JP2000233278A - Welding device and welding method following schedule - Google Patents

Welding device and welding method following schedule

Info

Publication number
JP2000233278A
JP2000233278A JP11031901A JP3190199A JP2000233278A JP 2000233278 A JP2000233278 A JP 2000233278A JP 11031901 A JP11031901 A JP 11031901A JP 3190199 A JP3190199 A JP 3190199A JP 2000233278 A JP2000233278 A JP 2000233278A
Authority
JP
Japan
Prior art keywords
welding
groove shape
schedule
groove
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11031901A
Other languages
Japanese (ja)
Inventor
Seiichi Sato
藤 清 一 佐
Mitsuaki Otoguro
黒 盈 昭 乙
Yoshitaka Kawakami
上 善 孝 川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP11031901A priority Critical patent/JP2000233278A/en
Publication of JP2000233278A publication Critical patent/JP2000233278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically weld a groove line uniformly with uniform bead thickness by deciding a welding condition corresponding to the deviation of a groove shape detected or calculated with an interpolation method from a reference groove shape at a welding condition selection point and the point detecting a groove shape with learning. SOLUTION: By driving a welding mechanisms with an electrical device of a relay box 30, a personal computer 41 gives a welding condition to the electrical device of the relay device 30 in accordance with a welding schedule. The personal computer 41, based on the welding condition table of this time and the teaching data table of this time, corrects the respective welding condition at a welding condition selection point (the position decided by distance data of the welding condition table) in accordance with the deviation quantity of the groove shape by the detected groove shape of the corresponding position on the teaching table for a reference groove shape (a plate thickness, a route width, a groove angle) or the groove shape calculated with an interpolation method, and the corrected welding condition is written on the welding schedule table corresponding to the position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶接対象材の開先
を、コンピュ−タに設定された溶接スケジュ−ルに従っ
て溶接する自動溶接に関し、特に、これに限定する意図
ではないが、端面を突合せて連続にした2鋼管の間の開
先を、自動溶接ロボットにて鋼管を中心に溶接ト−チを
旋回させて多層盛り溶接する装置装置および溶接方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to automatic welding in which a groove of a material to be welded is welded in accordance with a welding schedule set in a computer, and in particular, though not intended to be limited to this, an end face. The present invention relates to an apparatus and a welding method for performing multi-layer welding on a groove between two steel pipes that have been butted and continuous by turning a welding torch around the steel pipes by an automatic welding robot.

【0002】[0002]

【従来の技術】溶接中に溶接条件を変更する必要がある
一連の溶接予定軌跡の溶接は、予め溶接条件切換点毎に
溶接条件を定めた溶接スケジュ−ルを作成してメモリに
登録し、溶接時には、溶接の進行に合せてメモリから順
次に溶接条件を読み出して溶接条件を切換える、メモリ
上のスケジュ−ルに従った自動溶接を行なうのが好まし
い。
2. Description of the Related Art For a series of welding trajectories in which welding conditions need to be changed during welding, a welding schedule in which welding conditions are determined in advance for each welding condition switching point is created and registered in a memory. At the time of welding, it is preferable to perform automatic welding according to a schedule in the memory, in which welding conditions are sequentially read out from a memory in accordance with the progress of welding and the welding conditions are switched.

【0003】水平面(又は垂直面)に対する開先の向き
である開先姿勢(水平,垂直,45度,××度)が溶接
予定軌跡上で変化する場合には、それに応じて溶接条件
を変更しなければならない。例えば、最も代表的な例で
は、端面を突合せて連続にした水平2鋼管の間のリング
状の開先(円周方向に延びる開先)の全周溶接では、上
向き溶接,横向き溶接および下向き溶接を連続的に行な
うことになり、周溶接中に、溶接条件の少しづつの変更
が必要となる。
When the groove attitude (horizontal, vertical, 45 degrees, xx degrees), which is the direction of the groove with respect to the horizontal plane (or vertical plane), changes on the welding expected locus, the welding conditions are changed accordingly. Must. For example, in the most typical example, in a ring-shaped groove (groove extending in a circumferential direction) between two horizontal steel pipes whose end faces are continuous with each other, a full-width welding, a horizontal welding, and a downward welding are used. Is performed continuously, and a small change in welding conditions is required during girth welding.

【0004】特開昭62−259673号公報には、水
平2鋼管の間のリング状の開先を溶接するために、全周
を8等分に区間分割して、各区間に対して、開先寸法デ
−タと今回パスにて形成しようとするビ−ド厚さを与え
て、これらに基づいて今回パスのビ−ド幅と単位長当り
の所要溶接金属量を算出し、そして算出値と指定溶接電
流に基づいて更にウィ−ビング幅と溶接速度を演算し
て、溶接電流,溶接速度およびウィ−ビング幅を溶接ス
ケジュ−ルの中の、該当区間宛ての溶接条件に定め、そ
して溶接スケジュ−ルに従って溶接を実行する、自動溶
接方法が提案されている。
Japanese Patent Application Laid-Open No. 62-259,673 discloses that in order to weld a ring-shaped groove between two horizontal steel pipes, the entire circumference is divided into eight equal sections, and each section is opened. Given the preceding dimension data and the bead thickness to be formed in the current pass, the bead width of the current pass and the required amount of weld metal per unit length are calculated based on these, and the calculated value is calculated. Further, the weaving width and the welding speed are calculated based on the specified welding current and the welding current, the welding speed and the weaving width are set as welding conditions for the corresponding section in the welding schedule, and An automatic welding method has been proposed in which welding is performed according to a schedule.

【0005】[0005]

【発明が解決しようとする課題】上述のような、水平鋼
管の全周の8分割では、1区間の間の溶接ト−チの姿勢
変化が大きいので、区間内同一溶接条件では、溶接条件
の制御が粗過ぎる。また、開先形状が溶接条件に対する
パラメ−タであるが、1区間内に1つの開先形状を与え
るのも、実際の開先形状との解離が大きいと推察され
る。したがって、固定的な大区分を外し、区分数や区間
長の設定を任意とし、かつ、開先形状も周方向に高密度
(多点)で与えて、開先線に沿っての溶接条件の制御を
細密にするのが好ましい。
In the above-described eight divisions of the entire circumference of the horizontal steel pipe, the posture of the welding torch changes greatly during one section. Control is too coarse. Further, the groove shape is a parameter for the welding conditions, but giving one groove shape in one section is presumed to have a large dissociation from the actual groove shape. Therefore, the fixed large section is removed, the number of sections and section length can be set arbitrarily, and the groove shape is given at a high density (multiple points) in the circumferential direction, and the welding conditions along the groove line can be adjusted. Preferably, the control is fine.

【0006】ところで、溶接予定軌跡(開先線)上の、
主に開先姿勢の変化に対応する、溶接条件の切換わり点
と、開先形状が与えられた点(開先形状付与点;例えば
開先形状検出点)とが同じであると、開先形状に基づい
て調整又は修正した溶接条件の信頼度は高い。しかし異
なる場合があり、その場合でも、開先形状に正しく対応
した溶接条件を設定するのが好ましい。
[0006] By the way, on the welding scheduled locus (bevel line),
If the switching point of the welding condition, which mainly corresponds to the change of the groove attitude, and the point where the groove shape is given (the groove shape giving point; for example, the groove shape detection point) are the same, the groove becomes The reliability of the welding conditions adjusted or corrected based on the shape is high. However, there are cases where the welding conditions are different, and in such a case, it is preferable to set welding conditions that properly correspond to the groove shape.

【0007】本発明は、開先をそれが延びる方向に均一
な品質で自動溶接することを第1の目的とし、連続して
姿勢が変化する開先線を、自動的かつビ−ド厚みを均一
に溶接することを第2の目的とする。
SUMMARY OF THE INVENTION It is a first object of the present invention to automatically weld a groove with uniform quality in a direction in which the groove extends, and to automatically form a groove with a continuously changing posture and reduce a bead thickness. A second object is to perform uniform welding.

【0008】[0008]

【課題を解決するための手段】(1)溶接予定軌跡(リ
ング状の開先)の複数箇所のそれぞれにおける、開先の
基準形状(表1上の板厚,ル-ト幅,開先角度)対応の溶接条
件(表1)を定めるための基準条件設定手段(40;図5);溶
接予定軌跡の複数点のそれぞれにおける開先形状(検出
形状)を入力する手段(8〜12,30);前記複数箇所の箇所
間の切換点につき、その切換点の開先形状(検出形状)が
入力されていると該切換点の基準形状(表1上の板厚,ル-
ト幅,開先角度)に対する該開先形状(検出形状)のずれに
対応して前記溶接条件(表1)を修正して溶接予定軌跡上
の位置対応で溶接スケジュ−ルに定め、その切換点の開
先形状が入力されていないと、その前後の開先形状に基
づいて補間法により該切換点の開先形状を算出して該切
換点の基準形状に対する、算出した開先形状のずれに対
応して、前記溶接条件を修正して溶接予定軌跡上の位置
対応で溶接スケジュ−ルに定める、溶接条件演算手段(4
0;図6,7);および、前記溶接スケジュ−ルに従って溶接
予定軌跡を溶接する手段(8〜12,16〜18,30);を備え
る、スケジュ−ルに従がう溶接装置。
[Means for Solving the Problems] (1) The reference shape of the groove (the plate thickness, the route width, the groove angle in Table 1) at each of a plurality of locations on the planned welding locus (ring-shaped groove) ) Reference condition setting means (40; FIG. 5) for determining the corresponding welding conditions (Table 1); means (8 to 12, 30) for inputting the groove shape (detection shape) at each of a plurality of points on the welding scheduled trajectory ); When the groove shape (detection shape) of the switching point is input for the switching point between the plurality of points, the reference shape of the switching point (the plate thickness,
The welding conditions (Table 1) are corrected in accordance with the deviation of the groove shape (detection shape) with respect to the groove width and groove angle), the welding schedule is determined corresponding to the position on the planned welding locus, and the switching is performed. If the groove shape of the point is not input, the groove shape of the switching point is calculated by interpolation based on the groove shapes before and after the point, and the calculated groove shape is shifted from the reference shape of the switching point. In response to the above, the welding conditions are corrected and the welding schedule is determined according to the position on the welding expected locus in the welding schedule.
0; FIGS. 6 and 7); and means (8 to 12, 16 to 18, 30) for welding the planned welding locus in accordance with the welding schedule.

