-through boiler-like heat exchanger (2) having the reduced-diameter main combustion chamber (1) as an end point, and a steam delivery solenoid valve (4A) provided at an end point of the steam guide pipe (3). The steam injection solenoid valve (6A) and the swirl vane (6A) can be opened to the steam reservoir (5) in a timely manner. 27), and the fuel injection valve (7) which is opened in the reduced-diameter main combustion chamber (1) as appropriate.
B) and an ignition device (8), an energy storage cycle engine that performs agitated combustion by a jet from a one-way air flow path (9).
【請求項4】 縮径主燃焼室(1)を終点とした近似貫
流ボイラ様の熱交換器(2)を設け、該導水蒸気管
(3)の終点に燃料・蒸気噴射電磁弁(7)を設けて縮
径主燃焼室(1)に夫夫適時開口可能にし、該縮径主燃
焼室(1)に適時作動する点火装置(8)を設けて、一
方向空気流路(9)からの噴流により撹拌燃焼を行なう
エネルギ保存サイクル機関。
4. An approximate once-through boiler-like heat exchanger (2) having a reduced-diameter main combustion chamber (1) as an end point is provided, and a fuel / steam injection solenoid valve (7) is provided at an end point of the steam guide pipe (3). Is provided so as to be able to open to the reduced-diameter main combustion chamber (1) in a timely manner, and an igniter (8) that is operated in a timely manner is provided in the reduced-diameter main combustion chamber (1). An energy conservation cycle engine that performs agitated combustion by a jet of water.
【請求項5】 縮径主燃焼室(1)を終点とした近似貫
流ボイラ様の熱交換器(2)を設け、該導水蒸気管
(3)の終点に蒸気噴射電磁弁(7A)を設けて縮径主
燃焼室(1)に適時開口可能にし、該縮径主燃焼室
(1)に適時開口作動する燃料噴射電磁弁(7C)及び
点火装置(8)を設けて、一方向空気流路(9)からの
噴流により撹拌燃焼を行なうエネルギ保存サイクル機
関。
5. An approximate once-through boiler-like heat exchanger (2) having the reduced-diameter main combustion chamber (1) as an end point, and a steam injection solenoid valve (7A) provided at an end point of the steam guide pipe (3). The fuel injection solenoid valve (7C) and the igniter (8), which can be opened in the reduced-diameter main combustion chamber (1) in a timely manner, are provided in the reduced-diameter main combustion chamber (1), and the unidirectional air flow is provided. An energy conservation cycle engine that performs agitated combustion by a jet from a road (9).
【請求項6】 縮径主燃焼室(1)を終点とした近似貫
流ボイラ様の熱交換器(2)を設け、該導水蒸気管
(3)の終点に蒸気噴射電磁弁(7A)を設けて縮径主
燃焼室(1)に適時開口可能にし、該縮径主燃焼室
(1)に適時開口作動する燃料噴射弁(7B)及び点火
装置(8)を設けて、一方向空気流路(9)からの噴流
により撹拌燃焼を行なうエネルギ保存サイクル機関。
6. An approximate once-through boiler-like heat exchanger (2) having the reduced-diameter main combustion chamber (1) as an end point, and a steam injection solenoid valve (7A) provided at an end point of the steam guide pipe (3). A fuel injection valve (7B) and an igniter (8), which are opened in the reduced-diameter main combustion chamber (1) in a timely manner, are provided in the reduced-diameter main combustion chamber (1), and a one-way air flow path is provided. (9) An energy conservation cycle engine that performs stirring combustion by the jet from (9).
【請求項7】 縮径主燃焼室(1)に燃料水噴射電磁弁
(7D)を設けて縮径主燃焼室(1)に適時開口可能に
し、該縮径主燃焼室(1)に適時開口作動する燃料噴射
弁(7B)及び点火装置(8)を設けて、一方向空気流
路(9)からの噴流により撹拌燃焼を行なうエネルギ保
存サイクル機関。
7. A fuel water injection solenoid valve (7D) is provided in the reduced-diameter main combustion chamber (1) so that it can be opened to the reduced-diameter main combustion chamber (1) in a timely manner. An energy conservation cycle engine provided with a fuel injection valve (7B) and an igniter (8) that are operated to perform an agitated combustion by a jet from a one-way air flow path (9).
