JP2000234183A - Steel sheet for film laminated welded can - Google Patents

Steel sheet for film laminated welded can

Info

Publication number
JP2000234183A
JP2000234183A JP3339999A JP3339999A JP2000234183A JP 2000234183 A JP2000234183 A JP 2000234183A JP 3339999 A JP3339999 A JP 3339999A JP 3339999 A JP3339999 A JP 3339999A JP 2000234183 A JP2000234183 A JP 2000234183A
Authority
JP
Japan
Prior art keywords
tin
welding
steel sheet
amount
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3339999A
Other languages
Japanese (ja)
Other versions
JP3985378B2 (en
Inventor
Yukio Obata
由紀夫 小幡
Makoto Araya
誠 荒谷
Hideo Kukuminato
英雄 久々湊
Yasuko Koshu
泰子 古主
Tatsuyuki Okazaki
達之 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP03339999A priority Critical patent/JP3985378B2/en
Publication of JP2000234183A publication Critical patent/JP2000234183A/en
Application granted granted Critical
Publication of JP3985378B2 publication Critical patent/JP3985378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for a film laminated welded can large in ACR (weldable range in which a sound nugget free from the generation of scattering at the time of welding and welding peeling in a can expanding test is formed) in the case a steel sheet for a welded can laminated with a film is subjected to seam welding to form into a can barrel and also free from the generation of a defective can caused by scratches even in the case of welding at a high speed. SOLUTION: This invention is a steel sheet for a welded can in which a tinning layer is formed on at least either surface of the steel sheet, and the upper layer is provided with a film laminated layer composed of an organic resin film, the average surface roughness Ra of the steel sheet is 0.2 to 0.4 μm, and in the tinning layer, metallic tin is contained in the range of >250 to 600 mg/m2, and alloy tin is contained in the range of 400 to 1,500 mg/m2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シーム溶接工程を
経て得られる3ピース溶接缶(以下、単に「溶接缶」と
略記する)に用いられる、フィルムラミネート鋼板に関
し、とくに溶接可能範囲が広く、缶胴への疵付きがない
フィルムラミネート溶接缶用鋼板に関するものである。
なお、本発明は、とくに鋼帯の長手方向を軸方向とする
円筒に成形して溶接缶に仕上げる場合に適用して好適な
鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film-laminated steel sheet used for a three-piece weld can (hereinafter simply referred to as "weld can") obtained through a seam welding process. The present invention relates to a steel plate for a film-laminated welded can having no flaw on a can body.
In addition, the present invention relates to a steel sheet which is particularly suitable for being applied to a case where the steel strip is formed into a cylinder whose axial direction is the longitudinal direction of the steel strip to finish the welded can.

【0002】[0002]

【従来の技術】缶用鋼板には、鋼板の表面にSn、Cr、Ni
等の各種めっきを施したものがあり、これらは3ピース
缶や2ピース缶に加工されて、飲料缶、食缶等として供
給されている。なかでも、3ピース缶は、上蓋、底蓋お
よびシーム溶接した缶胴の3部品からなり、製造工程が
2ピース缶に比べて単純で、合理的化しやすく、小ロッ
ト多品種の生産に適しているという利点を有している。
2. Description of the Related Art Steel plates for cans include Sn, Cr, Ni on the surface of the steel plate.
These are processed into three-piece cans or two-piece cans, and are supplied as beverage cans, food cans, and the like. Above all, the three-piece can consists of three parts: the top lid, the bottom lid, and the seam-welded can body. The manufacturing process is simpler than the two-piece can, making it easier to rationalize, and suitable for the production of small lots and many kinds. It has the advantage of being.

【0003】かかる3ピース缶、特にすずめっき素材を
用いた3ピース缶の製造において、最近の大量消費に伴
って生まれた大きな技術的進歩として、使用鋼板の高張
力化、板厚減少による軽量化、シーム溶接の高速化なら
びにフィルムラミネート鋼板(鋼板にポリエチレンテレ
フタレート系フィルム(PET)などの有機樹脂フィル
ムを焼付けた状態のもの)の採用による製缶の合理化と
生産性向上などが挙げられる。
[0003] In the production of such three-piece cans, particularly three-piece cans using tin-plated materials, major technological advances brought about by recent mass consumption include increasing the tensile strength of the steel sheet used and reducing the weight by reducing the thickness. Increasing the speed of seam welding and rationalizing can manufacturing and improving productivity by employing a film-laminated steel plate (a state in which an organic resin film such as a polyethylene terephthalate film (PET) is baked on a steel plate).

【0004】さて、3ピース缶の製造工程において、缶
胴板のシーム溶接工程は、缶体の品質や生産性などを左
右する重要な役割を担っている。そしてシーム溶接作業
で、一般的に問題になるのが、散り(スプラッシュ)の
発生や、拡缶試験における溶接部の剥がれである。散り
は、基本的には、過電流が流れるために発生し、剥がれ
は必要な電流が鋼板同士の接合面に十分に流れないため
に発生するものである。シーム溶接で、これら両欠陥を
ともに生じさせないための適正電流範囲(溶接可能範
囲、以下単に「ACR」と略記する)が存在し、その範
囲が大きい方がよい。ACRが小さいと、散り発生を防
ぐために電流値を小さくすれば、剥がれが発生しやす
く、逆に剥がれが発生しないように電流値を大きくすれ
ば、散りが発生することになる。このため、溶接缶用鋼
板には基本的にACRが大きい素材が要求される。
[0004] In the production process of a three-piece can, the seam welding process of the can body plate plays an important role in determining the quality and productivity of the can body. In the seam welding operation, problems that generally occur are splash (splash) and peeling of a welded portion in a can open test. Scattering is basically caused by the flow of overcurrent, and peeling is caused by the necessary current not sufficiently flowing to the joint surface between the steel plates. In seam welding, there is a proper current range (a weldable range, hereinafter simply referred to as “ACR”) for preventing both of these defects from occurring, and the larger the range, the better. If the ACR is small, peeling is likely to occur if the current value is reduced in order to prevent the occurrence of scattering. Conversely, if the current value is increased so that peeling does not occur, scattering will occur. For this reason, a material having a large ACR is basically required for a steel plate for a welding can.

【0005】シーム溶接において、3ピース缶体の素材
として、高強度で極薄(板厚0.2 mm以下)の鋼板を用い
る場合には、次のような点で溶接作業が一層困難にな
る。すなわち、極薄の鋼板では接合面の空気抵抗が相対
的に大きくなり、接触抵抗が大きくなる。また、板厚が
薄いと、シーム溶接で発生した熱を、溶接缶体が持ち去
る熱量が少ないために、鋼板の温度が上昇して、電気抵
抗が大きくなる。このような接触抵抗と電気抵抗の増加
は、シーム溶接時の散りの多発を起こしやすくなる。こ
のように、極薄鋼板ではACRが狭くなり、散りと剥が
れの両方とも安定的に回避することがますます困難にな
るので、高速溶接は通常板厚のものよりもますます困難
となる。
[0005] In the case of seam welding, when a high-strength, ultra-thin (thickness: 0.2 mm or less) steel plate is used as the material of the three-piece can body, the welding operation becomes more difficult in the following points. That is, in an ultra-thin steel plate, the air resistance of the joint surface becomes relatively large, and the contact resistance becomes large. Also, when the sheet thickness is small, the heat generated by seam welding is carried away by the welding can body, so that the temperature of the steel sheet increases and the electric resistance increases. Such an increase in contact resistance and electric resistance tends to cause frequent spattering during seam welding. Thus, high-speed welding is increasingly more difficult than with normal thickness because ultra-thin steel sheets have a narrower ACR and it is increasingly difficult to stably avoid both spalling and flaking.