【0009】なお、理解を容易にするためにカッコ内に
は、図面に示し後述する実施例の対応要素の符号又は対
応事項を、参考までに付記した。以下も同様である。
To facilitate understanding, reference numerals or corresponding items of the corresponding elements of the embodiment shown in the drawings and described later are added in parentheses for reference. The same applies to the following.

【0010】これによれば、溶接条件の切換点に開先形
状が与えられない場合でも、その前後の開先形状の間の
開先形状が補間法により与えられ、この開先形状の信頼
性が高く、したがって溶接スケジュ−ルの信頼性が高
い。均一な品質の自動溶接が実現する。また、開先形状
付与点(例えば開先形状検出点)を格別に多くしなくて
も、溶接条件の切換点を多くすることができると共に、
溶接条件の切換点と開先形状付与点とが同一位置となら
なくても、溶接条件の切換点の開先形状と合致する開先
形状が与えられ、信頼性が高い溶接スケジュ−ルを得る
ことができる。 (2)溶接予定軌跡の複数箇所のそれぞれにおける、開
先の基準形状対応の溶接条件を定めるための基準条件設
定手段(40;図5);溶接予定軌跡の複数点のそれぞれにお
ける開先形状を入力する手段(8〜12,30);前記複数点の
それぞれにつき、該点の開先形状の基準形状に対するず
れに対応して該点が対応する箇所の前記溶接条件を修正
して溶接予定軌跡上の該点対応で溶接スケジュ−ルに定
める溶接条件演算手段(40;図6,7);および、前記溶接ス
ケジュ−ルに従って溶接予定軌跡を溶接する手段;を備
える、スケジュ−ルに従がう溶接装置。
According to this, even when the groove shape is not given to the switching point of the welding condition, the groove shape between the preceding and following groove shapes is given by the interpolation method, and the reliability of this groove shape is improved. And therefore the reliability of the welding schedule is high. Automatic welding of uniform quality is realized. Further, it is possible to increase the number of switching points of welding conditions without increasing the number of groove shape providing points (for example, groove shape detection points).
Even if the switching point of the welding condition and the groove shape providing point are not at the same position, a groove shape that matches the groove shape of the switching point of the welding condition is given, and a highly reliable welding schedule is obtained. be able to. (2) Reference condition setting means (40; FIG. 5) for determining welding conditions corresponding to the reference shape of the groove at each of a plurality of locations on the planned welding locus; Means for inputting (8-12, 30); for each of the plurality of points, the welding conditions at the location corresponding to the point corresponding to the deviation of the groove shape of the point from the reference shape are corrected and the planned welding locus The welding schedule calculating means (40; FIGS. 6 and 7) for determining the welding schedule corresponding to the above point; and means for welding the planned welding locus in accordance with the welding schedule; U welding equipment.

【0011】これによれば、開先形状を抽出又は与えた
点に対して溶接条件が定められ、溶接スケジュ−ルは、
開先形状を抽出又は与えた点の連なりに対する溶接条件
の連なりとなり、開先形状を抽出又は与える点を任意と
することができる。溶接条件切換点を格別に多くしなく
ても、開先形状付与点(例えば開先形状検出点)を多く
して細密な溶接スケジュ−ルを得ることができる。 (3)溶接予定軌跡の複数箇所のそれぞれにおける、開
先の基準形状対応の溶接条件を定めるための基準条件設
定手段(40;図5);溶接予定軌跡の複数点のそれぞれにお
ける開先形状を入力する手段(8〜12,30);前記複数点の
それぞれにつき、該点の開先形状の、基準形状に対する
ずれに対応して該点が対応する箇所の前記溶接条件を修
正して溶接予定軌跡上の該点対応で溶接スケジュ−ルに
定め、前記複数箇所の箇所間の切換点の中の開先形状が
入力されていない切換点の前後の開先形状に基づいて補
間法により該切換点の開先形状を算出して該切換点の基
準形状に対する、算出した開先形状のずれに対応して、
前記溶接条件を修正して溶接予定軌跡上の位置対応で前
記溶接スケジュ−ルに定める溶接条件演算手段(40;図6,
7);および、前記溶接スケジュ−ルに従って溶接予定軌
跡を溶接する手段(8〜12,16〜18,30);を備える、スケ
ジュ−ルに従がう溶接装置。
According to this, welding conditions are determined for points where the groove shape is extracted or given, and the welding schedule is
A series of welding conditions for a series of points at which a groove shape is extracted or given is provided, and points at which a groove shape is extracted or given can be set arbitrarily. Even if the number of welding condition switching points is not particularly large, the number of groove shape imparting points (for example, groove shape detection points) can be increased to obtain a fine welding schedule. (3) Reference condition setting means (40; FIG. 5) for determining welding conditions corresponding to the reference shape of the groove at each of a plurality of positions on the planned welding locus; Means for inputting (8 to 12, 30); for each of the plurality of points, the welding condition is corrected by correcting the welding condition of the point corresponding to the deviation of the groove shape of the point from the reference shape. The welding schedule is determined corresponding to the point on the trajectory, and the switching is performed by interpolation based on the groove shape before and after the switching point where the groove shape among the switching points between the plurality of points is not input. Calculating the groove shape of the point, corresponding to the deviation of the calculated groove shape from the reference shape of the switching point,
Welding condition calculating means (40; FIG. 6,
7); and a means (8-12, 16-18, 30) for welding a scheduled welding locus according to the welding schedule.

【0012】これによれば、上記(1)および(2)の
作用,効果が同時に得られる。 (4)溶接予定軌跡の複数箇所のそれぞれにおける、開
先の基準形状対応の溶接条件をメモリ上に定め(図5の2,
11〜19);溶接予定軌跡の複数点のそれぞれにおいて開
先形状を検出して位置対応でメモリに書込み(図6の5);
前記複数点のそれぞれにつき、該点の開先形状の基準形
状に対するずれに対応して該点が対応する箇所の前記溶
接条件を修正して溶接予定軌跡上の該点対応でスケジュ
−ルメモリに書込み、かつ、前記複数箇所の箇所間の切
換点の中の開先形状が入力されていない切換点の前後の
開先形状に基づいて補間法により該切換点の開先形状を
算出して該切換点の基準形状に対する算出した開先形状
のずれに対応して前記溶接条件を修正して溶接予定軌跡
上の位置対応で前記スケジュ−ルメモリに書込み(図6,
図7);前記スケジュ−ルメモリ上の溶接条件に従って溶
接予定軌跡を溶接する(図4の9〜10);メモリ上のスケジ
ュ−ルに従がう溶接方法。
According to this, the functions and effects (1) and (2) can be simultaneously obtained. (4) The welding conditions corresponding to the standard shape of the groove at each of the plurality of locations on the planned welding locus are determined in the memory (2 in FIG. 5,
11 to 19); A groove shape is detected at each of a plurality of points on the planned welding trajectory, and written into the memory corresponding to the position (5 in FIG. 6);
For each of the plurality of points, the welding conditions at the location corresponding to the point are corrected in accordance with the deviation of the groove shape of the point from the reference shape, and written to the schedule memory corresponding to the point on the welding expected locus. And calculating the groove shape of the switching point by an interpolation method based on the groove shape before and after the switching point where the groove shape among the switching points between the plurality of points is not input, and performing the switching. The welding conditions are corrected in accordance with the calculated deviation of the groove shape from the reference shape of the point, and written in the schedule memory in correspondence with the position on the welding expected locus (FIG. 6,
(FIG. 7): Welding the planned welding locus according to the welding conditions on the schedule memory (9 to 10 in FIG. 4); a welding method according to the schedule on the memory.