【請求項8】 縮径主燃焼室(1)に水噴射電磁弁(7
E)を設けて縮径主燃焼室(1)に適時開口可能にし、
該縮径主燃焼室(1)に適時開口作動する燃料噴射弁
(7B)及び点火装置(8)を設けて、一方向空気流路
(9)からの噴流により撹拌燃焼を行なうエネルギ保存
サイクル機関。
8. A water injection solenoid valve (7) is provided in the reduced diameter main combustion chamber (1).
E) to make it possible to open the reduced-diameter main combustion chamber (1) in a timely manner,
An energy preserving cycle engine in which the reduced-diameter main combustion chamber (1) is provided with a fuel injection valve (7B) and an igniter (8) which are opened and operated as needed, and performs agitated combustion by a jet from a one-way air flow path (9). .
【請求項9】 前記点火装置(8)に換えて予熱点火装
置(8A)としたことを特徴とする請求項1乃至8のい
ずれか1項に記載のエネルギ保存サイクル機関。
9. The energy storage cycle engine according to claim 1, wherein a preheating ignition device (8A) is used instead of the ignition device (8).
【請求項10】 前記蒸気送出電磁弁(4A)・蒸気噴
射電磁茸弁(6A)・燃料蒸気噴射電磁弁(7)・蒸気
噴射電磁弁(7A)・燃料噴射電磁弁(7C)・燃料水
噴射電磁弁(7D)・水噴射電磁弁(7E)のうちの、
1以上の磁石部を、夫夫1以上の電磁石と2以上の永久
磁石で構成したことを特徴とする請求項1乃至9のいず
れか1項に記載のエネルギ保存サイクル機関。
10. A steam delivery solenoid valve (4A), a steam injection solenoid valve (6A), a fuel steam injection solenoid valve (7), a steam injection solenoid valve (7A), a fuel injection solenoid valve (7C), and fuel water. Of the injection solenoid valve (7D) and water injection solenoid valve (7E),
The energy storage cycle engine according to any one of claims 1 to 9, wherein the at least one magnet unit includes at least one electromagnet and at least two permanent magnets.
【請求項11】 前記縮径主燃焼室(1)を対向に設け
たことを特徴とする請求項1乃至10のいずれか1項に
記載のエネルギ保存サイクル機関。
11. The energy storage cycle engine according to claim 1, wherein the reduced-diameter main combustion chambers (1) are provided to face each other.
【請求項12】 請求項1乃至11のいずれか1項に記
載のエネルギ保存サイクル内燃機関において、拡径燃焼
室(10)からの排気ダクト(11)にターボ過給機
(12)を設けて、給気ダクト(13)を介して過給を
行なうエネルギ保存サイクル機関。
12. An energy storage cycle internal combustion engine according to claim 1, wherein a turbocharger (12) is provided in an exhaust duct (11) from the enlarged combustion chamber (10). An energy conservation cycle engine for supercharging via an air supply duct (13).
【請求項13】 前記給気ダクト(13)に回転式過給
機(14)を設けて過給を行なうことを特徴とする請求
項1乃至12のいずれか1項に記載のエネルギ保存サイ
クル機関。
13. The energy storage cycle engine according to claim 1, wherein a supercharger is provided by providing a rotary supercharger (14) in the air supply duct (13). .
【請求項14】 前記回転式過給機(14)の駆動力を
クランク軸(16)から得ることを特徴とする請求項1
乃至13のいずれか1項に記載のエネルギ保存サイクル
機関。
14. The system according to claim 1, wherein the driving force of the rotary supercharger is obtained from a crankshaft.
14. The energy storage cycle engine according to any one of claims 13 to 13.
【請求項15】 前記回転式過給機(14)とクランク
軸(16)の間に始動電動機兼発電機(17)を設け
て、回転式過給機(14)を含めて始動可能及び蓄電装
置(28)に蓄電可能にしたことを特徴とする請求項1
乃至14のいずれか1項に記載のエネルギ保存サイクル
機関。
15. A starting motor / generator (17) is provided between the rotary supercharger (14) and the crankshaft (16) to enable starting including the rotary supercharger (14) and to store electricity. 2. The device according to claim 1, wherein the device is capable of storing electricity.