【0006】前述したように、缶体素材の極薄化と並ぶ
最近の技術進歩に、缶胴板への塗装・印刷焼き付け法の
変更がある。すなわち、従来は、シート塗装(広幅シー
トによる4〜6条×5〜6列取り)ののち、加熱オーブ
ンにより焼き付ける( 190〜210℃で10〜20分の高温長
時間処理)工程によるものであった。これに代わって開
発されたのがフィルムラミネート法である。この方法
は、予めグラビア印刷したフィルムを缶外面側に、同時
に無地の透明フィルムを缶内面側に、それぞれラミネー
ト( 160〜220 ℃で1分程度の短時間処理)するもの
で、美粧性を付与するとともに、内容物のフレーバー性
をも確保できるという利点がある。鋼板へのラミネート
は、シーム溶接の予定部を残して行われるので、溶接予
定部(スリット材の幅端縁)では金属が露出した状態に
なっている。この方法については、例えば、特開平5-31
868 号公報に、缶胴ブランク材料を巻き付けたコイルか
ら、連続して供給される長尺の缶胴ブランク材料(1缶
の円周長さに相当する幅狭コイル)の両面に、溶接部に
相当する両端縁に金属Crの露出部を残して、フィルムを
熱圧着する方式が開示されている。
[0006] As described above, recent technological advances along with the extremely thinning of the can body material include a change in the method of painting and printing on the can body plate. That is, conventionally, after a sheet is coated (4 to 6 rows × 5 to 6 rows with a wide sheet), it is baked by a heating oven (a high temperature and long time treatment at 190 to 210 ° C. for 10 to 20 minutes). Was. An alternative to this was the film lamination method. In this method, a gravure-printed film is laminated on the outer surface of the can at the same time, and a plain transparent film is laminated on the inner surface of the can at the same time. In addition, there is an advantage that the flavor of the contents can be secured. Since the lamination to the steel plate is performed while leaving a portion to be seam-welded, the metal is exposed at the portion to be welded (the width edge of the slit material). This method is described in, for example,
In the publication No. 868, from the coil wrapped with the can body blank material, both sides of the long can body blank material (narrow coil corresponding to the circumferential length of one can) supplied continuously are welded to both sides. A method of thermocompression bonding a film while leaving exposed portions of metal Cr at corresponding end edges is disclosed.

【0007】このフィルムラミネート法は、加熱オーブ
ンを使わないので環境に優しいのみでなく、高速通板が
可能であり、多色の場合でも1回の通板で仕上がり、版
替えはフィルムの取り替えだけでよく、しかも短時間加
熱で缶胴板への印刷ができるので、溶接機とフィルムラ
ミネートラインを直結でき、より生産性の向上が期待さ
れる技術である。
[0007] This film laminating method is not only environmentally friendly because it does not use a heating oven, it is also capable of high-speed passing, and even in the case of multiple colors, it can be finished with one passing and the plate change is only for film replacement. In addition, since printing on the can body plate can be performed by heating for a short time, the welding machine can be directly connected to the film laminating line, and this is a technology expected to further improve productivity.

【0008】[0008]

【発明が解決しようとする課題】しかし、これら最近の
技術を採用して高効率で生産性の高い生産方式を採用し
た場合でも、何らかの欠陥をもつ不良缶が発生したとき
には、操業中での素材の入れ替えや、ラインの修理等に
よる操業停止を招き、期待される効果が十分に発揮され
なくなる。したがって、新しい生産方式では、とりわけ
不良品発生のトラブルを避けることが一層重要になって
くる。
However, even if a high-efficiency and high-productivity production system is adopted by employing these recent technologies, when a defective can having some defect occurs, the material in operation is not treated. The operation will be stopped due to replacement of the line or the repair of the line, and the expected effect will not be sufficiently exhibited. Therefore, in the new production system, it is particularly important to avoid troubles of defective products.

【0009】ところが、現実には、上述した最近の技術
を採用して、板厚0.20mm以下の高強度極薄鋼板の表面
にフィルムをラミネートして高速溶接を行った場合に、
操業開始後数時間程度経過すると、溶接部強度が不足す
る、いわゆる溶接不良が発生しやすくなる。また、缶胴
の外面や内面にすり疵等の外観不良缶が発生するという
問題もおこる。このような不良缶は、溶接速度の増加に
伴って頻発するという傾向もみられた。なお、ラミネー
ト缶の中でも鋼帯長手方向を円筒体の軸方向として円筒
成形する方法は、溶接のための非ラミネート部がスリッ
トコイルの板幅端部に位置するため、ラミネート処理が
容易で生産性が高い。しかし、素材鋼板の幅方向の降伏
強度が一般に高いため、円筒成形に際してのスプリング
バックが大きい。このため、溶接部の重ね代の幅が安定
せず、より溶接不良が発生し易く、問題となっている。
However, in reality, when the above-mentioned recent technology is adopted and a film is laminated on a surface of a high-strength ultra-thin steel sheet having a thickness of 0.20 mm or less and high-speed welding is performed,
About several hours after the start of the operation, the strength of the welded portion is insufficient, so-called poor welding is likely to occur. In addition, there is also a problem that a poor appearance can occur such as abrasion on the outer surface and the inner surface of the can body. There was also a tendency that such defective cans frequently occur as the welding speed increases. Among the laminated cans, the method of cylindrically forming the steel strip in the longitudinal direction with the longitudinal direction of the steel strip as the axial direction of the cylindrical body is such that the non-laminated part for welding is located at the end of the slit coil width, so that the laminating process is easy and the productivity is high. Is high. However, since the yield strength in the width direction of the material steel plate is generally high, the springback during cylindrical forming is large. For this reason, the width of the overlap margin of the welded portion is not stable, and welding defects are more likely to occur, which is a problem.

【0010】そこで、本発明の主たる目的は、従来技術
が抱えていたこのような問題を解決することにあり、フ
ィルムをラミネートした溶接缶用鋼板をシーム溶接して
缶胴とする場合に、ACR(溶接時に散りや拡缶試験で
の溶接剥がれが生じない健全なナゲットが形成される溶
接可能範囲)が大きく、高速で溶接を行っても溶接不良
の発生がなく、かつすり疵などによる外観不良缶を発生
することがないフィルムラミネート溶接缶用鋼板を提供
することにある。
Accordingly, a main object of the present invention is to solve such a problem in the prior art, and when a steel plate for a welding can laminated with a film is seam-welded to form a can body, the ACR is used. (The weldable range in which a sound nugget is formed without spattering during welding and no peeling during welding test) is large, and no welding failure occurs even when welding at high speed, and appearance defects due to flaws etc. An object of the present invention is to provide a steel plate for a film-laminated welding can that does not generate a can.

【0011】[0011]

【課題を解決するための手段】発明者らは、上記の課題
を実現するため鋭意研究した結果、従来着目されていな
かった溶接時のスパーク挙動が溶接不良およびすり疵の
発生に影響しており、このスパーク挙動を適正化するた
めには金属すずおよび合金化すずの量、さらには鋼板の
表面粗さを適正に制御する必要があることを突き止め
た。また、フィルムラミネート法におけるラミネート処
理条件が従来の印刷塗装焼付条件と異なるために、金属
すずおよび合金化すずの量がスパーク発生に不利な領域
内になり易いことを見出した。すなわち、本発明は、鋼
板の少なくとも一方の表面にすずめっき層が形成され、
その上層に有機樹脂フィルムからなるフィルムラミネー
ト層を有する溶接缶用鋼板であって、前記鋼板の平均表
面粗さRaが 0.2〜0.4 μmであり、前記すずめっき層に
は、金属すずが 200〜600 mg/m2 、かつ合金すずが 400
〜1500 mg/m2の範囲で含まれることを特徴とするフィル
ムラミネート溶接缶用鋼板である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above-mentioned problems, and as a result, the spark behavior at the time of welding, which has not received much attention, has affected welding defects and flaws. It has been found that in order to optimize the sparking behavior, it is necessary to appropriately control the amounts of metal tin and alloying tin and the surface roughness of the steel sheet. In addition, it has been found that since the laminating conditions in the film laminating method are different from the conventional printing and baking conditions, the amounts of tin metal and tin alloy are likely to be in a region disadvantageous to spark generation. That is, in the present invention, a tin plating layer is formed on at least one surface of the steel sheet,
A steel plate for a welding can having a film laminate layer comprising an organic resin film as an upper layer, wherein the steel plate has an average surface roughness Ra of 0.2 to 0.4 μm, and the tin plating layer has a metal tin of 200 to 600 μm. mg / m 2 and alloy tin 400
A steel sheet for a film-laminated welded can, characterized in that the steel sheet is contained in a range of up to 1500 mg / m 2 .