【0013】これによれば、上記(1)および(2)の
作用,効果が同時に得られる。 (5)溶接機構は、鋼管(14)を周回するリング状のレ−
ル(10),該レ−ル(10)に装着されレ−ル(10)に沿って鋼
管(14)を周回移動する溶接台車(11),溶接台車(11)に搭
載された溶接ト−チ(12),溶接台車(11)に搭載された走
行駆動機構(2L,RL,ML)、および、該走行駆動機構を正,
逆走行駆動する駆動手段(4,3,1L)、を含む。
According to this, the functions and effects (1) and (2) can be obtained at the same time. (5) The welding mechanism is a ring-shaped laser circling the steel pipe (14).
A rail (10), a welding truck (11) mounted on the rail (10) and moving around the steel pipe (14) along the rail (10), and a welding truck mounted on the welding truck (11). (12), the traveling drive mechanism (2L, RL, ML) mounted on the welding trolley (11), and the traveling drive mechanism
Driving means (4, 3, 1L) for reverse driving.

【0014】本発明の他の目的および特徴は、図面を参
照した以下の実施例の説明より明らかになろう。
Other objects and features of the present invention will become apparent from the following description of embodiments with reference to the drawings.

【0015】[0015]

【実施例】図1に本発明の一実施例の機構の外観を示
す。端面を合せて水平に配置された右鋼管13と左鋼管
14の突合せ端面には、レ型開先(図10)が形成され
ている。左鋼管14には、それと同軸にリング状のレ−
ル10が固定されており、このレ−ル10に溶接台車1
1が装着されている。溶接台車11には、レ−ル10を
その周方向には移動自在に、水平方向xおよび半径方向
rには移動不可に保持するガイドロ−ラおよびレ−ルと
噛み合う車輪があり、該車輪は、図示しない減速機を介
して、周回駆動用の電気モ−タMyで、正,逆回転駆動
され、正回転駆動されると溶接台車11の基台は時計方
向に、逆回転駆動されると反時計方向に回動する。すな
わちレ−ル10に沿って円運動する。電気モ−タMyに
はロ−タリエンコ−ダRyが結合しておりこれが、キヤ
リッジ11の所定短距離の移動につき1パルスの電気パ
ルスを発生する。
FIG. 1 shows the appearance of a mechanism according to an embodiment of the present invention. The right steel pipe 13 and the left steel pipe 14, which are horizontally arranged with their end faces together, are formed with a groove (FIG. 10). The left steel pipe 14 has a ring-shaped laser coaxially with it.
A rail 10 is fixed.
1 is attached. The welding carriage 11 includes a guide roller and a wheel that meshes with the rail, which holds the rail 10 so as to be movable in the circumferential direction and immovable in the horizontal direction x and the radial direction r. The motor is driven forward and backward by a circular drive electric motor My via a speed reducer (not shown). When the base is driven forward and clockwise, the base of the welding carriage 11 is driven clockwise and reversely. Rotates counterclockwise. That is, a circular motion is made along the rail 10. A rotary encoder Ry is coupled to the electric motor My, which generates one electric pulse per movement of the carriage 11 over a predetermined short distance.

【0016】溶接台車11の、車輪を支持する基台には
x移動機構が結合されており、x移動駆動用の電気モ−
タMxにて該機構が駆動され、電気モ−タMxの正回転
により、溶接台車11の基台に対してx移動台19が左
移動し、逆回転により右移動する。電気モ−タMxには
ロ−タリエンコ−ダRxが結合しておりこれが、x移動
台19の所定短距離の移動につき1パルスの電気パルス
を発生する。
An x-movement mechanism is connected to a base for supporting the wheels of the welding cart 11, and an electric motor for x-movement drive is provided.
The mechanism is driven by the motor Mx, and the forward movement of the electric motor Mx causes the x carriage 19 to move leftward with respect to the base of the welding carriage 11 and the right movement by reverse rotation. A rotary encoder Rx is coupled to the electric motor Mx, which generates one pulse of electric pulse for a predetermined short distance movement of the x-movement table 19.

【0017】x移動台19には進退機構が結合されてお
り、進退駆動用の電気モ−タMrにて該機構が駆動さ
れ、電気モ−タMrの正回転により、進退台20が鋼管
14の中心に近付く方向に移動し、逆回転により中心よ
り離れる方向に移動する。電気モ−タMrにはロ−タリ
エンコ−ダRrが結合しておりこれが、進退台20の所
定短距離の移動につき1パルスの電気パルスを発生す
る。
An advancing / retracting mechanism is connected to the x-moving table 19, and the mechanism is driven by an electric motor Mr for driving advancing and retreating. Move in the direction approaching the center and move away from the center by reverse rotation. A rotary encoder Rr is coupled to the electric motor Mr. The rotary encoder Rr generates one electric pulse for a predetermined short distance of movement of the platform 20.

【0018】進退台20には傾動機構が結合されてお
り、傾動用の電気モ−タMθにて該機構が駆動され、電
気モ−タMθの正回転によりト−チホルダ21の、水平
面に対する傾斜θが小さくなり、逆回転により大きくな
る。電気モ−タMθにはロ−タリエンコ−ダRθが結合
しておりこれが、ト−チホルダ21の所定小角度の回転
につき1パルスの電気パルスを発生する。
A tilting mechanism is connected to the reciprocating table 20. The tilting mechanism is driven by an electric motor Mθ for tilting, and the torch holder 21 is tilted with respect to a horizontal plane by the forward rotation of the electric motor Mθ. θ decreases and increases due to reverse rotation. A rotary encoder R.theta. Is coupled to the electric motor M.theta., Which generates one electric pulse per rotation of the torch holder 21 at a predetermined small angle.

【0019】溶接ト−チ12はト−チホルダ21で支持
され、水平面に対して角度θをなす。溶接ト−チ12に
は、ワイヤ送給装置18(図2)より溶接ワイヤが供給
される。
The welding torch 12 is supported by a torch holder 21 and forms an angle θ with respect to a horizontal plane. The welding torch 12 is supplied with a welding wire from a wire feeding device 18 (FIG. 2).

【0020】図1に示す溶接機構は、図2に示す溶接シ
ステムの一部であり、中継箱30の電気装置によって駆
動される。中継箱30の電気装置にはホストとしてパソ
コン41が接続されており、このパソコン41が、溶接
スケジュ−ルに従って溶接条件を中継箱30の電気装置
に与える。
The welding mechanism shown in FIG. 1 is a part of the welding system shown in FIG. 2, and is driven by an electric device of the junction box 30. A personal computer 41 as a host is connected to the electric device of the junction box 30, and the personal computer 41 gives welding conditions to the electric device of the junction box 30 according to a welding schedule.

【0021】図3に、中継箱30の電気要素の概要を示
す。上述のx移動機構,進退機構および傾動機構には、
それぞれに運動範囲を定める始端リミットスイッチLx
o,Lro,Lθoおよび終端リミットスイッチLx
e,Lre,Lθeが備わっており、ト−チ12が各機
構の始端相当位置にあるときに始端リミットスイッチが
開、終端リミットスイッチは閉であり、ト−チ12が始
端相当位置と終端端相当位置の間にあるときには両スイ
ッチ共に閉、ト−チ12が各機構の終端相当位置にある
ときに始端リミットスイッチは閉、終端リミットスイッ
チは開である。
FIG. 3 shows an outline of the electric elements of the junction box 30. The above-mentioned x moving mechanism, advance / retreat mechanism and tilt mechanism include:
Start limit switch Lx that determines the range of motion for each
o, Lro, Lθo and terminal limit switch Lx
e, Lre, and Lθe, when the torch 12 is at the position corresponding to the start end of each mechanism, the start limit switch is open, the end limit switch is closed, and the torch 12 is at the position corresponding to the start end and the end end. When the torch 12 is at the position corresponding to the end of each mechanism, the start limit switch is closed and the end limit switch is open when the torch 12 is at the position corresponding to the end of each mechanism.

【0022】上述のx移動機構,進退機構および傾動機
構それぞれの電気モ−タMx,Mr,およびMθの回転
軸には、ロ−タリエンコ−ダRx,RrおよびRθが結
合されており、これらは電気モ−タの所定小角度の回転
につき1個の電気パルスを発生する。ト−チ12を駆動
しているとき、マイクロプロセッサを含むコントロ−ラ
1x,1rおよび1θが、電気モ−タMx,Mrおよび
Mθを正転付勢しているときにはロ−タリエンコ−ダが
発生する電気パルスをカウントアップし、逆転付勢して
いるときにはロ−タリエンコ−ダが発生する電気パルス
をカウントダウンし、始端リミットスイッチLxo,L
roおよびLθoが開のときにはカウント値をクリアす
る(カウントデ−タを0を示すものにする)。
Rotary encoders Rx, Rr, and Rθ are coupled to the rotation axes of the electric motors Mx, Mr, and Mθ of the x moving mechanism, the forward / backward mechanism, and the tilting mechanism, respectively. One electric pulse is generated for a predetermined small angle rotation of the electric motor. When the torch 12 is driven, a rotary encoder is generated when the controllers 1x, 1r and 1θ including the microprocessor are energizing the electric motors Mx, Mr and Mθ in the forward direction. The electric pulses generated by the rotary encoder are counted up when the reverse rotation is energized, and the electric pulses generated by the rotary encoder are counted down.
When ro and Lθo are open, the count value is cleared (count data indicates 0).