15. The energy conservation cycle engine according to any one of claims 14 to 14.
【請求項16】 前記使用燃料をガソリン・軽油・重油
・水素・天然ガス・メタノール・プロパンのいずれかに
したことを特徴とする請求項1乃至15のいずれか1項
に記載のエネルギ保存サイクル機関。
16. The energy storage cycle engine according to claim 1, wherein the fuel used is any one of gasoline, light oil, heavy oil, hydrogen, natural gas, methanol, and propane. .
【請求項17】 前記始動電動機兼発電機(17)の入
力軸(18)及び出力軸(19)のいずれか1以上を変
速可能にしたことを特徴とする請求項1乃至16のいず
れか1項に記載のエネルギ保存サイクル機関。
17. The apparatus according to claim 1, wherein at least one of an input shaft (18) and an output shaft (19) of said starting motor / generator (17) can be shifted. Energy conservation cycle engine according to paragraph.
【請求項18】 前記蒸気送出弁(4)及び蒸気送出電
磁弁(4A)及び蒸気噴射茸弁(6)及び蒸気噴射電磁
茸弁(6A)及び燃料蒸気噴射電磁弁(7)及び蒸気噴
射電磁弁(7A)及び燃料噴射弁(7B)及び燃料噴射
電磁弁(7C)及び燃料水噴射電磁弁(7D)及び水噴
射電磁弁(7E)及び点火装置(8)及び予熱点火装置
(8A)及び始動電動機兼発電機(17)及び入力軸
(18)及び出力軸(19)のいずれか1以上をエネル
ギ保存サイクル総括制御装置(20)により制御可能に
したことを特徴とする請求項1乃至16のいずれか1項
に記載のエネルギ保存サイクル機関。
18. The steam delivery valve (4), the steam delivery solenoid valve (4A), the steam injection mushroom valve (6), the steam injection solenoid mushroom valve (6A), the fuel steam injection solenoid valve (7), and the steam injection solenoid. Valve (7A), fuel injection valve (7B), fuel injection solenoid valve (7C), fuel water injection solenoid valve (7D), water injection solenoid valve (7E), ignition device (8), preheating ignition device (8A) and 17. An energy storage cycle general controller (20) for controlling at least one of a starting motor / generator (17) and an input shaft (18) and an output shaft (19). An energy storage cycle engine according to any one of the preceding claims.
【請求項19】 前記エネルギ保存サイクル機関は、船
舶を駆動することを特徴とする請求項1乃至18のいず
れか1項に記載のエネルギ保存サイクル機関。
19. The energy storage cycle engine according to claim 1, wherein the energy storage cycle engine drives a ship.
【請求項20】 前記エネルギ保存サイクル機関は、航
空機を駆動することを特徴とする請求項1乃至18のい
ずれか1項に記載のエネルギ保存サイクル機関。
20. The energy storage cycle engine according to claim 1, wherein the energy storage cycle engine drives an aircraft.
【請求項21】 前記エネルギ保存サイクル機関は、車
両を駆動することを特徴とする請求項1乃至18のいず
れか1項に記載のエネルギ保存サイクル機関。
21. The energy storage cycle engine according to claim 1, wherein the energy storage cycle engine drives a vehicle.
【請求項22】 前記エネルギ保存サイクル機関は、各
種車輪を駆動することを特徴とする請求項1乃至18の
いずれか1項に記載のエネルギ保存サイクル機関。
22. The energy storage cycle engine according to claim 1, wherein the energy storage cycle engine drives various wheels.
【請求項23】 前記エネルギ保存サイクル機関は、各
種機械を駆動することを特徴とする請求項1乃至18の
いずれか1項に記載のエネルギ保存サイクル機関。
23. The energy storage cycle engine according to claim 1, wherein the energy storage cycle engine drives various machines.
【請求項24】 前記エネルギ保存サイクル機関を、汎
用内燃機関としたことを特徴とする請求項1乃至18の
いずれか1項に記載のエネルギ保存サイクル機関。
24. The energy storage cycle engine according to claim 1, wherein the energy storage cycle engine is a general-purpose internal combustion engine.