【0012】なお、上記発明において、平均表面粗さは
0.28〜0.38μm、金属すず量は250超〜500 mg/m2
満、また、合金すず量は 550超〜1100 mg/m2がとくに好
ましい範囲である。また、上記発明においては、とりわ
け、鋼板の表面に、Niの下地めっき層があり、その上層
にリフロー処理したすずめっき層、さらにその上層にク
ロメート層が形成された層構成が好適である。なお、本
発明における鋼板の平均表面粗さは、すずめっき直前に
おける素材表面の値をさす。したがって、Niめっきを行
った場合には、Niめっき後の状態(Niめっき後に拡散処
理を行った場合には拡散処理後の状態)での値である。
In the above invention, the average surface roughness is
A particularly preferable range is 0.28 to 0.38 μm, the amount of metallic tin is more than 250 to less than 500 mg / m 2 , and the amount of alloy tin is more than 550 to 1100 mg / m 2 . Further, in the above invention, it is particularly preferable to adopt a layer configuration in which a Ni base plating layer is formed on the surface of the steel sheet, a reflow-processed tin plating layer is formed thereon, and a chromate layer is further formed thereon. In addition, the average surface roughness of the steel sheet in the present invention refers to the value of the material surface immediately before tin plating. Therefore, when Ni plating is performed, the value is in a state after Ni plating (when diffusion processing is performed after Ni plating, a state after diffusion processing).

【0013】[0013]

【発明の実施の形態】はじめに、本発明を開発する端緒
となった研究結果について説明する。板厚0.150 mmの冷
間圧延鋼板に、Ni量80±20mg/m2 でNiめっき後、68
0 ℃の連続焼鈍によりNi拡散処理するか、Ni量200 mg
/m2 でNiめっき後、拡散処理することなく、調質圧延
機で表面粗さRaを約0.3 μm、調質度をT5に調整し
た。次いで、すず目付量1340mg/m2 で平坦に電析させ
た後、直ちに溶すず合金化熱処理(リフロー処理; 230
〜280 ℃に昇温後1秒以内に50〜80℃の水槽に投入)を
施した。さらにその上層に、金属Cr量8mg/m2 、酸化
Cr量6mg/m2 のめっきを行い、薄すず目付鋼板とし
た。このリフロー処理工程で、昇温から水冷までの時間
と到達温度を制御することにより、すずの合金化量と、
金属すず量を種々の範囲に調整した。このめっき鋼板
に、 (1)従来のシートコート法( 210℃×20分)で、ま
た (2)缶内面には無地のPETフィルムを、缶外面には
事前に印刷を施したPETフィルムをそれぞれラミネー
トし、加熱炉( 220℃×1分)で焼き付けたフィルムラ
ミネート法で、それぞれ溶接缶用鋼板に仕上げた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a description will be given of the research results that led to the development of the present invention. After Ni plating on a cold rolled steel sheet with a thickness of 0.150 mm at a nickel content of 80 ± 20 mg / m 2 ,
Ni diffusion treatment by continuous annealing at 0 ℃ or Ni amount 200 mg
After Ni plating at / m 2 , the surface roughness Ra was adjusted to about 0.3 μm and the degree of temper was adjusted to T5 by a temper rolling mill without performing a diffusion treatment. Next, after flattening electrodeposition with a tin basis weight of 1340 mg / m 2 , a tin alloying heat treatment (reflow treatment;
The temperature was raised to 280 ° C., and then put into a water tank at 50 to 80 ° C. within 1 second after heating. Furthermore, on the upper layer, the amount of metallic Cr is 8 mg / m 2 ,
Plating was performed at a Cr content of 6 mg / m 2 to obtain a thin tinned steel sheet. In this reflow process, by controlling the time from temperature increase to water cooling and the temperature reached, the alloying amount of tin,
The amount of metal tin was adjusted to various ranges. This plated steel sheet is coated with (1) a conventional sheet coating method (210 ° C x 20 minutes), (2) a plain PET film on the inner surface of the can, and a pre-printed PET film on the outer surface of the can. They were laminated and baked in a heating furnace (220 ° C. × 1 minute) to form steel plates for welding cans, respectively, by a film lamination method.

【0014】これらの溶接缶用鋼板を、缶単位の大きさ
にスリット加工後、溶接速度(銅線送り速度)を 120m
/分とする超高速で連続製缶操業を行い、缶胴めっき面
への疵付性、溶接不良缶の発生状況を詳細に調べた。な
お、缶成形の方向は、鋼帯長手方向を円筒体の軸方向と
した (以下同じ) 。その結果、従来のシートコート法で
仕上げた缶用鋼板では、時間が経過しても溶接不良缶は
発生しなかった。一方、疵は印刷面が硬質のため目立ち
にくいが、よく観察すると、時間の経過とともに発生が
見られた。これに対し、フィルムラミネート法で仕上げ
たものの中には、連続操業時間の経過に従って、検査選
別器で溶接不良缶として自動的に除去されるものが発生
した。また、缶胴めっき面に疵が現れ、早いものでは数
時間で発生するものもあった。
[0014] After slitting these steel plates for cans to the size of a can unit, the welding speed (copper wire feed speed) is set to 120 m.
Per minute, the operation of continuous can production was carried out at an ultra-high speed, and the flaws on the plating surface of the can body and the occurrence of defective welding cans were examined in detail. The direction of can forming was set such that the longitudinal direction of the steel strip was the axial direction of the cylindrical body (the same applies hereinafter). As a result, in the steel sheet for cans finished by the conventional sheet coating method, no poorly welded can was generated even after the passage of time. On the other hand, flaws are hardly conspicuous due to the rigidity of the printed surface, but when closely observed, the flaws were observed over time. On the other hand, some of those finished by the film laminating method were automatically removed as defective welding cans by the inspection and sorting device as the continuous operation time passed. In addition, flaws appeared on the plating surface of the can body, and some were generated within several hours at an early stage.

【0015】発明者らは、疵付の発生原因を追求するた
めに、疵付缶の表面、溶接機とその周辺の状況を詳細に
観察した。その結果以下の事実を確認した。 ・フィルムラミネートラインをめっき無地面(めっき・
溶すず処理後ラミネート前の鋼板)で搬送される鋼板端
部に、すずの塊が付着していて、これが疵の原因と関係
があるらしいこと。 ・溶接不良缶として除去された缶を観察、分析・断面顕
微鏡観察等で詳細に調べると、大部分の場合、溶接の接
合ラップ部にすずの塊が挟まれていること。 (なお、少
数ながらすずに代わり鉄主体の塊が挟まれているものも
あった) ・溶接機の電極輪周辺を詳細に観察すると、Zバーやシ
リンダーの周辺に白い粉末が見られ、その中には除去缶
で確認されたものと同じ大きさの白い塊 (錫の塊) が付
着しており、この塊が何らかの理由で落下して、溶接接
合部に付着したときに溶接不良缶になること。なお、Z
バーとは、溶接する両端部を電極輪の位置まで誘導する
ための、断面が略Z字型のガイド棒で、その先端は電極
輪付近まで伸びている。
The present inventors have observed the surface of the flawed can, the welding machine and its surroundings in detail in order to pursue the cause of flawing. As a result, the following facts were confirmed.・ Plating film laminating line with no ground (plating
It seems that tin clumps adhere to the end of the steel sheet conveyed by the unmelted tin sheet and before lamination), which seems to be related to the cause of the flaw. -When the cans removed as defective welding cans are examined in detail by observation, analysis, cross-sectional microscopic observation, etc., in most cases, tin clumps are caught in the welding lap. (In addition, a small number of tin-based masses were sandwiched instead of tin.)-When closely observing the vicinity of the electrode wheel of the welding machine, white powder was found around the Z bar and cylinder. Has a white lump (tin lump) of the same size as that found in the removal can, which falls for some reason and becomes a poorly welded can when it adheres to the weld joint thing. Note that Z
The bar is a guide rod having a substantially Z-shaped cross section for guiding both ends to be welded to the position of the electrode wheel, and its tip extends to the vicinity of the electrode wheel.