【0023】例えば、コントロ−ラ1xは、それ自身に
電源が投入されると、始端リミットスイッチLxoが開
(ト−チ12の回転位置が始端位置)であるかをチェッ
クし、それが閉(始端位置にない)であると、モ−タド
ライバ2xにモ−タ逆転付勢を指示し、モ−タドライバ
2xが逆転通電回路を閉じる。この逆転通電回路に始端
リミットスイッチLxoが含まれておりそれが閉である
ので、電気モ−タMxに逆転電流が流れ電気モ−タMx
が逆回転する。この逆回転で始端リミットスイッチLx
oが開になると、逆転通電回路が開となって電気モ−タ
Mxへの逆転電流が遮断されて電気モ−タMxが停止す
る。一方コントロ−ラ1xは、始端リミットスイッチL
zoが閉から開に切換わると、モ−タドライバ2xへの
逆転指示を解除し、x移動位置レジスタ(マイクロプロ
セッサの内部RAMの1領域)をクリアする。ここでト
−チ12のx移動位置がx移動範囲の始端にあり、x移
動位置レジスタのデ−タは0(基点)を示すものになっ
ていることになる。
For example, when the controller 1x is powered on, the controller 1x checks whether the start limit switch Lxo is open (the rotational position of the torch 12 is the start position) and closes it ( (Not at the start end position), the motor driver 2x is instructed to energize the motor in the reverse direction, and the motor driver 2x closes the reverse rotation energizing circuit. Since the reverse rotation energizing circuit includes a start limit switch Lxo and is closed, a reverse current flows through the electric motor Mx and the electric motor Mx
Rotates in reverse. By this reverse rotation, the starting end limit switch Lx
When o is opened, the reverse rotation energizing circuit is opened, the reverse current to the electric motor Mx is cut off, and the electric motor Mx stops. On the other hand, the controller 1x is provided with a start limit switch L
When zo is switched from closed to open, the reverse rotation instruction to the motor driver 2x is released, and the x movement position register (one area of the internal RAM of the microprocessor) is cleared. Here, the x-movement position of the torch 12 is at the beginning of the x-movement range, and the data of the x-movement position register indicates 0 (base point).

【0024】コントローラ1rおよび1θの動作も1x
のものと同様であり、モータドライバ2rおよび2θの
動作も2xのものと同様である。
The operation of the controllers 1r and 1θ is also 1x
The operation of the motor drivers 2r and 2θ is the same as that of the 2x.

【0025】コントローラ1wはCPU4の指示に応じ
て、トーチ12が接続される溶接電源16には、溶接電
流・電圧およびオン(通電)/オフ(通電停止)を指定
する信号を与え、流体供給装置17にはオン(ガス供
給)/オフ(供給停止)を指示する信号を与え、ワイヤ
送給装置18には供給速度およびオン(供給)/オフ
(供給停止)を指示する信号を与える。CPU4には、
入出力(I/O)ポート3を介してコントローラ1y,
1x,1r,1θおよび1w、ならびに操作/表示ボー
ド8が選択的に接続される。この接続は、システムコン
トローラ5を介してCPU4が指定する。CPU4のア
ドレスバス,データバスにはROM6およびRAM7が
接続されている。システムコントローラ5は、CPU4
が指示する制御信号をROM6,RAM7および操作/
表示ボード8に与える。
In response to an instruction from the CPU 4, the controller 1w supplies a welding power source 16 to which the torch 12 is connected with a signal for designating a welding current / voltage and ON (energization) / OFF (energization stop), and a fluid supply device. A signal for instructing ON (gas supply) / OFF (supply stop) is given to 17, and a signal for instructing supply speed and ON (supply) / OFF (supply stop) is given to the wire feeding device 18. In CPU4,
The controller 1y, via the input / output (I / O) port 3
1x, 1r, 1θ and 1w, and the operation / display board 8 are selectively connected. This connection is specified by the CPU 4 via the system controller 5. The ROM 6 and the RAM 7 are connected to an address bus and a data bus of the CPU 4. The system controller 5 includes a CPU 4
Control signals specified by the ROM 6 and the RAM 7
It is given to the display board 8.

【0026】再度図2を参照する。パソコン41には2
次元ディスプレイ42ならびにキ−ボ−ドおよびマウス
43が接続されており、これら全体のコンピュ−タシス
テムが制御盤として構成され、パソコン41に、オペレ
−タ入力に対応して溶接スケジュ−ルを生成し、溶接ス
ケジュ−ルに従って溶接機構を駆動し溶接を行なうプロ
グラムが格納されている。
Referring again to FIG. 2 for PC 41
A three-dimensional display 42, a keyboard and a mouse 43 are connected, and the entire computer system is configured as a control panel. The personal computer 41 generates a welding schedule corresponding to an operator input. And a program for driving the welding mechanism in accordance with the welding schedule to perform welding.

【0027】図4に、該プログラムによって実現する機
能を、オペレ−タの作業フロ−に従って示す。制御盤4
0に電源が投入されてパソコン41が電源オン応答の初
期化を終えると、該プログラムが起動されて、ディスプ
レイに、溶接作業メニュ−が表示される。該メニュ−上
の主な項目は、 溶接条件作成編集(溶接条件作成,溶接条件編集) 教示 溶接スケジュ−ル作成(スケジュ−ル生成,スケジュ−
ル編集) 溶接作業 である。オペレ−タは、パソコン41の表示メニュ−の
「溶接条件作成編集」を選択して、その中のサブメニュ
−の「溶接条件作成」又は「溶接条件編集」で溶接条件
を生成又は編集して今回の溶接作業用に登録し、次に
「教示」を選択して、操作ペンダント8の入力キ−を操
作して開先に対する溶接ト−チ位置を順次に定めて各点
で開先形状の検出を行ない、今回の溶接作業用に登録す
る。そして「溶接スケジュ−ル作成」を選択して溶接ス
ケジュ−ルを確定して登録し、次に「溶接作業」を選択
して、パソコン41に溶接スケジュ−ルを実行させる。
FIG. 4 shows the functions realized by the program according to the operation flow of the operator. Control panel 4
When the power is turned on to 0 and the personal computer 41 completes the initialization of the power-on response, the program is started and the welding operation menu is displayed on the display. The main items on this menu are: Welding condition creation / editing (welding condition creation, welding condition editing) Teaching Welding schedule creation (schedule generation, schedule creation)
Edit) welding work. The operator selects "Welding condition creation and editing" in the display menu of the personal computer 41, and generates or edits welding conditions in the submenu "Welding condition creation" or "Welding condition editing". And then select "Teach" and operate the input key of the operation pendant 8 to sequentially determine the welding torch position for the groove and detect the groove shape at each point. And register it for the current welding operation. Then, the user selects "Create welding schedule" to confirm and register the welding schedule, and then selects "Welding work" to cause the personal computer 41 to execute the welding schedule.

【0028】図5に、「溶接条件作成編集」2の概要を
示す。これが選択されるとパソコン41は、「溶接条件
作成編集」のサブメニュ−を表示する。このサブメニュ
−の主要な項目は、「溶接条件作成」および「溶接条件
編集」であり、オペレ−タが「溶接条件編集」を指定す
ると、パソコン41は、これまでに登録されている溶接
条件テ−ブルのリストをディスプレイ42に表示する
(ステップ11,16,17)。オペレ−タが、リスト
の中の1つの溶接条件テ−ブルを指定すると、それがデ
ィスプレイ42に表示される(ステップ18)。その一
例を表1に示す。なお、本書において「テ−ブル」と
は、メモリ上の記憶領域,そこの情報群又はそこから読
出してディスプレイ42に表示したデ−タ表を意味す
る。
FIG. 5 shows an outline of “welding condition creation / editing” 2. When this is selected, the personal computer 41 displays a submenu of "edit and edit welding conditions". The main items of this submenu are "Create welding condition" and "Edit welding condition". When the operator designates "Edit welding condition", the personal computer 41 displays the welding condition table registered so far. Display a list of cables on the display 42 (steps 11, 16, 17). When the operator specifies one welding condition table in the list, it is displayed on the display 42 (step 18). An example is shown in Table 1. In this specification, the term "table" means a storage area in the memory, a group of information therein, or a data table read out from the storage area and displayed on the display 42.

【0029】[0029]

【表1】 [Table 1]

【0030】表1上の「板厚(32)」,「ル−ト幅
(6)」および「開先角度(35)」が、基準開先形状
デ−タであり、板厚は図10のTの値(mm)、ル−ト
幅は図10の開先の底の幅Gの値(mm)および開先角
度は図10の開先斜辺の傾斜角度α(°)である。デ−
タNo.の「15」は、15組のデ−タセット(デ−タ
の縦列)があることを意味する。表1にはNo.1〜9
のデ−タセットのみを示すが、左スクロ−ルすることに
より残りのデ−タNo.10〜15のデ−タが順次に画
面上に現われる。
The "plate thickness (32)", "route width (6)" and "groove angle (35)" in Table 1 are reference groove shape data, and the plate thickness is shown in FIG. The value of T (mm), the root width is the value of the width G of the groove bottom (mm) in FIG. 10, and the groove angle is the inclination angle α (°) of the groove oblique side in FIG. Date
No. "15" means that there are 15 data sets (columns of data). In Table 1, No. 1-9
Only the data set of the data No. is shown. By scrolling to the left, the remaining data No. 10 to 15 data appear on the screen sequentially.