【請求項25】 前記エネルギ保存サイクル機関を、発
電用内燃機関としたことを特徴とする請求項1乃至18
のいずれか1項に記載のエネルギ保存サイクル機関。
25. The energy storage cycle engine according to claim 1, wherein the internal combustion engine is a power generation internal combustion engine.
An energy storage cycle engine according to any one of the preceding claims.
【請求項26】 中核の構成を、完全弾性衝突往復運動
する構成及び、すべての運動部分が同一方向回転運動を
する構成及び、エネルギ保存サイクルとする構成とした
ことを特徴とするエネルギ保存サイクル機関。
26. An energy storage cycle engine, wherein the core has a configuration in which reciprocating motion is completely elastically impacted, a configuration in which all moving parts rotate in the same direction, and a configuration in which an energy storage cycle is provided. .
【請求項27】 中核の構成を、完全弾性衝突往復運動
する構成及び、すべての運動部分が同一方向回転運動を
する構成としたことを特徴とするエネルギ保存サイクル
機関。
27. An energy preservation cycle engine, wherein the core is configured to reciprocate in a completely elastic collision and the configuration is such that all moving parts rotate in the same direction.
【請求項28】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動をする構成として回転式過
給機(14)を設けて模型飛行機用など小型の極限に対
応したことを特徴としたエネルギ保存サイクル機関。
28. A model airplane provided with a rotary supercharger (14) as a core configuration of the energy conservation cycle engine, a configuration in which reciprocating motion is completely elastic collision, and a configuration in which all moving parts are rotated in the same direction. An energy conservation cycle engine that has been adapted to the extremely small size of applications.
【請求項29】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動をする構成として回転式過
給機(14)を設け、燃料噴射電磁弁(7C)を設けて
模型飛行機用など小型の極限に対応したことを特徴とし
たエネルギ保存サイクル機関。
29. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine, in which a full elastic collision reciprocating motion and a configuration in which all moving parts rotate in the same direction are provided. An energy conservation cycle engine equipped with a solenoid valve (7C) for miniature extremes, such as for model airplanes.
【請求項30】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設け、エネルギ保存サイクルとする構成と
したことを特徴としたエネルギ保存サイクル機関。
30. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine, wherein a rotary elastic turbocharger (14) is provided as a configuration in which reciprocating motion is completely elastic collision and a configuration in which all moving parts are rotated in the same direction. An energy conservation cycle engine characterized in that:
【請求項31】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設け、エネルギ保存サイクルとする構成と
したことを特徴としたエネルギ保存サイクル機関。
31. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine, wherein a rotary elastic supercharger (14) is provided as a configuration in which reciprocating motion is completely elastically impacted and a configuration in which all moving parts are rotated in the same direction. An energy conservation cycle engine characterized in that:
【請求項32】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設け、エネルギ保存サイクルとする構成と
して、刈払機用など小型に近い各種用途用としたことを
特徴としたエネルギ保存サイクル機関。
32. An energy-saving cycle, wherein a rotary supercharger (14) is provided as a core structure of the energy-saving cycle engine as a configuration of reciprocating motion with perfect elastic collision and a configuration of rotating all the moving parts in the same direction. An energy storage cycle engine characterized by being used for various small-sized applications such as a brush cutter.
【請求項33】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設け、エネルギ
保存サイクルとする構成として、刈払機用など小型に近
い各種用途用としたことを特徴としたエネルギ保存サイ
クル機関。
33. A turbocharger (12) and a rotary supercharger (12), wherein the core configuration of the energy conservation cycle engine is configured to reciprocate in a completely elastic collision and to configure all the moving parts to rotate in the same direction. 14) An energy storage cycle engine characterized by having an energy storage cycle for use in various small-sized applications such as a brush cutter.
【請求項34】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設け、エネルギ保存サイクルとする構成と
して、燃料噴射電磁弁(7C)を設けて刈払機用など小
型に近い各種用途用としたことを特徴としたエネルギ保
存サイクル機関。
34. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine as a configuration in which reciprocating motion is completely elastic collision and a configuration in which all moving parts rotate in the same direction. An energy preservation cycle engine characterized in that a fuel injection solenoid valve (7C) is provided for various small-sized applications such as a brush cutter.