【0016】そこで、すず目付量とリフロー処理条件を
種々の範囲で変化させ、上記と同様のフィルムラミネー
ト法で製造した缶用鋼板について、溶接前の鋼板の金属
すず量と不良缶発生傾向との関係を調査した。その結果
を図1に示す。図1から、不良缶を発生させないために
は、金属すず量を 200〜600 mg/m2、好ましくは 250
超〜500 未満mg/m2 の範囲にすることが必要であるこ
とがわかる。200 mg/m2 以下の範囲ではACRの範囲
外(強溶接)となり十分な溶接部が得られなくなるとと
もに、ちりが多発した。一方、600 mg/m2 を超えると
溶接不良缶が多発する。以下に述べる調査により、溶接
不良缶発生の原因は、600 mg/m2 を超えるすず量にな
るとスパーク発生が著しくなり、スパークにより飛散し
た主にすずからなる粒子がZバー等に積もって塊まりと
なり、自重に耐えられなくなり、操業中の振動によって
溶接接合部に落下して付着する結果、溶接が不十分とな
ることによることを知見した。
Therefore, the tin weight and the reflow treatment conditions were changed in various ranges, and for the steel sheet for cans manufactured by the same film laminating method as described above, the relationship between the metal tin amount of the steel sheet before welding and the tendency of defective cans was observed. The relationship was investigated. The result is shown in FIG. From FIG. 1, in order to prevent the generation of defective cans, the amount of metal tin is set to 200 to 600 mg / m 2 , preferably 250 mg / m 2 .
It can be seen that it is necessary to make the range of super-less than 500 mg / m 2 . In the range of 200 mg / m 2 or less, the ACR was out of the range (strong welding), a sufficient welded portion could not be obtained, and dust was frequently generated. On the other hand, if it exceeds 600 mg / m 2 , defective welding cans frequently occur. According to the investigation described below, the cause of defective welding cans was that sparks became remarkable when the amount of tin exceeded 600 mg / m 2 , and particles consisting mainly of tin scattered by the sparks accumulated on Z bars and the like. It became impossible to withstand its own weight, and as a result of insufficient welding as a result of dropping and adhering to the welded joint due to vibration during operation.

【0017】缶用鋼板の抵抗溶接においては、スパー
ク、すなわち放電(短絡電流)による(溶けた)金属粒
子の飛散は従来から観測されているが、このように飛散
した粒子は赤い火の玉状をなしており、とくに溶接不良
やすり疵等の缶品質への影響はほとんど問題視されてい
ない(なお、スパークは、溶融した溶接金属が圧力によ
り飛散する散りとは異なる現象である)。しかし、本発
明者らは、上述したすずの白い塊も、スパークに起因す
るものではないかと推定し、高速度ビデオカメラで溶接
状況を撮影した。その結果、肉眼で観察できる赤い火の
玉状の粒子の他に、白い粉末状の粒子もスパークにより
飛散していることを突き止めた。これらの粒子を採取し
て分析した結果、赤い火の玉状の粒子は50〜300 μmφ
の中空球状で、鉄を主体としたものであり、一方白い粉
末状の粒子は、大きさが30μmφ以下の球状で、すずを
主体としたものであることが分かった。鉄主体の火の玉
状のスパーク粒子は飛散距離も大きく、多くは溶接機の
床に散在するため、電極輪周辺にはあまり付着せず、そ
のため従来あまり問題とされなかったのである。ただ
し、今回の調査では溶接不良の原因となっているものが
若干例見られ、必ずしも問題がないわけではないことが
分かった。これは、鉄スパーク中にも多少すずが混在し
ており、この付着性の高いすずのために鉄スパークも部
分的に電極輪周辺に付着するためと思われる。一方、す
ず主体の白い粉末状のスパーク粒子はZバー等、電極輪
周辺に多く付着しており、その結果、堆積して塊状にま
で成長しているものもあった。このような塊が振動や自
重により落下し、その落下位置が溶接予定部である場合
に溶接を阻害し、溶接不良をもたらすものであると考え
られた。
In resistance welding of steel sheets for cans, sparks, that is, scattering of (melted) metal particles due to electric discharge (short-circuit current) have been conventionally observed, but the particles thus dispersed form a red fireball. In particular, the effect on the quality of the can, such as poor welding and flaws, is hardly considered as a problem (spark is a phenomenon different from scattering in which molten weld metal is scattered by pressure). However, the present inventors presumed that the above-mentioned white chunk of tin was also caused by sparks, and photographed the welding situation with a high-speed video camera. As a result, in addition to the red fireball-shaped particles that can be observed with the naked eye, it was found that white powdery particles were also scattered by the spark. As a result of collecting and analyzing these particles, red fireball-shaped particles were 50 to 300 μmφ.
It was found that the white powdery particles were spherical, having a size of 30 μmφ or less, and mainly composed of tin. The spark particles in the form of fireballs mainly composed of iron have a long scattering distance, and since most of them are scattered on the floor of the welding machine, they do not adhere so much around the electrode wheels, and thus have not been a serious problem in the past. However, in this survey, some of the causes of poor welding were found, and it was found that there was no problem. This is presumably because some tin is mixed in the iron spark, and due to the high adhesion of the tin, the iron spark also partially adheres around the electrode wheel. On the other hand, white powdery spark particles mainly composed of tin adhered to the periphery of the electrode wheel, such as Z bars, and as a result, some particles were deposited and grown to a mass. It was considered that such a lump dropped due to vibration or its own weight, and when the drop position was a portion to be welded, it hindered welding and resulted in poor welding.

【0018】無地面(めっき後ラミネート前の鋼板)へ
の疵つきが金属すず量が多くなると増加した理由も、こ
れらのスパークによるものと考えられた。すなわち、従
来もスパーク粒子の一部が缶体にも付着していたと推測
されるが、塗装印刷後の鋼板(表面は比較的硬質)であ
るため、目立つような疵が発生しなかったものと考えら
れる。一方、ラミネート缶の場合は表面に軟質な金属す
ずが相当量存在するため、疵が深く、かつ太くなり、概
観上問題となるレベルのすり疵等となったものと思われ
る。なお、ラミネート缶の製造工程においては、フィル
ムラミネーター入側にて素材鋼板であるスリット板を板
送りするに際して超硬プレート上を搬送されることが多
く、これもラミネート缶において疵発生が顕著となる一
因と思われる。
It is considered that the reason why the scratches on the groundless surface (steel sheet after plating and before lamination) increased as the amount of metal tin increased was due to these sparks. That is, although it is assumed that a part of the spark particles had also adhered to the can body in the past, since the steel plate was painted and printed (the surface was relatively hard), no noticeable flaw was generated. Conceivable. On the other hand, in the case of the laminated can, since a considerable amount of soft metal tin is present on the surface, the flaws become deep and thick, and it is considered that the flaws have a level of scratches that may be a problem in appearance. In the manufacturing process of the laminated can, in many cases, a slit plate, which is a material steel plate, is conveyed on a cemented carbide plate at the time of feeding the steel plate on the entrance side of the film laminator. It seems to be a factor.