【0031】表1上の「距離」の欄の0.0は、鋼管1
3,14上の周方向位置の基点を意味し、後述する教示
デ−タの編集6の終了後の最初の点の、鋼管13,14
に対する溶接ト−チ12の位置が、距離の基点0.0
(溶接ト−チの基点位置)である。デ−タNo.2の
「距離」の欄の「100」は、溶接ト−チ12が基点
0.0から、周方向で円弧長100mm分回動移動した
位置を意味する。デ−タNo.1〜15は、鋼管13,
14の間のリング状の開先の全体又は一部分の、周方向
15点を溶接条件切換点に定めたことを意味し、デ−タ
No.1のデ−タは、溶接ト−チが距離0.0(基点)
にあるときに設定すべき溶接条件である。デ−タNo.
2のデ−タは、溶接ト−チ12が、先行の点(デ−タN
o.1)から距離(円弧長)100mm進んだ位置で切
換える溶接条件である。
0.0 in the column of “distance” in Table 1
Means the starting point of the circumferential position on the steel pipes 3, 14 and is the first point of the steel pipes 13, 14 after the end of the editing 6 of the teaching data described later.
The position of the welding torch 12 with respect to
(Base position of welding torch). Data No. "100" in the column of "distance" of 2 means a position where the welding torch 12 is rotated from the base point 0.0 by a circular arc length of 100 mm in the circumferential direction. Data No. 1 to 15 are steel pipes 13,
No. 14 means that 15 points in the circumferential direction of the whole or a part of the ring-shaped groove are set as the welding condition switching points. The data of 1 indicates that the welding torch has a distance of 0.0 (base point).
Are the welding conditions to be set when Data No.
The data of No. 2 indicates that the welding torch 12 is at the preceding point (Data N).
o. This is a welding condition that is switched at a position that is 100 mm away from 1) (arc length).

【0032】オペレ−タは、不要なデ−タNo.を消去
し、不足のデ−タNo.を追加し、デ−タNo.を連続
に振り直し、かつ、各溶接条件値を、今回必要な値に変
更する。そして、所望の溶接条件の設定(編集)を終え
ると、今回溶接用のものとしてパソコン41に登録する
(ステップ18,19,15)。
The operator is an unnecessary data No. Is deleted and the missing data No. is deleted. Is added, and data No. Is continuously changed, and each welding condition value is changed to a necessary value this time. When the setting (editing) of the desired welding condition is completed, the welding condition is registered in the personal computer 41 as the current welding condition (steps 18, 19, 15).

【0033】上述の「溶接条件編集」ではなく「溶接条
件作成」をオペレ−タが指定したときには、パソコン4
1は、表1の溶接条件テ−ブルと同様ではあるが、デ−
タ値が空欄、表1上の「溶接条件編集画面」の代りに
「溶接条件入力画面」を表示し、かつ、「*編集条件を
編集して下さい。」の代りに「*溶接条件を入力して下
さい。」を表示した、溶接条件作成テ−ブルを、ディス
プレイ42に表示する。そのテ−ブル上にオペレ−タは
まず基準開先形状(板厚,ル−ト幅&開先角度)を入力
する(ステップ12)。すなわち、今回の溶接の基本開
先形状の、板厚T,ル−ト幅G&開先角度α(図10を
参照)を入力する。
When the operator specifies "Create welding condition" instead of "Edit welding condition", the personal computer 4
No. 1 is the same as the welding condition table in Table 1, but
When the data value is blank, "Welding condition input screen" is displayed instead of "Welding condition editing screen" in Table 1, and "* Welding condition is input" instead of "* Edit editing condition." Is displayed. "Is displayed on the display 42. The operator first inputs the reference groove shape (plate thickness, route width & groove angle) on the table (step 12). That is, the plate thickness T, route width G and groove angle α (see FIG. 10) of the basic groove shape of the current welding are input.

【0034】そして各セット(デ−タNo.)の溶接条
件を入力する。所要デ−タを入力した後のオペレ−タお
よびパソコン41の処理は、上述の「溶接条件編集」の
場合と同様である。デ−タ入力および編集を終えると、
作成したテ−ブルを今回の溶接用に、パソコン41に登
録する(ステップ15)。
Then, welding conditions for each set (data No.) are input. The processing of the operator and the personal computer 41 after inputting the required data is the same as in the case of "welding condition editing" described above. After inputting and editing data,
The created table is registered in the personal computer 41 for the current welding (step 15).

【0035】登録が完了するとパソコン41は、ディス
プレイ42に初期メニュ−画面を表示する。オペレ−タ
は次に「教示」を指定し、操作ペンダント8の溶接機構
操作キ−および制御入力用キ−を操作して、溶接ト−チ
12を基点0.0から順次に周方向に位置を移して複数
の点でティ−チングを行なう。ここでの基点0,0は、
鋼管13,14上の周方向位置の基点を意味し、図2に
示すシステム全体の動作電圧が印加され、各部が正常な
待機状態になったときの、鋼管13,14に対する溶接
ト−チ12の位置が基点0,0(溶接ト−チの基点位
置)である。またティ−チングとは、開先形状の検出&
登録である。すなわち、オペレ−タは、操作ペンダント
8の溶接機構操作キ−を操作して複数の点のそれぞれに
溶接ト−チ12を駆動し、開先形状計測指示キ−を押
す。
When the registration is completed, the personal computer 41 displays an initial menu screen on the display 42. Next, the operator designates "Teach" and operates the welding mechanism operation key and the control input key of the operation pendant 8 to position the welding torch 12 in the circumferential direction sequentially from the base point 0.0. And teaching is performed at a plurality of points. The base point 0,0 here is
It means the starting point of the circumferential position on the steel pipes 13 and 14, and the welding torch 12 for the steel pipes 13 and 14 when the operating voltage of the entire system shown in FIG. 2 is applied and each part is in a normal standby state. Is the base point 0,0 (the base point position of the welding torch). In addition, teaching is the detection and
Registration. That is, the operator operates the welding mechanism operation key of the operation pendant 8 to drive the welding torch 12 to each of a plurality of points, and presses the groove shape measurement instruction key.

【0036】すると中継箱30のCPU4が、溶接ト−
チ12を、所定シ−ケンスで、開先形状検出用の溶接ト
−チ駆動を行ない、鋼管13の表面位置r1,裏面位置
()r2および開先壁面の4点〜(図10)の位
置を、計測する。この開先形状検出用の溶接ト−チ駆動
は、図10を参照すると、まず溶接ト−チ12を、鋼管
13の外表面に溶接ワイヤの先端が対向する位置に位置
決めして鋼管13の中心に向けて溶接ト−チ12をr方
向に駆動し、溶接ワイヤが鋼管13の表面に当るとその
ときの溶接ト−チ12のr位置r1をセ−ブし、そして
溶接ト−チ12を開先を横切る方向yに駆動して溶接ワ
イヤの先端が鋼管13から外れて開先底幅(G)の略中
間となる位置で停止し、そしてr方向に、ワイヤの先端
が裏当板15に接触するまで、すなわち図10のの位
置まで、溶接ト−チ12を駆動する。接触すると、そこ
で停止して溶接ト−チのr位置r2をセ−ブする。そし
てT=r1=r2と算出する。
Then, the CPU 4 of the junction box 30 sets the welding torque
In a predetermined sequence, the welding torch is driven to detect the groove shape, and the surface position r1, the rear surface position () r2 of the steel pipe 13 and the positions of four points to (FIG. 10) of the groove wall surface. Is measured. Referring to FIG. 10, the welding torch drive for detecting the groove shape is as follows. First, the welding torch 12 is positioned at a position where the tip of the welding wire faces the outer surface of the steel pipe 13 and the center of the steel pipe 13 is positioned. When the welding wire hits the surface of the steel pipe 13, the welding torch 12 is moved in the r direction, the r position r1 of the welding torch 12 at that time is saved, and the welding torch 12 is moved. Driving in the direction y across the groove, the tip of the welding wire separates from the steel pipe 13 and stops at a position substantially at the center of the groove bottom width (G). Is driven, that is, the welding torch 12 is driven until the position shown in FIG. When contacted, it stops there and saves the r-position r2 of the welding torch. Then, T = r1 = r2 is calculated.

【0037】次に、a・T(aは定数、例えば1/4)
までr方向に溶接ト−チ12を駆動し、そして溶接ワイ
ヤの先端が鋼管13の開先壁面(図10の)に当るま
で、x駆動し、溶接ワイヤが鋼管13に接触したときの
x位置x1をセ−ブする。そして今度はx方向に戻し駆
動し溶接ワイヤが鋼管14に接触したときのx位置x2
(図10の)をセ−ブする。
Next, a · T (a is a constant, for example, 1/4)
The welding torch 12 is driven in the r direction until the welding wire comes into contact with the steel pipe 13 until the tip of the welding wire hits the groove wall of the steel pipe 13 (FIG. 10). Save x1. Then, this time, it is driven back in the x direction and the x position x2 when the welding wire comes into contact with the steel pipe 14.
(FIG. 10).