【請求項35】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設けて、エネルギ保存サイクルとする構成
として、船外機用など小型・中型に近い各種用途用とし
たことを特徴としたエネルギ保存サイクル機関。
35. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine as a configuration in which a resilient collision reciprocates completely and a configuration in which all moving parts rotate in the same direction. An energy conservation cycle engine characterized in that the cycle is configured for various uses close to small and medium-sized such as for outboard motors.
【請求項36】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、船外機用など小型・
中型に近い各種用途用としたことを特徴としたエネルギ
保存サイクル機関。
36. A turbocharger (12) and a rotary supercharger (12) in which a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. 14) to provide an energy conservation cycle for small outboard motors
An energy conservation cycle engine characterized by being used for various applications close to medium-sized.
【請求項37】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設けて、エネルギ保存サイクルとする構成
として、燃料噴射電磁弁(7C)を設けて船外機用など
小型・中型に近い各種用途用としたことを特徴としたエ
ネルギ保存サイクル機関。
37. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine as a configuration of reciprocating motion with complete elastic collision and a configuration in which all moving parts rotate in the same direction. An energy preservation cycle engine characterized by providing a fuel injection solenoid valve (7C) as a cycle for various uses close to small and medium-sized such as for outboard motors.
【請求項38】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、汎用エンジン用など
小型・中型に近い各種用途用としたことを特徴としたエ
ネルギ保存サイクル機関。
38. A turbocharger (12) and a rotary supercharger (12) in which the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and to configure all the moving parts to rotate in the same direction. 14) An energy storage cycle engine characterized in that the energy storage cycle is provided for various uses close to small and medium-sized ones such as general-purpose engines.
【請求項39】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料噴射電磁弁(7
C)を設けて汎用エンジン用など小型・中型に近い各種
用途用としたことを特徴としたエネルギ保存サイクル機
関。
39. A turbocharger (12) and a rotary supercharger (12) in which a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. 14) to provide an energy conservation cycle, the fuel injection solenoid valve (7
C) An energy conservation cycle engine characterized in that it is used for various purposes close to small and medium-sized ones, such as general-purpose engines.
【請求項40】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設けて、エネルギ保存サイクルとする構成
として、汎用エンジン用など小型・中型に近い各種用途
用としたことを特徴としたエネルギ保存サイクル機関。
40. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine as a configuration of reciprocating motion with complete elastic collision and a configuration in which all moving parts rotate in the same direction. An energy conservation cycle engine characterized by its use as a cycle for a variety of applications close to small and medium-sized engines such as general-purpose engines.
【請求項41】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成として回転式過給
機(14)を設けて、エネルギ保存サイクルとする構成
として、燃料噴射電磁弁(7C)を設けて汎用エンジン
用など小型・中型に近い各種用途用としたことを特徴と
したエネルギ保存サイクル機関。
41. A rotary supercharger (14) is provided as a core configuration of the energy storage cycle engine as a configuration in which full elastic collision reciprocating motion and a configuration in which all moving parts rotate in the same direction are provided. An energy preservation cycle engine characterized by providing a fuel injection solenoid valve (7C) as a cycle for various uses close to small and medium-sized ones such as general-purpose engines.
【請求項42】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、従来ガソリンエンジ
ン自動車用など中型に近い各種用途用としたことを特徴
としたエネルギ保存サイクル機関。
42. A turbocharger (12) and a rotary supercharger (12), wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and all the moving parts rotate in the same direction. 14) An energy storage cycle engine characterized in that the energy storage cycle is provided for various uses close to a medium size, such as a conventional gasoline engine automobile.
【請求項43】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料噴射電磁弁(7
C)を設けて従来ガソリンエンジン自動車用など中型に
近い各種用途用としたことを特徴としたエネルギ保存サ
イクル機関。
43. A turbocharger (12) and a rotary supercharger (12) as a core configuration of the energy storage cycle engine, wherein the configuration is such that a complete elastic collision reciprocating motion and the configuration in which all moving parts rotate in the same direction are performed. 14) to provide an energy conservation cycle, the fuel injection solenoid valve (7
C) An energy storage cycle engine characterized by being provided for various uses close to a medium size, such as a conventional gasoline engine car.