【0019】このような原因による不良缶を発生させな
いためには、スパークの発生、とくにすず主体の白いス
パーク粒子の発生を少なくする必要がある。このために
は、既に述べたように金属すずの量の適正化が重要であ
るが、発明者らの調査により、さらに合金化すずの量お
よび表面粗さの適正化も必要であることがわかった。ま
ず、金属すずの量については、既に図1を示して述べた
ように、上限を600mg/m2以下とすることが必要であ
る。600 mg/m2以下では溶接不良・すり疵ともあまり発
生しないが、600 mg/m2を超えると、すず主体の白いス
パークが多量に発生し、溶接不良およびすり疵の発生が
増加する。また、表面の金属すず量の増加に伴う表面軟
質化によっても、すり疵が増加する。なお、図1に示す
如く、金属すずの量を500 mg/m2未満とすることによ
り、溶接不良およびすり疵の発生をほぼ零とすることが
できる。なお、金属すずの量は200 mg/m2以上は必要で
ある。金属すず量が200 mg/m2以上では溶接不良の発生
はかなり少ないが、200 mg/m2未満になると、電極輪と
の接触面積が小さく、溶接電流が局部集中するため、A
CRが小さくなり、溶接不良が多発する。とくに溶接発
熱での軟質化の程度が小さい場合には、電極輪とのなじ
みが悪くなり、接触面積が一層小さくなるので悪影響が
大きい。また、金属すず量が少なすぎると、溶接発熱の
うち缶体自体が持ち去る熱量が少なくなり、溶接機が高
温となり、電気抵抗(固有抵抗)が大きくなるため、こ
の点からも溶接性は低下する。なお、金属すず量を250
mg/m2超えとすることにより、溶接不良の発生はほぼ零
となる。よって、金属すずの量は200 mg/m2〜600 mg/
m2の範囲とし、好ましい上限は500 mg/m2未満、また好
ましい下限は250 mg/m2超えとする。
In order to prevent the occurrence of defective cans due to such causes, it is necessary to reduce the generation of sparks, especially the generation of white spark particles mainly composed of tin. For this purpose, as described above, it is important to optimize the amount of metallic tin. However, investigations by the inventors have revealed that it is necessary to further optimize the amount of alloying tin and the surface roughness. First, it is necessary to set the upper limit of the amount of metallic tin to 600 mg / m 2 or less, as already shown in FIG. At 600 mg / m 2 or less, poor welding and flaws do not often occur, but at more than 600 mg / m 2 , a large amount of tin-based white sparks are generated, and the occurrence of poor welding and flaws increases. In addition, the number of scratches increases due to the surface softening accompanying an increase in the amount of metal tin on the surface. As shown in FIG. 1, by setting the amount of metal tin to less than 500 mg / m 2 , the occurrence of poor welding and flaws can be reduced to almost zero. It is necessary that the amount of metallic tin be 200 mg / m 2 or more. When the amount of metal tin is 200 mg / m 2 or more, the occurrence of poor welding is considerably small. However, when the amount of metal tin is less than 200 mg / m 2 , the contact area with the electrode ring is small and the welding current is locally concentrated.
CR becomes small and poor welding occurs frequently. In particular, when the degree of softening due to welding heat is small, the adaptation to the electrode ring becomes poor, and the contact area is further reduced, so that the adverse effect is large. On the other hand, if the amount of metal tin is too small, the amount of heat generated by the can body itself during welding becomes small, the temperature of the welding machine increases, and the electrical resistance (specific resistance) increases. . In addition, metal tin amount is 250
By setting it to be over mg / m 2 , the occurrence of poor welding becomes almost zero. Therefore, the amount of metallic tin is 200 mg / m 2 -600 mg /
m 2 , with a preferred upper limit of less than 500 mg / m 2 and a preferred lower limit of more than 250 mg / m 2 .

【0020】なお、図1において、ACR要因の溶接不
良の「多い」は10%程度、「少ない」は1%程度、「か
なり少ない」は 0.2%程度の発生を指し、「無し」は発
生率が 0.1%を下回ることを指す。また、スパーク要因
の溶接不良はほぼ同等の経時効果評価で代用し、Zバー
等の手入れ(スパーク粒子除去)作業を必要とするまで
の操業時間について、「多い」は30分程度、「少ない」
は120 分程度、「かなり少ない」は240 分程度を指すも
のとし、「無し」は300 分を超える操業でも手入れを必
要としない程度とした。また、すり疵については、目視
で一見して疵が分かる程度に多いものを「多い」、多少
探すことで発見できる程度を「少ない」、肉眼では容易
に分からない程度以下のものを「無し」とした。
In FIG. 1, "large" indicates about 10%, "small" indicates about 1%, and "quitely small" indicates about 0.2% of welding defects due to the ACR factor. Is less than 0.1%. In addition, welding failures caused by sparks are substituted by almost the same aging effect evaluation. Regarding the operation time until maintenance work (removal of spark particles) such as Z-bar is required, "large" is about 30 minutes and "less".
Means about 120 minutes, "very little" means about 240 minutes, and "none" means that no operation requires maintenance even if it exceeds 300 minutes. In addition, as for the scratches, “a lot” is such that the flaws can be seen at a glance visually, “small” the degree that can be found by searching a little, and “none” if it is not easily understood by the naked eye. And

【0021】次に、合金すずの溶接性への影響につい
て、金属すずとの関係をまとめて図2に示す。◎、○、
△、×の評価基準は図1の場合と同様である。合金すず
は、金属すずほど敏感に影響しないものの、やはり多量
に存在するとすず含有スパークの発生が増加し、溶接不
良を発生させ易くする。このため、合金すずの量の上限
を1500mg/m2とする。1500mg/m2を超えて合金すずが存
在すると、スパーク起因の溶接不良が多発し、またすり
疵も発生し易くなる。なお、合金すずの量を1500mg/m2
以下とすると溶接不良はあまり発生しなくなり、1300mg
/m2以下でははとんど発生せず、1100mg/m2以下でほぼ
発生が零となる。一方、合金すず量が少なすぎる場合
は、ACR領域不足による溶接不良とスパークによる溶
接不良の間の金属すず量の好適範囲が狭まる傾向に有
り、やはり溶接不良が増加傾向にある。このため、合金
すず量の下限は400 mg/m2とする。なお、550mg/m2
えとすると、溶接不良の発生がほぼ零となり、とくに好
適である。なお、合金すず量が少ない場合に溶接不良が
発生し易くなる理由は、金属すずの場合と同様に溶接機
が高温となり電気抵抗が増大することが関係するものと
推測される。
Next, the effect of alloy tin on the weldability is shown in FIG. ◎, ○,
The evaluation criteria for Δ and × are the same as those in FIG. Although alloy tin does not have the same effect as metal tin as sensitively, the presence of a large amount of tin increases the occurrence of tin-containing sparks and tends to cause poor welding. For this reason, the upper limit of the amount of alloy tin is set to 1500 mg / m 2 . If alloy tin is present in an amount exceeding 1500 mg / m 2 , spark-induced welding failures frequently occur, and flaws easily occur. In addition, the amount of alloy tin was 1500 mg / m 2
If it is less than 1, welding failure will not occur much, 1300 mg
/ M 2 in the following without the flying etc. occurs, occurs almost at 1100 mg / m 2 or less is zero. On the other hand, if the alloy tin amount is too small, the suitable range of the metal tin amount between the welding failure due to the shortage of the ACR region and the welding failure due to the spark tends to narrow, and the welding failure also tends to increase. For this reason, the lower limit of the amount of alloy tin is set to 400 mg / m 2 . In addition, when it exceeds 550 mg / m 2 , the occurrence of poor welding becomes almost zero, which is particularly preferable. It is presumed that the reason why welding defects easily occur when the amount of alloy tin is small is related to the fact that the temperature of the welding machine becomes high and the electrical resistance increases as in the case of metal tin.

【0022】めっき中の金属すずの量と合金すずの量を
上記の適性範囲に制御するには、すずめつき後のリフロ
ー処理の条件を主として調整すればよい。とくに、印刷
塗装処理に比べてラミネート処理は低温あるいは短時間
となることが多く、すずの合金化が進行しにくいことを
考慮し、塗装処理材に比べて金属すずを少なめに調整
し、ラミネート処理後に適正量が残るようにすることが
好ましい。よって、合金すずの量は400 〜1500mg/m2
範囲とし、好ましい上限は1300mg/m2、より好ましくは
1100mg/m2、また好ましい下限は550 mg/m2超えとす
る。
In order to control the amount of metal tin and the amount of alloy tin during plating within the above-mentioned appropriate ranges, the conditions of the reflow treatment after sprinkling may be adjusted mainly. In particular, the lamination process is often low temperature or short time compared to the print coating process, and considering that tin alloying is difficult to progress, adjust the metal tin slightly less than the coating material, and after lamination process It is preferable that an appropriate amount remains. Therefore, the amount of tin alloy should be in the range of 400 to 1500 mg / m 2 , with the preferred upper limit being 1300 mg / m 2 , more preferably
1100 mg / m 2 , and a preferable lower limit is more than 550 mg / m 2 .