【0038】次にb・T(bは定数、例えば3/4)ま
でr方向に溶接ト−チ12を駆動し、そして溶接ワイヤ
の先端が鋼管13の開先壁面(図10の)に当るま
で、x駆動し、溶接ワイヤが鋼管13に接触したときの
x位置x3をセ−ブする。そして今度はx方向に戻し駆
動し溶接ワイヤが鋼管14に接触したときのx位置x4
(図10の)をセ−ブする。
Next, the welding torch 12 is driven in the r direction until b · T (b is a constant, for example, 3/4), and the tip of the welding wire hits the groove wall surface of the steel pipe 13 (FIG. 10). The x position x3 when the welding wire comes into contact with the steel pipe 13 is saved until x is reached. Then, this time, it is driven back in the x direction and the x position x4 when the welding wire comes into contact with the steel pipe 14.
(FIG. 10).

【0039】そしてCPU4は、この開先形状検出を終
了し、オペレ−タが登録指示を入力すると、Tおよびx
1〜x4を、周方向位置デ−タ(開先形状検出点のy位
置デ−タ)と共に、パソコン41に転送する。パソコン
41は、x1〜x4で規定される2直線+/+
が、裏当板15と交わる点の点間距離G(ル−ト幅)お
よび2直線がなす角度α(開先角度)を算出して、T,
Gおよびαを、開先形状(検出した開先形状)とし、開
先形状(T,G,α)を、教示点(周方向位置y)対応
で、今回の溶接用のティ−チングデ−タテ−ブルに書込
む。
Then, the CPU 4 ends the groove shape detection, and when the operator inputs a registration instruction, T and x
1 to x4 are transferred to the personal computer 41 together with the circumferential position data (the y position data of the groove shape detection point). The personal computer 41 has two straight lines defined by x1 to x4 + / +
Calculates the distance G (route width) between points intersecting with the backing plate 15 and the angle α (groove angle) formed by the two straight lines,
G and α are groove shapes (detected groove shapes), and groove shapes (T, G, α) correspond to teaching points (circumferential position y), and are used for teaching data for welding this time. -Write to Bull.

【0040】オペレ−タが教示の終了を入力するとパソ
コン41は、教示デ−タの編集6を実行する。その内容
を図6に示す。ここでパソコン41は、ティ−チングデ
−タテ−ブルのデ−タを、最初の点を最後の点とし、最
後の点を最初の点とするように順番(溶接の進行に伴っ
て読出す順番)を入れ替える(ステップ21)。この過
程を図8の(a)および(b)に示す。これによって最
初となった点を基点0.0とするように、ティ−チング
点のy位置デ−タを書直す(ステップ22)。この過程
を図9の(c)に示す。
When the operator inputs the end of teaching, the personal computer 41 executes editing 6 of the teaching data. The contents are shown in FIG. Here, the personal computer 41 sorts the data of the teaching data table so that the first point is the last point and the last point is the first point (the order in which the data is read out as welding progresses). Is replaced (step 21). This process is shown in FIGS. 8A and 8B. As a result, the y-position data of the teaching point is rewritten so that the first point becomes the base point 0.0 (step 22). This process is shown in FIG.

【0041】次に、今回の溶接用の溶接条件テ−ブル
(表1)の各デ−タNo.を割り付ける周方向y位置
(距離の欄のデ−タ)とティ−チングデ−タテ−ブルの
ティ−チング点y位置とを対比して、溶接条件テ−ブル
の各デ−タNo.に、そのy位置と同一位置の、ティ−
チングデ−タテ−ブル上のデ−タ(検出した開先形状)
を割り付ける。ティ−チングデ−タテ−ブル上に同一位
置のデ−タが存在しないと、そのデ−タNo.のy位置
の前と後のティ−チングデ−タテ−ブル上のデ−タ(検
出した開先形状)に基づいて該y位置の開先形状を補間
法により算出して、該デ−タNo.に割り付ける(ステ
ップ25,26)。そしてこの算出した開先形状を、テ
ィ−チングデ−タテ−ブルの、対応y位置に書込む(2
7,28)。この過程を図9の(d)に示す。
Next, each data No. of the welding condition table (Table 1) for the current welding is shown. Is compared with the teaching point y position of the teaching data table in the circumferential direction y position (data in the distance column) to assign each data No. of the welding condition table. At the same position as the y position,
Data on the ching data table (detected groove shape)
Assign If there is no data at the same position on the teaching data table, the data No. The groove shape at the y position is calculated by an interpolation method based on the data (detected groove shape) on the teaching data table before and after the y position, and the data No. . (Steps 25 and 26). Then, the calculated groove shape is written in the corresponding y position of the teaching data table (2).
7, 28). This process is shown in FIG.

【0042】以上により、実際に検出した各点の開先形
状と、それに基づいて補間法によって算出した開先形状
がティ−チングデ−タテ−ブル上に整い、溶接条件テ−
ブル(表1)の各デ−タNo.の位置のすべてに宛てる
開先形状(検出値,算出値)がティ−チングデ−タテ−
ブル上にあることになる。
As described above, the groove shape of each point actually detected and the groove shape calculated by the interpolation method based on the groove shape are arranged on the teaching data table, and the welding condition table is obtained.
Data (Table 1). The groove shape (detected value, calculated value) addressed to all of the positions indicated by the teaching data
Will be on the bull.

【0043】教示デ−タの編集6が終了するとパソコン
41は、メインメニュ−を表示する。オペレ−タが、溶
接スケジュ−ル作成のサブメニュ−である「スケジュ−
ル生成」を指定すると、パソコン41は、「溶接軌跡・
条件作成」7に進む。その内容を図7に示す。ここでパ
ソコン41は、今回の溶接用の溶接条件テ−ブル(表
1)と、今回の溶接用のティ−チングデ−タテ−ブルに
基づいて、溶接条件切換点(溶接条件テ−ブル(表1)
の各デ−タNo.の「距離」デ−タによって定まるy位
置)のそれぞれの溶接条件を、基準開先形状(表1上の
板厚,ル−ト幅,開先角度)に対する、ティ−チングデ
−タテ−ブル上の対応位置の検出開先形状(又は補間法
によって算出した開先形状)のずれ量、に従って補正
し、補正した溶接条件を、該y位置対応で、溶接スケジ
ュ−ルテ−ブルに書込む。
When the editing 6 of the teaching data is completed, the personal computer 41 displays a main menu. The operator operates the sub-menu “Schedule” for creating a welding schedule.
When “generate welding” is specified, the personal computer 41
Condition creation ”7. The contents are shown in FIG. Here, the personal computer 41 uses the welding condition table for the current welding (Table 1) and the teaching data table for the current welding to switch the welding condition (the welding condition table (Table 1)). 1)
Of each data No. The welding conditions for the "distance" data determined by the "distance" data described above are compared with the reference groove shape (plate thickness, route width, groove angle in Table 1) on the teaching data table. And the corrected welding conditions are written in the welding schedule table corresponding to the y position in accordance with the deviation amount of the detected groove shape (or the groove shape calculated by the interpolation method) at the corresponding position.

【0044】また、溶接条件テ−ブル(表1)には該当
位置が無い、ティ−チングデ−タテ−ブル上の、検出開
先形状のそれぞれに対応して、そのy位置が属する、溶
接条件テ−ブル(表1)上の区間(例えばデ−タNo.
1と2との間の距離100mmの区間)の溶接条件(表
1上のデ−タNo.1のもの)を、基準開先形状(表1
上)に対する該検出開先形状のずれ量、に従って補正
し、補正した溶接条件を、該検出開先形状のy位置対応
で、溶接スケジュ−ルテ−ブルに書込む。
Further, there is no corresponding position in the welding condition table (Table 1), and the y position belongs to the y position corresponding to each detected groove shape on the teaching data table. Sections on the table (Table 1) (for example, data No.
The welding conditions (for data No. 1 in Table 1) of the section with a distance of 100 mm between No. 1 and No. 2 were changed to the reference groove shape (Table 1).
A correction is made in accordance with the deviation amount of the detected groove shape from the above (1), and the corrected welding conditions are written in a welding schedule table corresponding to the y position of the detected groove shape.

【0045】以上を終了すると、溶接スケジュ−ルテ−
ブルには、溶接条件テ−ブル(表1)上の各デ−タN
o.の距離デ−タで定まる各y位置(溶接条件切換え
点)、ならびに、それらとは位置が異なる、上述の「教
示」5で開先形状を検出した各y位置、に宛てた溶接条
件(検出開先形状に対応して補正した値)が、y位置対
応で書込まれている。
When the above is completed, the welding schedule
Each data N on the welding condition table (Table 1)
o. The welding conditions (detection points) for each y position (welding condition switching point) determined by the distance data and for each y position having a different position from the y position for which the groove shape was detected in the above “Teaching” 5 are detected. The value corrected according to the groove shape) is written corresponding to the y position.

【0046】オペレ−タが、溶接スケジュ−ル作成のサ
ブメニュ−である「スケジュ−ル編集」を指定したとき
には、パソコン41は、パソコン41に登録されている
溶接スケジュ−ルテ−ブルのリストを、ディスプレイ4
2に表示する。オペレ−タがその1つを指定すると、そ
のテ−ブルの内容をディスプレイ42に表示する。オペ
レ−タは、そのデ−タに変更を加えて、パソコン41に
更新登録又は別スケジュ−ルとして新規登録することが
できる。
When the operator designates "schedule editing" which is a sub-menu for creating a welding schedule, the personal computer 41 displays a list of welding schedule tables registered in the personal computer 41. Display 4
2 is displayed. When the operator designates one of them, the contents of the table are displayed on the display 42. The operator can change the data and register it in the personal computer 41 as an update registration or a new registration as another schedule.

【0047】溶接スケジュ−ル作成の終了が入力される
とパソコン41は、メインメニュ−をディスプレイ42
に表示する。オペレ−タが「溶接作業」を指定すると、
パソコン41は、「溶接作業」用の入力画面を表示す
る。オペレ−タはこの画面上で溶接スケジュ−ルテ−ブ
ルを指定して溶接開始を指示し、またその他の指示やデ
−タ入力を行なうことができる。パソコン41は、溶接
開始が指示されると、溶接スケジュ−ル上の第1位置
(溶接条件テ−ブル(表1)上のデ−タNo.1の位置
に対応)の溶接条件に基づいて溶接を開始し、溶接の進
行に伴って順次に溶接スケジュ−ルテ−ブルから溶接ト
−チのy位置に対応付けられている溶接条件を読出し
て、それに従って溶接を行なう。
When the end of the welding schedule creation is input, the personal computer 41 displays the main menu on the display 42.
To be displayed. When the operator specifies "welding work",
The personal computer 41 displays an input screen for “welding work”. The operator can designate the welding schedule table on this screen to instruct the start of welding, and can perform other instructions and data input. When the start of welding is instructed, the personal computer 41 determines the welding condition at the first position on the welding schedule (corresponding to the position of data No. 1 on the welding condition table (Table 1)). The welding is started, and the welding conditions associated with the y position of the welding torch are sequentially read from the welding schedule table as the welding progresses, and welding is performed in accordance therewith.

【0048】以上に説明した実施例では、溶接条件テ−
ブル(表1)上の全デ−タNo.の位置(溶接条件切換
点)および教示によって開先形状を検出した点、のすべ
てに対して、基準開先形状(表1上の板厚,ル−ト幅,
開先角度)に対する、検出した開先形状又はそれに基づ
いて補間法によって算出した開先形状、のずれ量、に対
応して補正した溶接条件が定められ、これに基づいて溶
接が実行される。したがって、溶接条件の切換わり点
(表1上の各デ−タNo.の割り宛てy位置)の開先形
状が検出されていない場合でも、その前後の開先形状の
間の開先形状が補間法により与えられ、この開先形状の
信頼性が高く、したがって溶接スケジュ−ルの信頼性が
高い。均一な品質の自動溶接が実現する。また、開先形
状検出点(教示点)を格別に多くしなくても、溶接条件
の切換わり点を多くすることができると共に、溶接条件
の切換わり点と開先形状検出点とが同一位置とならなく
ても、溶接条件の切換わり点の開先形状と合致する開先
形状が与えられ、信頼性が高い溶接スケジュ−ルを得る
ことができる。
In the embodiment described above, the welding conditions
All data Nos. On the table (Table 1) For all of the positions (welding condition switching points) and points where the groove shape was detected by teaching, the reference groove shapes (plate thickness, route width,
The welding conditions corrected in accordance with the detected groove shape or the deviation amount of the groove shape calculated by an interpolation method based on the detected groove shape with respect to the groove angle) are determined, and welding is performed based on this. Therefore, even when the groove shape at the switching point of the welding condition (the y position assigned to each data No. in Table 1) is not detected, the groove shape between the groove shapes before and after that is not detected. Given by the interpolation method, the reliability of this groove shape is high and therefore the reliability of the welding schedule is high. Automatic welding of uniform quality is realized. Further, it is possible to increase the number of switching points of welding conditions without particularly increasing the number of groove shape detection points (teaching points), and to ensure that the switching points of welding conditions and the groove shape detection points are at the same position. If not, a groove shape that matches the groove shape at the switching point of the welding conditions is provided, and a highly reliable welding schedule can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例の機構外観を示す斜視図で
ある。
FIG. 1 is a perspective view showing an external appearance of a mechanism according to an embodiment of the present invention.

【図2】 本発明の一実施例のシステム構成を示すブロ
ック図である。
FIG. 2 is a block diagram illustrating a system configuration according to an embodiment of the present invention.

【図3】 図1に示す中継箱30内の電気回路構成を示
すブロック図である。
FIG. 3 is a block diagram showing an electric circuit configuration in the junction box 30 shown in FIG.

【図4】 図2に示すパソコン41の、オペレ−タ指示
に応答して実現する溶接スケジュ−ルの生成および該ス
ケジュ−ルに基づいた溶接動作の概要を示すフロ−チャ
−トである。
FIG. 4 is a flowchart showing an outline of generation of a welding schedule realized by the personal computer 41 shown in FIG. 2 in response to an operator's instruction and a welding operation based on the schedule.

【図5】 図4に示す「溶接条件作成編集」2の内容を
示すフロ−チャ−トである。
FIG. 5 is a flowchart showing the contents of “welding condition creation / editing” 2 shown in FIG. 4;

【図6】 図4に示す「教示デ−タの編集」6の内容を
示すフロ−チャ−トである。
FIG. 6 is a flowchart showing the contents of “edit teaching data” 6 shown in FIG. 4;

【図7】 図4に示す「溶接軌跡・条件作成」7の内容
を示すフロ−チャ−トである。
FIG. 7 is a flowchart showing the contents of "creation of welding locus / condition" 7 shown in FIG.

【図8】 図7に示す「教示デ−タの編集」6での、教
示デ−タの配列変更の過程を示す図表である。
FIG. 8 is a table showing a process of changing the arrangement of teaching data in “editing teaching data” 6 shown in FIG. 7;

【図9】 図7に示す「教示デ−タの編集」6での、検
出開先形状が欠落している位置への開先形状の補間の過
程を示す図表である。
9 is a chart showing a process of interpolating a groove shape to a position where a detected groove shape is missing in “edit teaching data” 6 shown in FIG. 7;

【図10】 図1に示す溶接対象鋼管13,14の一部
の拡大縦断面であり、開先の横断面とワイヤ先端の教示
位置を示す。
10 is an enlarged vertical section of a part of the steel pipes 13 and 14 to be welded shown in FIG. 1, showing a cross section of a groove and a teaching position of a wire tip.

【符号の説明】[Explanation of symbols]

10:レ−ル 11:溶接台車 12:溶接ト−チ 13,14:鋼管 19:昇降基台 20:進退基台 21:ト−ルホルダ My,Mx,Mr,Mθ:電気モ
−タ Ry,Rx,Rr,Rθ:ロ−タリエンコ−ダ
10: Rail 11: Welding trolley 12: Welding torch 13, 14: Steel pipe 19: Elevating base 20: Advance / retreat base 21: Tail holder My, Mx, Mr, Mθ: Electric motor Ry, Rx , Rr, Rθ: Rotary encoder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川 上 善 孝 千葉県習志野市東習志野7丁目6番1号 日鐵溶接工業株式会社機器事業部内 Fターム(参考) 4E081 AA12 BA19 BA27 CA07 DA01 DA23 DA26 DA48 DA56 DA64 DA79 EA56  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yoshitaka Kawakami 7-6-1, Higashi Narashino, Narashino City, Chiba Prefecture F-term in the Equipment Division, Nippon Steel Welding Industry Co., Ltd. 4E081 AA12 BA19 BA27 CA07 DA01 DA23 DA26 DA48 DA56 DA64 DA79 EA56

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】溶接予定軌跡の複数箇所のそれぞれにおけ
る、開先の基準形状対応の溶接条件を定めるための基準
条件設定手段;溶接予定軌跡の複数点のそれぞれにおけ
る開先形状を入力する手段;前記複数箇所の箇所間の切
換点につき、その切換点の開先形状が入力されていると
該切換点の基準形状に対する該開先形状のずれに対応し
て前記溶接条件を修正して溶接予定軌跡上の位置対応で
溶接スケジュ−ルに定め、その切換点の開先形状が入力
されていないと、その前後の開先形状に基づいて補間法
により該切換点の開先形状を算出して該切換点の基準形
状に対する、算出した開先形状のずれに対応して、前記
溶接条件を修正して溶接予定軌跡上の位置対応で溶接ス
ケジュ−ルに定める、溶接条件演算手段;および、 前記溶接スケジュ−ルに従って溶接予定軌跡を溶接する
手段;を備える、スケジュ−ルに従がう溶接装置。
1. A reference condition setting means for determining welding conditions corresponding to a reference shape of a groove at each of a plurality of points on a planned welding locus; means for inputting a groove shape at each of a plurality of points on a planned welding locus; When the groove shape of the switching point is input for the switching point between the plurality of points, the welding condition is corrected according to the deviation of the groove shape from the reference shape of the switching point with respect to the reference shape. If the welding schedule is determined according to the position on the trajectory and the groove shape of the switching point is not input, the groove shape of the switching point is calculated by interpolation based on the groove shapes before and after the switching point. Welding condition calculation means for correcting the welding conditions in accordance with the calculated deviation of the groove shape from the reference shape of the switching point to determine a welding schedule corresponding to a position on a planned welding locus; Welding schedule Means for welding a scheduled welding locus according to the following schedule: a welding apparatus according to the schedule.
【請求項2】溶接予定軌跡の複数箇所のそれぞれにおけ
る、開先の基準形状対応の溶接条件を定めるための基準
条件設定手段;溶接予定軌跡の複数点のそれぞれにおけ
る開先形状を入力する手段;前記複数点のそれぞれにつ
き、該点の開先形状の基準形状に対するずれに対応して
該点が対応する箇所の前記溶接条件を修正して溶接予定
軌跡上の該点対応で溶接スケジュ−ルに定める溶接条件
演算手段;および、 前記溶接スケジュ−ルに従って溶接予定軌跡を溶接する
手段;を備える、スケジュ−ルに従がう溶接装置。
2. A reference condition setting means for determining welding conditions corresponding to a reference shape of a groove at each of a plurality of locations on a planned welding locus; means for inputting a groove shape at each of a plurality of points on a planned welding locus; For each of the plurality of points, the welding conditions at the point corresponding to the point corresponding to the deviation of the groove shape of the point from the reference shape are corrected to form a welding schedule corresponding to the point on the planned welding locus. A welding apparatus according to a schedule, comprising: means for calculating welding conditions to be determined; and means for welding a planned welding locus according to the welding schedule.
【請求項3】溶接予定軌跡の複数箇所のそれぞれにおけ
る、開先の基準形状対応の溶接条件を定めるための基準
条件設定手段;溶接予定軌跡の複数点のそれぞれにおけ
る開先形状を入力する手段;前記複数点のそれぞれにつ
き、該点の開先形状の、基準形状に対するずれに対応し
て該点が対応する箇所の前記溶接条件を修正して溶接予
定軌跡上の該点対応で溶接スケジュ−ルに定め、前記複
数箇所の箇所間の切換点の中の開先形状が入力されてい
ない切換点の前後の開先形状に基づいて補間法により該
切換点の開先形状を算出して該切換点の基準形状に対す
る、算出した開先形状のずれに対応して、前記溶接条件
を修正して溶接予定軌跡上の位置対応で前記溶接スケジ
ュ−ルに定める溶接条件演算手段;および、 前記溶接スケジュ−ルに従って溶接予定軌跡を溶接する
手段;を備える、スケジュ−ルに従がう溶接装置。
3. A reference condition setting means for determining welding conditions corresponding to a reference shape of a groove at each of a plurality of locations on a planned welding locus; means for inputting a groove shape at each of a plurality of points on a planned welding locus; For each of the plurality of points, the welding conditions at the point corresponding to the point corresponding to the deviation of the groove shape of the point from the reference shape are corrected, and the welding schedule corresponding to the point on the welding expected locus is corrected. The groove shape of the switching point is calculated by an interpolation method based on the groove shape before and after the switching point where the groove shape among the switching points between the plurality of points is not input. Welding condition calculation means for correcting the welding condition in accordance with the calculated deviation of the groove shape from the reference shape of the point and determining the welding schedule in accordance with the position on the welding expected locus; and the welding schedule -Follow the rules Means for welding a planned welding locus.
【請求項4】溶接予定軌跡の複数箇所のそれぞれにおけ
る、開先の基準形状対応の溶接条件をメモリ上に定め;
溶接予定軌跡の複数点のそれぞれにおいて開先形状を検
出して位置対応でメモリに書込み;前記複数点のそれぞ
れにつき、該点の開先形状の基準形状に対するずれに対
応して該点が対応する箇所の前記溶接条件を修正して溶
接予定軌跡上の該点対応でスケジュ−ルメモリに書込
み、かつ、前記複数箇所の箇所間の切換点の中の開先形
状が入力されていない切換点の前後の開先形状に基づい
て補間法により該切換点の開先形状を算出して該切換点
の基準形状に対する算出した開先形状のずれに対応して
前記溶接条件を修正して溶接予定軌跡上の位置対応で前
記スケジュ−ルメモリに書込み;前記スケジュ−ルメモ
リ上の溶接条件に従って溶接予定軌跡を溶接する;メモ
リ上のスケジュ−ルに従がう溶接方法。
4. A welding condition corresponding to a reference shape of a groove at each of a plurality of positions on a welding expected locus is determined in a memory.
A groove shape is detected at each of a plurality of points on the planned welding locus and written in a memory in a position correspondence manner; for each of the plurality of points, the point corresponds to a deviation of the groove shape from the reference shape of the point. The welding conditions of the spots are corrected and written in the schedule memory corresponding to the points on the planned welding locus, and before and after the switching point where the groove shape among the switching points between the plurality of points is not input. The groove shape of the switching point is calculated by interpolation based on the groove shape of the above, and the welding condition is corrected in accordance with the deviation of the calculated groove shape with respect to the reference shape of the switching point to correct the welding target locus. Writing to the schedule memory in accordance with the position of the above; welding the planned welding locus according to the welding conditions on the schedule memory; a welding method according to the schedule on the memory.
JP11031901A 1999-02-09 1999-02-09 Welding device and welding method following schedule Pending JP2000233278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031901A JP2000233278A (en) 1999-02-09 1999-02-09 Welding device and welding method following schedule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031901A JP2000233278A (en) 1999-02-09 1999-02-09 Welding device and welding method following schedule

Publications (1)

Publication Number Publication Date
JP2000233278A true JP2000233278A (en) 2000-08-29

Family

ID=12343921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031901A Pending JP2000233278A (en) 1999-02-09 1999-02-09 Welding device and welding method following schedule

Country Status (1)

Country Link
JP (1) JP2000233278A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064011A (en) * 2002-01-25 2003-07-31 주식회사 세원정공 A position deciding method for counter welding
JP2009220156A (en) * 2008-03-17 2009-10-01 Kawasaki Heavy Ind Ltd Robot rotating all posture welding equipment
JP2012125813A (en) * 2010-12-16 2012-07-05 Kobe Steel Ltd Submerged arc welding apparatus and one-side welding apparatus
CN105537820A (en) * 2014-10-28 2016-05-04 株式会社神户制钢所 Welding system and welding method
JP7038876B1 (en) 2021-05-18 2022-03-18 日鉄エンジニアリング株式会社 Welding system, welding method and program
CN115178834A (en) * 2022-09-13 2022-10-14 江阴市华昌不锈钢管有限公司 Stainless steel welding duration selection system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030064011A (en) * 2002-01-25 2003-07-31 주식회사 세원정공 A position deciding method for counter welding
JP2009220156A (en) * 2008-03-17 2009-10-01 Kawasaki Heavy Ind Ltd Robot rotating all posture welding equipment
JP2012125813A (en) * 2010-12-16 2012-07-05 Kobe Steel Ltd Submerged arc welding apparatus and one-side welding apparatus
CN102554419A (en) * 2010-12-16 2012-07-11 株式会社神户制钢所 Submerged arc welding apparatus and one-side welding apparatus
KR101345013B1 (en) * 2010-12-16 2013-12-24 가부시키 가이샤 고베세이코쇼 Submerged arc welding apparatus and one-side welding apparatus
CN105537820A (en) * 2014-10-28 2016-05-04 株式会社神户制钢所 Welding system and welding method
JP7038876B1 (en) 2021-05-18 2022-03-18 日鉄エンジニアリング株式会社 Welding system, welding method and program
JP2022177634A (en) * 2021-05-18 2022-12-01 日鉄エンジニアリング株式会社 Welding system, welding method, and program
CN115178834A (en) * 2022-09-13 2022-10-14 江阴市华昌不锈钢管有限公司 Stainless steel welding duration selection system

Similar Documents

Publication Publication Date Title
EP1145804B1 (en) Robot controller
US20230234156A1 (en) Control method for portable welding robot, welding control device, portable welding robot, and welding system
EP0266424A1 (en) Method and apparatus for controlling welding robot
JP2000233278A (en) Welding device and welding method following schedule
JP2001212671A (en) Automatic welding machine
JP2000246439A (en) Welding equipment that follows schedule and its welding method
JPH0569131A (en) Method and device for controlling welding
JPH11267832A (en) Columnar material girth welding method and device
JP3604120B2 (en) Method and apparatus for lateral multi-layer welding of steel pipe
EP0855240B1 (en) Apparatus and method for one side welding of curved steel plates
JPH0818130B2 (en) Weaving welding control method
JPS6231364B2 (en)
JP5670160B2 (en) Arc welding robot controller
JP2023090359A (en) Movement control method, control device, and welding apparatus
JP3478659B2 (en) Welding equipment
JPS5839030B2 (en) Teaching device for automatic welding equipment
JP2832630B2 (en) Welding line profiling control method
JPS649154B2 (en)
JP3644551B2 (en) Robot control method
JP5037270B2 (en) Teaching device for 3D laser processing machine
JPH0413109B2 (en)
JP3913614B2 (en) Automatic welding method and automatic welding robot controller
JPH0710435B2 (en) Welding equipment
JP2004042112A (en) Method and apparatus for control of welding condition of automatic welding equipment
JPH0318989B2 (en)