【請求項44】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、従来ガソリンエ
ンジン自動車用など中型に近い各種用途用としたことを
特徴としたエネルギ保存サイクル機関。
44. A turbocharger (12) and a rotary supercharger, wherein a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision facing configuration and a configuration in which all moving parts rotate in the same direction. (14) An energy storage cycle engine characterized in that the energy storage cycle is configured for use in various medium-sized applications such as a conventional gasoline engine vehicle.
【請求項45】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、燃料蒸気噴射電
磁弁(7)を設けて従来ガソリンエンジン自動車用など
中型に近い各種用途用としたことを特徴としたエネルギ
保存サイクル機関。
45. A turbocharger (12) and a rotary supercharger, wherein a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision facing configuration and a configuration in which all moving parts rotate in the same direction. An energy storage cycle engine characterized in that the fuel vapor injection solenoid valve (7) is provided for various uses close to a medium size, such as a conventional gasoline engine vehicle, as a configuration for providing an energy storage cycle by providing (14).
【請求項46】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、従来ディーゼル
エンジン自動車用など中型に近い各種用途用としたこと
を特徴としたエネルギ保存サイクル機関。
46. A turbocharger (12) and a rotary supercharger, wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and reciprocating motion, and all the moving parts rotate in the same direction. (14) An energy storage cycle engine characterized in that the energy storage cycle is configured for use in various near-medium-sized applications such as a conventional diesel engine vehicle.
【請求項47】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、燃料蒸気噴射電
磁弁(7)を設けて従来ディーゼルエンジン自動車用な
ど中型に近い各種用途用としたことを特徴としたエネル
ギ保存サイクル機関。
47. A turbocharger (12) and a rotary supercharger, wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision opposition and configuration in which all moving parts rotate in the same direction. (14) An energy storage cycle engine characterized by providing a fuel vapor injection solenoid valve (7) as an energy storage cycle and providing a fuel vapor injection solenoid valve (7) for various uses close to a medium size such as a conventional diesel engine vehicle.
【請求項48】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、従来ディーゼルエン
ジン自動車用など中型に近い各種用途用としたことを特
徴としたエネルギ保存サイクル機関。
48. A turbocharger (12) and a rotary supercharger (12) in which a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. 14) An energy storage cycle engine characterized in that the energy storage cycle is provided for various uses close to a medium size such as a conventional diesel engine vehicle.
【請求項49】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料蒸気噴射電磁弁
(7)を設けて従来ディーゼルエンジン自動車用など中
型に近い各種用途用としたことを特徴としたエネルギ保
存サイクル機関。
49. A turbocharger (12) and a rotary supercharger (12), wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and configuration in which all moving parts rotate in the same direction. 14) An energy storage cycle engine characterized in that a fuel vapor injection solenoid valve (7) is provided for various uses close to a medium-sized one such as a diesel engine vehicle as a configuration for providing an energy storage cycle.
【請求項50】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料噴射電磁弁(7
C)を設けて従来ディーゼルエンジン自動車用など中型
に近い各種用途用としたことを特徴としたエネルギ保存
サイクル機関。
50. A turbocharger (12) and a rotary supercharger (12) in which a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. 14) to provide an energy conservation cycle, the fuel injection solenoid valve (7
C) is an energy conservation cycle engine characterized by being used for various applications close to a medium size such as a conventional diesel engine vehicle.
【請求項51】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、従来小型船舶用など
小型・中型に近い各種用途用としたことを特徴としたエ
ネルギ保存サイクル機関。
51. A turbocharger (12) and a rotary supercharger (12) as a core configuration of the energy storage cycle engine, wherein the configuration is such that a complete elastic collision reciprocating motion and the configuration in which all moving parts rotate in the same direction are performed. 14) An energy storage cycle engine characterized in that the energy storage cycle is provided for various uses close to small and medium-sized ones such as conventional small boats.
【請求項52】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料蒸気噴射電磁弁
(7)を設けて従来小型船舶用など小型・中型に近い各
種用途用としたことを特徴としたエネルギ保存サイクル
機関。
52. A turbocharger (12) and a rotary supercharger (12), wherein a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. (14) An energy storage cycle engine characterized by providing a fuel vapor injection solenoid valve (7) as an energy storage cycle and providing a fuel vapor injection valve (7) for various uses close to small and medium-sized ones such as conventional small boats.
【請求項53】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料噴射電磁弁(7
C)を設けて従来小型船舶用など小型・中型に近い各種
用途用としたことを特徴としたエネルギ保存サイクル機
関。
53. A turbocharger (12) and a rotary supercharger (12), wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and to configure all the moving parts to rotate in the same direction. 14) to provide an energy conservation cycle, the fuel injection solenoid valve (7
C) An energy conservation cycle engine characterized by being provided for various uses close to small and medium-sized ones such as conventional small boats.
【請求項54】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、従来小型船舶用
など小型・中型に近い各種用途用としたことを特徴とし
たエネルギ保存サイクル機関。
54. A turbocharger (12) and a rotary supercharger, wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and reciprocating motion in all the moving parts in the same direction. (14) An energy storage cycle engine characterized in that the energy storage cycle is configured for use in various applications close to small and medium-sized ones, such as those for conventional small boats.
【請求項55】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、燃料蒸気噴射電
磁弁(7)を設けて従来小型船舶用など小型・中型に近
い各種用途用としたことを特徴としたエネルギ保存サイ
クル機関。
55. A turbocharger (12) and a rotary supercharger, wherein a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision opposition and a configuration in which all moving parts rotate in the same direction. An energy storage cycle engine characterized in that the fuel vapor injection solenoid valve (7) is provided for various uses close to small and medium-sized ones such as conventional small boats as a configuration for providing an energy storage cycle by providing (14). .
【請求項56】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、燃料噴射電磁弁
(7C)を設けて従来小型船舶用など小型・中型に近い
各種用途用としたことを特徴としたエネルギ保存サイク
ル機関。
56. A turbocharger (12) and a rotary supercharger, wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and reciprocating motion in all the moving parts in the same direction. An energy storage cycle engine characterized in that the fuel injection solenoid valve (7C) is provided for various uses close to small and medium-sized ones such as conventional small boats as a configuration for providing an energy storage cycle by providing (14).
【請求項57】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、従来中型・大型
船舶用など大型・中型に近い発電用など各種用途用とし
たことを特徴としたエネルギ保存サイクル機関。
57. A turbocharger (12) and a rotary supercharger, wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision facing configuration and to configure all the moving parts to rotate in the same direction. (14) An energy conservation cycle engine characterized in that the energy conservation cycle is configured for use in various applications such as power generation for large and nearly medium-sized vehicles such as those for conventional medium and large vessels.
【請求項58】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、燃料蒸気噴射電
磁弁(7)を設けて従来中型・大型船舶用など大型・中
型に近い発電用など各種用途用としたことを特徴とした
エネルギ保存サイクル機関。
58. A turbocharger (12) and a rotary supercharger, wherein a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. The fuel vapor injection solenoid valve (7) is provided as a configuration for providing an energy conservation cycle by providing (14), and is characterized by being used for various uses such as power generation close to a large / medium size such as a conventional medium / large ship. Energy conservation cycle organization.
【請求項59】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突対向往復運動する構成及び、すべ
ての運動部分が同一方向回転運動する構成としてターボ
過給機(12)及び回転式過給機(14)を設けて、エ
ネルギ保存サイクルとする構成として、燃料噴射電磁弁
(7C)及び蒸気噴射電磁弁(7A)を設けて従来中型
・大型船舶用など大型・中型に近い発電用など各種用途
用としたことを特徴としたエネルギ保存サイクル機関。
59. A turbocharger (12) and a rotary supercharger, wherein a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. The fuel injection solenoid valve (7C) and the steam injection solenoid valve (7A) are provided as a configuration for providing an energy conservation cycle by providing (14), and various uses such as power generation for large and medium-sized vehicles such as conventional medium-sized and large-sized ships are provided. An energy conservation cycle engine characterized by:
【請求項60】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、従来中型・大型船舶
用など大型・中型に近い発電用など各種用途用としたこ
とを特徴としたエネルギ保存サイクル機関。
60. A turbocharger (12) and a rotary supercharger (12), wherein the core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and to configure all the moving parts to rotate in the same direction. 14) An energy storage cycle engine characterized in that the energy storage cycle is provided for a variety of uses such as power generation for large and nearly medium-sized vehicles such as those for conventional medium and large vessels.
【請求項61】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料蒸気噴射電磁弁
(7)を設けて従来中型・大型船舶用など大型・中型に
近い発電用など各種用途用としたことを特徴としたエネ
ルギ保存サイクル機関。
61. A turbocharger (12) and a rotary supercharger (12) in which a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. The fuel vapor injection solenoid valve (7) is provided as a configuration for providing an energy conservation cycle by providing the fuel vapor injection solenoid valve (14), which is characterized by being used for various purposes such as power generation close to a large / medium size such as a conventional medium-sized / large marine vessel. Energy conservation cycle organization.
【請求項62】 前記エネルギ保存サイクル機関の中核
構成を、完全弾性衝突往復運動する構成及び、すべての
運動部分が同一方向回転運動する構成としてターボ過給
機(12)及び回転式過給機(14)を設けて、エネル
ギ保存サイクルとする構成として、燃料噴射電磁弁(7
C)及び蒸気噴射電磁弁(7A)を設けて従来中型・大
型船舶用など大型・中型に近い発電用など各種用途用と
したことを特徴としたエネルギ保存サイクル機関。
62. A turbocharger (12) and a rotary supercharger (12) in which a core configuration of the energy storage cycle engine is configured to reciprocate in a completely elastic collision and a configuration in which all moving parts rotate in the same direction. 14) to provide an energy conservation cycle, the fuel injection solenoid valve (7
C) and a steam injection solenoid valve (7A) provided for use in various applications such as power generation for large and nearly medium-sized vehicles such as those for conventional medium- and large-sized ships.
JP11049293A 1998-12-16 1999-02-26 Energy reserving cycle engine Pending JP2000234536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11049293A JP2000234536A (en) 1998-12-16 1999-02-26 Energy reserving cycle engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35709498 1998-12-16
JP10-357094 1998-12-16
JP11049293A JP2000234536A (en) 1998-12-16 1999-02-26 Energy reserving cycle engine

Publications (1)

Publication Number Publication Date
JP2000234536A true JP2000234536A (en) 2000-08-29

Family

ID=26389673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11049293A Pending JP2000234536A (en) 1998-12-16 1999-02-26 Energy reserving cycle engine

Country Status (1)

Country Link
JP (1) JP2000234536A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108903614A (en) * 2018-07-20 2018-11-30 南通劲凌智能科技有限公司 One kind being based on steam-heated food processing equipment and its method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108903614A (en) * 2018-07-20 2018-11-30 南通劲凌智能科技有限公司 One kind being based on steam-heated food processing equipment and its method

Similar Documents

Publication Publication Date Title
JP4298788B2 (en) 6 cycle engine with regenerator
US4535592A (en) Internal combustion engine having an exhaust gas turbine
US6035637A (en) Free-piston internal combustion engine
US7942117B2 (en) Engine
US20100229806A1 (en) Internal combustion engines with surcharging and supraignition systems
US20200056535A1 (en) Internal combustion steam engine
JP2004521216A (en) Variable compression ratio air supply variable efficiency engine (VCRC engine)
JP2015521243A (en) High pressure spark ignition and stratification device for internal combustion engines
US20090145398A1 (en) Internal combustion engines with surcharging and supraignition systems
US4807579A (en) Turbocompounded two-stroke piston engines
JPH05179986A (en) Method of operating internal combustion engine
CN110939506A (en) Split type large expansion ratio engine
US6434936B1 (en) Super diesel apparatus
JP2019534974A (en) Spark ignition internal combustion engine
CN110043363B (en) Reciprocating piston type two-stroke internal combustion engine
US20090320794A1 (en) Novel Internal Combustion Torroidal Engine
JP4951143B1 (en) Three-output shaft type internal combustion engine
JP2000234536A (en) Energy reserving cycle engine
WO2005042942A1 (en) Prime mover
JP3030365B2 (en) Internal combustion engine
JP2000234501A (en) Energy reserving cycle engine mounting apparatus
EA039210B1 (en) Internal combustion steam engine
US10393011B1 (en) Method of operating an internal combustion engine utilizing heat in engine cycles
WO2006040401A1 (en) An arrangement for a compression ignition engine
RU2628831C2 (en) Method of management of axial-piston engine and axial-piston engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071016

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20081016

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20091016

LAPS Cancellation because of no payment of annual fees