【0023】次に、表面粗さのスパーク発生への影響
を、図3に示す。スパークの「大」は30分程度、「中」
は180 分程度での手入れを要するレベルを指し、「小」
は300分を超える操業でも手入れを必要としない程度と
した。表面粗さ(板面粗度)が0.2 μm未満の場合、す
ず主体の白いスパークが多発している。これは、低粗度
では鋼板表面積が小さくなるために相対的に金属すずの
被覆面積が増大し、すずのスパークが発生し易くなるも
のと考えられる。また、表面粗さが小さくなると、相対
的に疵が目立つため、すり疵の発生も増加する。このた
め、表面粗さは0.2 μm以上とする必要がある。なお、
表面粗さを0.2μm以上とすることによりスパークの発
生はかなり低減されるが、0.28μm以上とすると溶接不
良及びすり疵への影響がほとんど観測されないレベルま
で低減することができる。一方、表面粗さが0.4 μmを
超えると、より影響の少ない鉄スパークが主体ではある
ものの、スパークの発生が増大する。これは、接触面積
の低減により電気抵抗が増大するためと思われるが、鋼
板表面積が大きくなるために鉄の露出が生じている可能
性もある。いずれにせよ、表面粗さを 0.4μm以下とす
ることにより、スパークの発生はかなり低減される。な
お、0.38μm以下とすると溶接不良及びすり疵への影響
がほとんど観測されないレベルまで低減することができ
る。よって、表面粗さは 0.2〜0.4 μmの範囲とし、よ
り好ましい範囲は 2.8〜3.8 μmとする。
Next, the effect of surface roughness on spark generation is shown in FIG. Spark "Large" is about 30 minutes, "Medium"
Indicates a level that requires care in about 180 minutes,
Did not require maintenance for more than 300 minutes of operation. When the surface roughness (plate surface roughness) is less than 0.2 μm, tin-based white sparks occur frequently. This is presumably because the surface area of the steel sheet becomes small at a low roughness, so that the area covered with metal tin relatively increases, and tin sparks are easily generated. Further, when the surface roughness is small, the flaws are relatively conspicuous, so that the occurrence of scratches increases. Therefore, the surface roughness needs to be 0.2 μm or more. In addition,
By setting the surface roughness to 0.2 μm or more, the generation of sparks is considerably reduced. However, when the surface roughness is set to 0.28 μm or more, it is possible to reduce to a level at which little influence on poor welding and scratches is observed. On the other hand, when the surface roughness exceeds 0.4 μm, sparks increase, although iron sparks having less influence are mainly contained. This is presumably because the electrical resistance increases due to the reduction in the contact area, but there is also a possibility that iron is exposed due to the increase in the steel sheet surface area. In any case, when the surface roughness is set to 0.4 μm or less, the generation of sparks is considerably reduced. In addition, when it is 0.38 μm or less, it can be reduced to a level at which the effect on poor welding and abrasion is hardly observed. Therefore, the surface roughness is set in the range of 0.2 to 0.4 μm, and more preferably, 2.8 to 3.8 μm.

【0024】次に、この発明の缶用鋼板の製造方法の具
体例を説明する。缶用鋼板の素材としては、従来から缶
用鋼板の素材として使用されているC:0.1wt%以下の低
炭素アルミキルド連鋳鋼あるいは、C:0.004wt%以下の
極低炭素アルミキルド連鋳鋼を用いるのが好ましい。こ
の素材を常法により熱間圧延し、酸洗し、冷間圧延して
製造した冷延鋼帯を、連続焼鈍した後、潤滑油を使用し
ないドライ調質圧延(全圧下率は3%以下)を2基のス
タンドで行う。調質圧延機の前段スタンドと後段スタン
ドの圧延ロールの表面粗さを適宜調整して調質圧延す
る。ドライ調質圧延は2基のスタンドのほか、1基のス
タンドで行うことも、場合によっては3基以上のスタン
ドで行うこともできる。圧延ロールの表面粗さの形成法
は、砥石で研磨する方法、ロール表面を研磨した後に微
細な超硬質な鋼粉を高速でロールに噴射する方法、放電
ダル加工による方法、レーザーダル加工による方法等、
いずれの方式でもよい。
Next, a specific example of the method for producing a steel sheet for a can according to the present invention will be described. As the material for the steel sheet for cans, a low carbon aluminum killed continuous cast steel of C: 0.1 wt% or less or an ultra low carbon aluminum killed continuous cast steel of C: 0.004 wt% or less, which has been conventionally used as a material for can steel sheets, is used. Is preferred. This material is hot-rolled, pickled, and cold-rolled by a conventional method, and then continuously annealed to produce a cold-rolled steel strip, which is then dry-tempered without lubricating oil (total rolling reduction is 3% or less). ) Is performed on two stands. Temper rolling is performed by appropriately adjusting the surface roughness of the rolling rolls of the first and second stands of the temper rolling mill. Dry temper rolling can be performed with one stand or two or more stands, or in some cases, with three or more stands. The method of forming the surface roughness of the rolling roll is a method of polishing with a grindstone, a method of injecting fine super-hard steel powder at high speed after polishing the roll surface, a method by discharge dull processing, a method by laser dull processing etc,
Either method may be used.

【0025】本発明の缶用鋼板を製造するに当たり、よ
り一層良好な溶接性を具備させるためには、すずめっき
層のすずが島状に分布したものとすることが望ましい。
このような分布を達成するためには、すずめっきの前に
おけるめっき素材の下地処理として、Niめっきを行い、
続いてNi拡散処理を施し、さらにすずめっき後にリフロ
ー処理することが必要となる。また、耐食性の一層改善
をはかるため、上記リフロー処理を行ったすずめっき層
の上層にクロメート処理を施すことも望ましい。すなわ
ち、本発明の層構成は、鋼板の表面に、Niの下地めっき
CAL拡散層があり、その上層にリフロー処理したすず
めっき層、さらにその上層に金属Crと酸化Crからなるク
ロメート層が形成されたものがとくに好適である。上述
したように、すずめっき工程の前に、Niめっきによる下
地処理を行った場合、本発明でいう鋼板の平均表面粗さ
は、すずめっき直前の状態、すなわちNiめっき後(Niめ
っき後に拡散処理を行った場合には拡散処理後)に測定
される平均表面粗さの値をさす。
In producing the steel sheet for a can of the present invention, it is desirable that the tin of the tin plating layer be distributed in an island shape in order to further improve the weldability.
In order to achieve such a distribution, Ni plating is performed as a base treatment of the plating material before tin plating,
Subsequently, it is necessary to perform a Ni diffusion process and further perform a reflow process after the tin plating. In order to further improve the corrosion resistance, it is also desirable to perform a chromate treatment on the tin plating layer on which the reflow treatment has been performed. That is, in the layer configuration of the present invention, on the surface of the steel sheet, there is a base plating CAL diffusion layer of Ni, on which a reflow-treated tin plating layer is further formed, and further thereon, a chromate layer made of metal Cr and Cr oxide is formed. Are particularly suitable. As described above, when a base treatment by Ni plating is performed before the tin plating step, the average surface roughness of the steel sheet according to the present invention is in a state immediately before the tin plating, that is, after the Ni plating (diffusion treatment after the Ni plating). , The average surface roughness measured after the diffusion treatment).

【0026】[0026]

【実施例】次に、この本発明を実施例に基づいて、具体
的に説明する。缶用鋼板として一般的に使用されている
低炭素アルミキルド連鋳鋼または極低炭素アルミキルド
連鋳鋼を素材とし、この素材を、熱間圧延(仕上げ温度
900±30℃)し、塩酸酸洗後、冷間圧延して各種板厚の
冷延鋼帯とし、一部は連続焼鈍ライン入側でNiめっき量
が片面当たり20〜500 mg/m2 、Ni/(Ni+Fe)の重量
比が0.01〜0.30、Ni+Fe合金層の厚みが10〜4000Åの範
囲のNiめっきを施し、連続焼鈍加熱炉および均熱炉で拡
散処理を行った。焼鈍の熱サイクルは680 〜760 ℃×10
秒、雰囲気はHNXガス雰囲気(10%H2 +90%N2
とした。他の一部は、すずめっきライン入側でNiめっき
を施し、拡散処理を施さなかった。
Next, the present invention will be specifically described based on examples. Low-carbon aluminum-killed continuous cast steel or ultra-low-carbon aluminum-killed continuous cast steel, which is generally used as a steel sheet for cans, is hot-rolled (finishing temperature
900 ± 30 ° C), pickled with hydrochloric acid, cold rolled into cold-rolled steel strips of various thicknesses, and the Ni plating amount was 20 to 500 mg / m 2 per side at the continuous annealing line entry side, Ni plating was performed in a weight ratio of Ni / (Ni + Fe) of 0.01 to 0.30 and a thickness of the Ni + Fe alloy layer in a range of 10 to 4000 °, and diffusion treatment was performed in a continuous annealing heating furnace and a soaking furnace. Thermal cycle of annealing is 680 ~ 760 ° C × 10
Second, HNX gas atmosphere (10% H 2 + 90% N 2 )
And The other part was plated with Ni on the entry side of the tin plating line and was not subjected to diffusion treatment.

【0027】これらの下地処理鋼板を、表面粗さをRa:
0.2 〜0.6 μmのワークロールによる調質圧延(圧延油
なし)によって、Ra:0.1 〜0.6 μmの表面粗さに調整
した。これらの鋼板に、全すず量が770 〜2100mg/m2
の範囲でめっきし、リフロー処理の温度と時間を操作し
て、合金すず量を変化させた。その際、フラックスを使
って、金属すずの形状を凸状のものも作った。引き続
き、金属Cr量が1〜30mg/m2 の範囲、酸化Cr量が1〜
30mg/m2 の範囲でクロメート処理を行った。次に、ラ
ミネート処理をした。ラミネートの処理条件は、PET
フィルムをラミネート後、すずの融点より低温(190 〜
230 ℃)で1分以下の加熱とした。なお、缶外面用のフ
ィルムには事前に印刷を施し、内面用には無地のままラ
ミネートを行った。
The surface-treated steel sheets were made to have a surface roughness Ra:
The surface roughness was adjusted to Ra: 0.1 to 0.6 μm by temper rolling (without rolling oil) using a work roll of 0.2 to 0.6 μm. These steel sheets have a total tin content of 770-2100 mg / m 2.
, And the amount and tin of alloy were changed by controlling the temperature and time of the reflow treatment. At that time, the shape of the metal tin was made convex using a flux. Subsequently, the amount of metallic Cr was in the range of 1 to 30 mg / m 2 , and the amount of Cr oxide was 1 to 30 mg / m 2 .
Chromate treatment was performed in the range of 30 mg / m 2 . Next, a lamination process was performed. Lamination processing conditions are PET
After laminating the film, the temperature is lower than the melting point of tin (190 ~
(230 ° C) for 1 minute or less. The film for the outer surface of the can was printed in advance, and the film for the inner surface was laminated without any solid color.

【0028】Niめっき、すずめっきに用いた各めっき
浴、リフローおよびクロメート処理の各条件は以下のと
おりである。
The respective plating baths used for Ni plating and tin plating, and the respective conditions of reflow and chromate treatment are as follows.

【0029】得られた供試材から、分析サンプルを採取
し、全すず量;蛍光X線法、金属すず量;電解剥離法、
合金すず量=全すず量−金属すず量、Ni量;蛍光X線
法、金属Cr量;電解剥離法、全Cr量;蛍光X線法、酸化
Cr量=全Cr量−金属Cr量の各方法により求めた。また、
ラミネートラインでの無地素材表面への疵付を調査し評
価した。さらに、銅ワイヤー型・電気抵抗加熱シーム溶
接機(商用機)を用いて下記条件でn数1000個の溶接を
行い、溶接部へのスパーク粒子の落下、付着による溶接
不良缶の発生状況を調査するとともに、溶接後に190 g
飲料缶胴について2段ネックイン加工→フランジ加工後
の割れ発生状況を調査し、高速溶接性を評価した。ま
た、散りが発生しない上限電流値とピール溶接強度(溶
接部の一端に切り込みを入れ、溶接部を缶胴から引き剥
がすピールテストにより、溶接部の全長が引きちぎれる
ものが強度が十分と判定、引き剥がしの途中で接合面が
剥離する場合を強度不十分と判定する)が得られる下限
電流値の差を溶接可能範囲ACRとして求めた。この値
が5A以上、好ましくは6A以上あれば高速溶接の工程
化が可能であるとして判断し、溶接性を評価した。な
お、ピールテストにおいて、切り込みを入れる前に、缶
の内外面を肉眼観察してスパーク塊の付着による溶接不
良缶の評価および、疵付性も確認した。
From the obtained test material, an analysis sample was collected, and the total amount of tin; X-ray fluorescence method, the amount of metallic tin;
Alloy tin amount = total tin amount-metal tin amount, Ni amount; fluorescent X-ray method, metal Cr amount; electrolytic peeling method, total Cr amount; fluorescent X-ray method, oxidation
Cr content = total Cr content-metal Cr content was determined by each method. Also,
The flaws on the plain material surface in the laminating line were investigated and evaluated. In addition, using a copper wire type electric resistance heating seam welder (commercial machine), welding of n number of 1000 pieces under the following conditions, and investigating the occurrence of defective welding cans due to the drop and adhesion of spark particles to the welded part And after welding 190 g
A two-stage neck-in process was performed on the beverage can body, and the occurrence of cracks after the flange process was investigated to evaluate high-speed weldability. In addition, the upper limit current value that does not cause scattering and the peel welding strength (peel test in which a cut is made at one end of the welded part and the welded part is peeled off from the can body, it is determined that the one that can tear the entire length of the welded part has sufficient strength, (A case where the joint surface peels off during the peeling is determined to be insufficient strength)) is obtained as the weldable range ACR. When this value was 5 A or more, preferably 6 A or more, it was determined that the high-speed welding process was possible, and the weldability was evaluated. In addition, in the peel test, before making a cut, the inner and outer surfaces of the can were visually observed, and the evaluation of the poor welding can due to the adhesion of the spark mass and the flaw resistance were also confirmed.

【0030】これらの調査結果を総合的に評価して、疵
付性および溶接不良缶発生について評価した。庇付性
は、図1と同様の基準で無地面および缶内外面を評価
し、いずれかで「多い」判定となったものを×、「多
い」はないがいずれかで「少ない」判定となったものを
○、全て「無し」判定となったものを◎とした。また、
溶接不良缶については、明らかな溶接不良を有するも
の、フランジ加工に際し溶接部に割れ(剥離)が見られ
るもの、ピールテストにおいて溶接部のスパークによる
塊によると思われるピール不良が発生するもののいずれ
も×と評価した。また、品質上の問題は示さなかった
が、溶接部にスパークによる粒子の付着が明らかに認め
られるものは長時間使用を考慮し○とした。これらのい
ずれにも該当しないものは◎と評価した。
The results of these investigations were comprehensively evaluated to evaluate the flaws and the occurrence of defective welding cans. The eaves coverage was evaluated based on the same criteria as in FIG. 1 on the solid ground and the inner and outer surfaces of the can. The results were evaluated as ○, and those judged as “none” were evaluated as ◎. Also,
Regarding poorly welded cans, those with obvious welding defects, those with cracks (peeling) observed in the welded part during flange processing, and those with peeling failures that appear to be due to lumps due to sparks in the welded part in the peel test X was evaluated. In addition, although there was no problem with quality, particles having sparks clearly adhering to the welded portion were marked with a circle in consideration of prolonged use. Those which did not correspond to any of these were evaluated as ◎.

【0031】溶接条件 ・缶型; 190g飲料缶胴、 350g飲料缶胴 ・銅ワイヤー径;1.3 mmφ ・通板速度;120 m/分 ・溶接圧力;40kg ・周波数 ;700 Hz ・溶接ラップ代;0.5 mm Welding conditions : Can type; 190 g drink can body, 350 g drink can body ・ Copper wire diameter: 1.3 mmφ ・ Passing speed: 120 m / min ・ Welding pressure: 40 kg ・ Frequency: 700 Hz ・ Weld wrap allowance: 0.5 mm

【0032】得られた研究結果を表1にまとめて示す。
この表から分かるように、発明例は板幅方向に巻いて円
筒にしたにもかかわらず、すべて疵付きが無く、スパー
ク塊などの付着等による溶接不良缶も無く、適正溶接電
流範囲も5A以上、好ましくは6A以上と大きく、板厚
が0.150 mmの高強度、極薄鋼板であるにもかかわらず
高速溶接を安定して行うことができる。これらの効果
は、めっき前の板面粗さと、溶接直前の金属すず量およ
び合金すず量を適切に設定したことにより得られたもの
である。これに対して、比較例のNo. 2、3では、残存
金属すず量が多いため溶接不良缶が発生し、すり疵も多
発した。No. 4、5は、逆に金属すず量が少な過ぎるた
め、散りの発生によるACRの狭域化が生じた。また、
No. 8、10では、板面粗さが小さいため、また、No.
6、9では逆に板面粗さが大きいため、疵付き性が悪
く、溶接不良缶およびすり疵の発生が見られた。また、
No. 1、7では、合金すずの量が過剰または不足し、い
ずれも溶接不良缶が発生した。
The results of the study are summarized in Table 1.
As can be seen from this table, although the invention example was wound in the plate width direction to form a cylinder, there were no flaws, no defective welding cans due to adhesion of spark lumps, etc., and the proper welding current range was 5 A or more. High-speed welding can be performed stably despite the fact that it is a high-strength ultra-thin steel sheet having a thickness of 0.150 mm, preferably as large as 6 A or more. These effects are obtained by appropriately setting the plate surface roughness before plating and the amounts of metal tin and alloy tin immediately before welding. On the other hand, in Nos. 2 and 3 of the comparative examples, since the amount of residual metal tin was large, a poorly welded can was generated, and abrasions frequently occurred. In Nos. 4 and 5, conversely, the amount of metal tin was too small, and the ACR was narrowed due to scattering. Also,
In Nos. 8 and 10, since the plate surface roughness was small,
In Nos. 6 and 9, conversely, since the plate surface roughness was large, the flawing property was poor, and poor welded cans and abrasions were observed. Also,
In Nos. 1 and 7, the amount of alloy tin was excessive or insufficient, and poor welded cans occurred in both cases.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
高速で溶接を行っても、すり疵、スパーク塊による不良
缶が発生せず、しかも、広い溶接可能範囲を有するフィ
ルムラミネート溶接缶用鋼板を提供できる。このような
効果は、より条件的に厳しい高強度、極薄鋼板の場合に
発揮され、3ピース缶の高品質、高生産性に大きく寄与
する。
As described above, according to the present invention,
Even when welding is performed at a high speed, a defective can due to abrasions and spark lumps does not occur, and a steel plate for a film laminated welding can having a wide weldable range can be provided. Such an effect is exhibited in the case of a high-strength, ultra-thin steel sheet which is more severe in conditions, and greatly contributes to high quality and high productivity of a three-piece can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】残存金属すず量が不良缶発生に及ぼす影響を示
すグラフである。
FIG. 1 is a graph showing the effect of the amount of residual tin on the occurrence of defective cans.

【図2】残存金属すず量と合金すず量と溶接性、耐錆性
などの特性との関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a residual metal tin amount, an alloy tin amount, and properties such as weldability and rust resistance.

【図3】鋼板の表面粗さが耐錆性および缶胴表面への疵
付に及ぼす影響を示すグラフである。
FIG. 3 is a graph showing the effect of the surface roughness of a steel sheet on rust resistance and flaws on the surface of a can body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 古主 泰子 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 岡崎 達之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 3E061 AA16 AB07 AB13 BA02 DA02 DB04 DB20 4K024 AA03 AA07 AB01 AB02 BA03 BB24 DA01 DB01 DB02 DB04 DB10 GA14 4K044 AA02 AB02 BA02 BA10 BA15 BB03 BC08 CA16 CA17 CA18 CA42 CA44 CA48 CA67  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideo Kukuminato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Chiba Works, Ltd. (72) Inventor Tatsuyuki Okazaki 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba F-term (reference) 3E061 AA16 AB07 AB13 BA02 DA02 DB04 DB20 4K024 AA03 AA07 AB01 AB02 BA03 BB24 DA01 DB01 DB02 DB04 DB10 GA14 4K044 AA02 AB02 BA02 BA10 BA15 BB03 BC08 CA16 CA17 CA18 CA42 CA44 CA48 CA67

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋼板の少なくとも一方の表面にすずめっき
層が形成され、その上層に有機樹脂フィルムからなるフ
ィルムラミネート層を有する溶接缶用鋼板であって、前
記鋼板の平均表面粗さRaが 0.2〜0.4 μmであり、前記
すずめっき層には、金属すずが 200〜600 mg/m2 、かつ
合金すずが 400〜1500 mg/m2の範囲で含まれることを特
徴とするフィルムラミネート溶接缶用鋼板。
A steel plate for a welding can having a tin plating layer formed on at least one surface of a steel plate and a film laminate layer formed of an organic resin film on the tin plating layer, wherein the steel plate has an average surface roughness Ra of 0.2 Wherein the tin-plated layer contains 200 to 600 mg / m 2 of metal tin and 400 to 1500 mg / m 2 of tin alloy. steel sheet.
JP03339999A 1999-02-10 1999-02-10 Steel sheet for film laminate welding can Expired - Fee Related JP3985378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03339999A JP3985378B2 (en) 1999-02-10 1999-02-10 Steel sheet for film laminate welding can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03339999A JP3985378B2 (en) 1999-02-10 1999-02-10 Steel sheet for film laminate welding can

Publications (2)

Publication Number Publication Date
JP2000234183A true JP2000234183A (en) 2000-08-29
JP3985378B2 JP3985378B2 (en) 2007-10-03

Family

ID=12385532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03339999A Expired - Fee Related JP3985378B2 (en) 1999-02-10 1999-02-10 Steel sheet for film laminate welding can

Country Status (1)

Country Link
JP (1) JP3985378B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339081A (en) * 2001-05-18 2002-11-27 Kawasaki Steel Corp Polyester resin-coated tin alloy plated steel sheet
JP2006274324A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk Method for manufacturing tin coated steel plate for welded can and method for measuring welding characteristic of tin coated steel plate for welded can
JP2010100866A (en) * 2008-10-21 2010-05-06 Jfe Steel Corp Tin plated steel sheet and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339081A (en) * 2001-05-18 2002-11-27 Kawasaki Steel Corp Polyester resin-coated tin alloy plated steel sheet
JP2006274324A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk Method for manufacturing tin coated steel plate for welded can and method for measuring welding characteristic of tin coated steel plate for welded can
JP4742641B2 (en) * 2005-03-28 2011-08-10 Jfeスチール株式会社 Manufacturing method of tinned steel sheet for welding can
JP2010100866A (en) * 2008-10-21 2010-05-06 Jfe Steel Corp Tin plated steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP3985378B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4538914B2 (en) Manufacturing method of hot-rolled steel sheet for ultra-thin steel sheet
KR960007431B1 (en) Tin mill black plate for con-making and method of manufacturing it
JP3985378B2 (en) Steel sheet for film laminate welding can
JP4211129B2 (en) Steel plate for can excellent in high-speed weldability and manufacturing method thereof
CN112589105B (en) Repairing method of cold-rolled supporting roller
JP3212136B2 (en) Can body having a welding can body
JPH04187741A (en) Steel sheet for can, its manufacture and manufacture of three-piece can
JP3183152B2 (en) Laminated steel plate for welding cans with excellent corrosion resistance, weldability and laminate adhesion
JP2687799B2 (en) Laminated steel plate for welding cans
JP3183153B2 (en) Laminated steel plate for welding cans with excellent corrosion resistance, weldability and laminate adhesion
JPH0244889B2 (en)
JP2580923B2 (en) Laminated steel sheet for welding can and method for producing the same
JP3225089B2 (en) Chrome plated steel plate for welding cans
WO2023062153A1 (en) Method for producing high-strength tinplate and tinplate produced therewith
JPS63134695A (en) Tin-free steel sheet for welded can and its production
JPH09263923A (en) Production of galvannealed steel sheet having iron-nickel-oxygen film
JP2000288628A (en) Large unit weight coil of ultra thin steel strip and its manufacture
JP3225088B2 (en) Chrome plated steel plate for welding cans
JPH09209187A (en) Surface treated steel sheet for laminate welded can excellent in corrosion resistance, weldability and laminate adhesion
JPS6146307A (en) Build-up roll and its manufacture
CN107442892A (en) A kind of method that bending roll is manufactured using technology for repairing surfacing
JP3270731B2 (en) Surface-treated steel sheet for cans excellent in weldability and method for producing welded can using the same
JPH09209172A (en) Laminated steel sheet for welded can excellent in corrosion resistance, weldability and laminate adhesion
JP2001279467A (en) Thin steel sheet for welded can
JPH0653957B2 (en) Method for manufacturing surface-treated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees