JP2000231938A - Polymer electrolyte battery - Google Patents

Polymer electrolyte battery

Info

Publication number
JP2000231938A
JP2000231938A JP11033216A JP3321699A JP2000231938A JP 2000231938 A JP2000231938 A JP 2000231938A JP 11033216 A JP11033216 A JP 11033216A JP 3321699 A JP3321699 A JP 3321699A JP 2000231938 A JP2000231938 A JP 2000231938A
Authority
JP
Japan
Prior art keywords
negative electrode
polymer electrolyte
battery
lithium
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11033216A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawai
徹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP11033216A priority Critical patent/JP2000231938A/en
Publication of JP2000231938A publication Critical patent/JP2000231938A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance dimensional precision, reduce an internal resistance and enhance cycle characteristics, by practically removing an internal air gap by assembling a battery having a positive electrode, a negative electrode and a polymer electrolyte layer in a CO2 atmosphere. SOLUTION: An unit cell having a gel sheet of polymer electrolyte 3 disposed and pressed between a positive electrode 1 containing a positive electrode active material of a transition metal oxide with lithium and a negative electrode 2 containing a negative electrode active material is put in a closed dry box where CO2 from a gas cylinder and the like flows in. A case body 4 of two laminated films with three-layer structure is disposed above and under the cell. At this time, CO2 practically contained in an air gap forms lithium carbonate in the negative electrode by a reaction to lithium produced during charging or lithium forming a layer-to-layer compound in the negative electrode and it is consumed, so as to practically remove the air gap. Remaining gas other than CO2 is fixed by the lithium at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー電解質電
池に関し、さらに詳しくは、携帯用電子機器、電気自動
車、ロードレベリングなどの電源として使用するのに適
したポリマー電解質電池に関する。
The present invention relates to a polymer electrolyte battery, and more particularly, to a polymer electrolyte battery suitable for use as a power source for portable electronic devices, electric vehicles, road leveling, and the like.

【0002】[0002]

【従来の技術】ポリマー電解質電池では、電解質をシー
ト状にすることができ、それによって、A4版、B5版
などの大面積でしかも薄形の電池の作製が可能になり、
各種薄形製品への適用が可能になって、電池の使用範囲
が大きく広がっている。特にポリマー電解質を用いた電
池は、耐漏液性を含めた安全性、貯蔵性が優れており、
しかも薄く、フレキシブルなので、機器の形状に合わせ
た電池を設計できるという、今までにない特徴を持って
いる。
2. Description of the Related Art In a polymer electrolyte battery, the electrolyte can be made into a sheet shape, thereby making it possible to produce a large-area and thin battery such as an A4 size plate or a B5 size plate.
Application to various thin products has become possible, and the range of use of batteries has been greatly expanded. In particular, batteries using polymer electrolytes have excellent safety and storage properties including leak resistance,
Moreover, because it is thin and flexible, it has an unprecedented feature that allows the battery to be designed according to the shape of the device.

【0003】このポリマー電解質電池は、通常、アルミ
ニウムフィルムを芯材にし、内面側に接着層となる樹脂
フィルムを配置したラミネートフィルムを外装体に用
い、薄いシート状の電極とシート状のポリマー電解質層
とを積層したユニットセルを上記外装体で外装すること
によって、薄いシート形電池に仕上げられる。
[0003] This polymer electrolyte battery usually uses a laminate film in which an aluminum film is used as a core material and a resin film serving as an adhesive layer is provided on the inner surface side for an outer package, and a thin sheet-like electrode and a sheet-like polymer electrolyte layer are used. By packaging the unit cell with the above-mentioned package with the above package, a thin sheet-type battery is completed.

【0004】[0004]

【発明が解決しようとする課題】このシート形ポリマー
電解質電池では、電極やポリマー電解質が実質上遊離の
液を含まず固体である。通常の円筒形電池や角形電池の
場合には、液状の電解質を用いており、鉄、アルミニウ
ムなどの強度の高い容器に収納されている。これらの液
状の電解質を用いる電池の場合、電池内に適切な体積の
エアギャップを設けていなければ、過充電などの異常事
態の発生により発熱したり、ガスが発生して電池の内部
圧力を増大させる状態になった場合、電池内圧が急激に
上昇し、破裂したり、爆発の原因になることがあった。
そのため、適切なエアギャップを設けるのが一般的であ
る。
In this sheet-type polymer electrolyte battery, the electrodes and the polymer electrolyte are substantially free of free liquid and are solid. In the case of a normal cylindrical battery or a prismatic battery, a liquid electrolyte is used and housed in a strong container such as iron or aluminum. In the case of batteries using these liquid electrolytes, unless an air gap with an appropriate volume is provided in the battery, the battery may generate heat due to an abnormal situation such as overcharging or generate gas and increase the internal pressure of the battery. In such a case, the internal pressure of the battery suddenly increases, which may cause a burst or an explosion.
Therefore, it is common to provide an appropriate air gap.

【0005】ところが、ポリマー電解質電池では、電池
の厚みを薄くするために、通常はアルミニウムフィルム
を芯材にしたラミネートフィルムを外装体に用いてお
り、電池の外装体の強度が低いため、仮に電池内部でガ
スが発生して内圧が上昇しても、破裂や爆発には至るこ
とはなかった。従って、エアギャップに対しては特に深
い注意を払われることがなかった。
However, in the case of a polymer electrolyte battery, a laminate film having an aluminum film as a core material is usually used for the outer package in order to reduce the thickness of the battery, and the strength of the outer package of the battery is low. Even if gas was generated inside and the internal pressure increased, it did not lead to rupture or explosion. Therefore, no particular attention was paid to the air gap.

【0006】しかしながら、このポリマー電解質電池で
は、電池内部に気体が存在すると、電池を折り曲げる際
に障害になったり、電池反応の円滑な進行を妨げてサイ
クル特性を低下させるなどの問題が発生し、従来の液状
電解質を用いる円筒形電池や角形電池とは異なり、エア
キャップがかえってトラブル発生の原因になることが判
明した。
However, in the polymer electrolyte battery, if gas is present inside the battery, problems occur such as obstruction when bending the battery, and impairing the smooth progress of the battery reaction to lower cycle characteristics. It has been found that unlike a conventional cylindrical battery or a rectangular battery using a liquid electrolyte, the air cap may cause a trouble instead.

【0007】従って、本発明は、上記のような事情に鑑
み、電池内のエアギャップを実質上なくし、寸法精度が
高く、内部抵抗が小さく、かつサイクル特性が優れたポ
リマー電解質電池を提供することを目的とする。
Accordingly, the present invention has been made in view of the above circumstances, and provides a polymer electrolyte battery having substantially no air gap in a battery, high dimensional accuracy, low internal resistance, and excellent cycle characteristics. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明は、電池を組み立
てる際の雰囲気をCO2 にし、エアギャップに含まれる
気体を実質上CO2 とし、そのCO2 を充電時に発生す
るリチウムなどを利用して電池内部で消費させることに
より、エアギャップを実質上なくすことによって、上記
課題を解決したものである。
Means for Solving the Problems The present invention, the atmosphere in the battery is assembled into CO 2, the gas contained in the air gap and substantially CO 2, using, for example, lithium to generate the CO 2 during charging The above problem is solved by making the air gap substantially eliminated by consuming the battery inside the battery.

【0009】また、電池組立時の雰囲気をCO2 雰囲気
にすることにより、たとえ電池内にCO2 以外の気体が
わずかに残存するようになっても、CO2 が充電時に発
生するリチウムまたは負極の炭素系材料の内部に形成す
るリチウムとの反応により電池内に固定されるので、電
池特性を低下させるのが防止される。
[0009] Further, by setting the atmosphere at the time of assembling the battery to a CO 2 atmosphere, even if a gas other than CO 2 slightly remains in the battery, the lithium or negative electrode generated during charging of CO 2 is charged. Since the battery is fixed in the battery by a reaction with lithium formed inside the carbon-based material, deterioration of battery characteristics is prevented.

【0010】[0010]

【発明の実施の形態】本発明において、正極活物質とし
ては、特に限定されることなく種々のものを用い得る
が、リチウムを含む遷移金属酸化物がエネルギー密度が
高く、可逆性に優れていることから好適に用いられ、具
体的には、例えば、LiCoO2 などのリチウムコバル
ト酸化物、LiMn2 4 などのリチウムマンガン酸化
物、LiNiO2 などのリチウムニッケル酸化物、それ
らの混合物、さらにはLiNiO 2 のNiの一部をCo
またはMnで置換したものなどが好適に用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a positive electrode active material is used.
Various types can be used without particular limitation.
However, the transition metal oxide containing lithium has an energy density
Highly used because of its excellent reversibility,
Physically, for example, LiCoOTwoSuch as lithium koval
Oxide, LiMnTwoOFourSuch as lithium manganese oxidation
Material, LiNiOTwoSuch as lithium nickel oxide, it
Mixtures thereof, and also LiNiO TwoPart of Ni in Co
Alternatively, those substituted with Mn are preferably used.

【0011】また、本発明において、負極活物質として
は、リチウムイオンをドープ・脱ドープできる物質であ
れば特に限定されることなく種々のものを用い得るが、
特に炭素系材料が好適に用いられ、具体的には、例え
ば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素
類、有機高分子化合物の焼成体、メソカーボンマイクロ
ビーズ、炭素繊維、活性炭、グラファイトなどが好適に
用いられる。
In the present invention, as the negative electrode active material, various materials can be used without particular limitation as long as they can dope and dedope lithium ions.
In particular, carbon-based materials are preferably used, and specifically, for example, graphite, pyrolytic carbons, cokes, glassy carbons, fired bodies of organic polymer compounds, mesocarbon microbeads, carbon fibers, activated carbon, Graphite or the like is preferably used.

【0012】[0012]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下においては、電池組
立時の雰囲気とエアギャップの大きさを変えて実施例お
よび比較例を説明していくが、それらの説明に先立って
正極、負極およびポリマー電解質層の作製について説明
する。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following, Examples and Comparative Examples will be described by changing the atmosphere at the time of battery assembly and the size of the air gap, but prior to the description, the preparation of the positive electrode, the negative electrode, and the polymer electrolyte layer will be described. .

【0013】正極の作製:正極活物質であるLiCoO
2 50重量部、導電助剤であるアセチレンブラック10
重量部、バインダーであるポリフッ化ビニリデン10重
量部を均一になるように混合し、さらに電解液40重量
部を加えて混合し、正極合剤含有ペーストを調製した。
上記電解液はプロピレンカーボネートとエチレンカーボ
ネートとの体積比1:1の混合溶媒にLiPF6 を1.
22モル/リットル溶解させたものである。そして、上
記のように調製した正極合剤含有ペーストを集電体とな
る厚さ20μmのアルミニウム箔の一方の面に塗布し、
加熱してゲル化させることによりアルミニウム箔上にゲ
ル状の正極合剤層を形成して、シート状の正極を作製し
た。ただし、上記正極の作製にあたっては、アルミニウ
ム箔の一部に正極合剤含有ペーストを塗布せずにアルミ
ニウム箔の露出部を残し、その露出部を外部端子として
の正極端子との接続部分にした。
Preparation of positive electrode: LiCoO as positive electrode active material
2 50 parts by weight, acetylene black 10 as a conductive auxiliary agent
Parts by weight and 10 parts by weight of polyvinylidene fluoride as a binder were uniformly mixed, and 40 parts by weight of an electrolytic solution were further added and mixed to prepare a positive electrode mixture-containing paste.
The electrolyte solution was prepared by mixing LiPF 6 in a mixed solvent of propylene carbonate and ethylene carbonate at a volume ratio of 1: 1.
22 mol / liter dissolved. Then, the positive electrode mixture-containing paste prepared as described above is applied to one surface of a 20 μm-thick aluminum foil serving as a current collector,
By heating and gelling, a gel-like positive electrode mixture layer was formed on the aluminum foil to produce a sheet-like positive electrode. However, in producing the positive electrode, the exposed portion of the aluminum foil was left without applying the positive electrode mixture-containing paste to part of the aluminum foil, and the exposed portion was used as a connection portion with the positive terminal as an external terminal.

【0014】負極の作製:負極活物質である黒鉛40重
量部とポリフッ化ビニリデン5重量部と上記正極に用い
たものと同様の電解液55重量部を混合して、負極合剤
含有ペーストを調製し、この負極合剤含有ペーストを集
電体となる厚さ10μmの銅箔の一方の面に塗布し、加
熱してゲル化させることにより銅箔上にゲル状の負極合
剤層を形成して、シート状の負極を作製した。ただし、
上記負極の作製にあたっても、銅箔の一部に負極合剤含
有ペーストを塗布せずに銅箔の露出部を残し、その露出
部を外部端子としての負極端子との接続部分にした。
Preparation of negative electrode : A negative electrode mixture-containing paste was prepared by mixing 40 parts by weight of graphite as the negative electrode active material, 5 parts by weight of polyvinylidene fluoride, and 55 parts by weight of the same electrolytic solution as used for the above positive electrode. Then, this negative electrode mixture-containing paste is applied to one surface of a 10 μm-thick copper foil serving as a current collector, and heated to gel to form a gelled negative electrode mixture layer on the copper foil. Thus, a sheet-shaped negative electrode was produced. However,
In producing the negative electrode, an exposed portion of the copper foil was left without applying the negative electrode mixture-containing paste to a part of the copper foil, and the exposed portion was used as a connection portion with a negative electrode terminal as an external terminal.

【0015】ポリマー電解質層の作製:厚さ70μmの
ポリオレフィン不織布を支持体とし、この不織布に3種
類のアクリル系モノマー混合物15重量部とその重合開
始剤である過酸化ベンゾイル0.75重量部と前記同様
の電解液85重量部とを混合した溶液を含浸させ、加熱
してモノマーを重合させるとともに全体をゲル化して、
シート状のゲル状ポリマー電解質層を作製した。上記ア
クリル系モノマー混合物は2−エトキシエチルアクリレ
ートとトリエチレングリコールジメタクリルレートとエ
チレングリコールエチルカーボネートメタクリレートと
を重量比50:13:33の割合で混合したものであ
る。
Preparation of polymer electrolyte layer: A polyolefin non-woven fabric having a thickness of 70 μm was used as a support, and the non-woven fabric was combined with 15 parts by weight of a mixture of three acrylic monomers and 0.75 parts by weight of benzoyl peroxide as a polymerization initiator. Impregnated with a mixed solution of the same electrolyte solution 85 parts by weight, heated to polymerize the monomer and gelled the whole,
A sheet-like gel polymer electrolyte layer was prepared. The acrylic monomer mixture is a mixture of 2-ethoxyethyl acrylate, triethylene glycol dimethacrylate, and ethylene glycol ethyl carbonate methacrylate in a weight ratio of 50:13:33.

【0016】このポリマー電解質層を上記正極と負極と
の間に配置し、圧着してユニットセルを構成し、該ユニ
ットセルを外装する外装体としてポリエステルフィルム
−アルミニウムフィルム−変性ポリオレフィンフィルム
からなる三層構造のラミネートフィルムを準備した。
This polymer electrolyte layer is disposed between the above-mentioned positive electrode and negative electrode, and pressed to form a unit cell, and a three-layer consisting of a polyester film-aluminum film-modified polyolefin film is provided as a package for covering the unit cell. A laminated film having a structure was prepared.

【0017】実施例1 上記正極、負極、ポリマー電解質層をCO2 雰囲気(こ
のCO2 雰囲気はCO 2 ボンベより100%CO2 を密
閉式ドライボックスに流入させることによって形成し
た)に入れ、上記外装体としてのラミネートフィルムを
2枚用い、負極上にポリマー電解質層を載置し、さらに
そのポリマー電解質層上に正極を載置してユニットセル
を作製し、上記CO2 雰囲気中で、その上下にラミネー
トフィルムを配置し(ただし、その変性ポリオレフィン
フィルム同士が対向するように配置する)、周囲を加熱
して上記ラミネートフィルムの変性ポリオレフィンフィ
ルムを熱融着させることにより、上記正極、ポリマー電
解質層および負極からなるユニットセルを外装体で外装
してシート形で容量1Ahのポリマー電解質電池を組み
立てた。その際、シール時の減圧レベルをコントロール
することにより、残存するCO2 などの気体がエアギャ
ップとして0.15ccになるようにした。
Example 1 The above positive electrode, negative electrode and polymer electrolyte layer wereTwoAtmosphere (this
COTwoAtmosphere is CO Two100% CO from cylinderTwoDense
Formed by flowing into a closed dry box
), And put the laminate film as the exterior body
Using two sheets, placing the polymer electrolyte layer on the negative electrode,
Place the positive electrode on the polymer electrolyte layer and unit cell
And the above COTwoLaminate above and below in the atmosphere
Place the film (however, the modified polyolefin
(Place the films so that they face each other)
The modified polyolefin film of the laminate film
The above positive electrode, polymer electrode
The unit cell consisting of the decomposition layer and the negative electrode is packaged with a package.
To form a 1Ah capacity polymer electrolyte battery in sheet form
I stood up. At that time, control the pressure reduction level during sealing
By doing so, the remaining COTwoSuch as air
It was set to 0.15 cc as a tip.

【0018】上記電池の概略構造を図1を参照しつつ説
明すると、シート状の正極1とシート状の負極2との間
にシート状のポリマー電解質層3が配置してユニットセ
ルが構成され、そのユニットセルをラミネートフィルム
からなる外装体4で外装している。そして、正極1と電
気的に接続する正極端子5が上記外装体4の外部に配置
し、負極2と電気的に接続する負極端子6が上記外装体
4の外部に配置している。
The schematic structure of the battery will be described with reference to FIG. 1. A unit cell is constituted by disposing a sheet-like polymer electrolyte layer 3 between a sheet-like positive electrode 1 and a sheet-like negative electrode 2. The unit cell is packaged with a package 4 made of a laminate film. A positive electrode terminal 5 electrically connected to the positive electrode 1 is arranged outside the outer package 4, and a negative electrode terminal 6 electrically connected to the negative electrode 2 is arranged outside the outer package 4.

【0019】比較例1 電池組立時の雰囲気をドライエア雰囲気(このドライエ
ア雰囲気は露点−30℃の大気をドライボックスに流し
込むことによって形成した)にした以外は、実施例1と
同様にポリマー電解質電池を製造した。
Comparative Example 1 A polymer electrolyte battery was prepared in the same manner as in Example 1 except that the atmosphere at the time of assembling the battery was a dry air atmosphere (the dry air atmosphere was formed by flowing air having a dew point of -30 ° C. into a dry box). Manufactured.

【0020】比較例2 電池組立時の雰囲気をアルゴンガス雰囲気(このアルゴ
ンガス雰囲気は100%Ar循環式ドライボックスによ
り形成した)にした以外は、実施例1と同様にポリマー
電解質電池を製造した。
Comparative Example 2 A polymer electrolyte battery was manufactured in the same manner as in Example 1, except that the atmosphere at the time of assembling the battery was changed to an argon gas atmosphere (this argon gas atmosphere was formed by a 100% Ar circulation type dry box).

【0021】実施例2 実施例1と同様のCO2 雰囲気中において、エヤギャッ
プを0.1ccにした以外は、実施例1と同様にポリマ
ー電解質電池を製造した。なお、エアギャップを0.1
ccにするにあたっては、シール時の減圧度をエアギャ
ップを0.15ccにした時よりも高めることによって
エアギャップが0.1ccになるようにした。
Example 2 A polymer electrolyte battery was manufactured in the same manner as in Example 1 except that the air gap was set to 0.1 cc in the same CO 2 atmosphere as in Example 1. The air gap is set to 0.1
In order to make the air gap 0.1 cc, the air gap was made 0.1 cc by increasing the degree of decompression during sealing as compared with the case where the air gap was made 0.15 cc.

【0022】比較例3 比較例1と同様のドライエア雰囲気中において、エアギ
ャップを0.1ccにした以外は、実施例1と同様にポ
リマー電解質電池を製造した。
Comparative Example 3 A polymer electrolyte battery was manufactured in the same manner as in Example 1 except that the air gap was set to 0.1 cc in the same dry air atmosphere as in Comparative Example 1.

【0023】比較例4 比較例2と同様のアルゴンガス雰囲気中において、エア
ギャップを0.1ccにした以外は、実施例1と同様に
ポリマー電解質電池を製造した。
Comparative Example 4 A polymer electrolyte battery was manufactured in the same manner as in Example 1 except that the air gap was set to 0.1 cc in the same argon gas atmosphere as in Comparative Example 2.

【0024】上記実施例1〜2および比較例1〜4の電
池の内部抵抗、組立時および充電後の電池の膨れならび
にサイクル特性を調べた。その結果を表1に示す。
The batteries of Examples 1 and 2 and Comparative Examples 1 to 4 were examined for internal resistance, battery swelling during assembly and after charging, and cycle characteristics. Table 1 shows the results.

【0025】上記内部抵抗は両端子間の抵抗をLCRメ
ーターを用いて1kHz交流法により測定した。
The above-mentioned internal resistance was obtained by measuring the resistance between both terminals by an alternating current method at 1 kHz using an LCR meter.

【0026】また、電池の膨れは組立時および充電後に
目視によって調べ、その結果を大、中、なし、で表示す
るが、その大、中、なし、は次の状態にあることを示し
ている。なお、上記充電は4.2V、0.2Cで8時間
のCCCV(定電流電圧規制)で行なった。
The swelling of the battery is visually inspected at the time of assembling and after charging, and the results are indicated as large, medium, and none. The large, medium, and none indicate the following states. . The charging was performed at 4.2 V, 0.2 C for 8 hours under CCCV (constant current voltage regulation).

【0027】 なし:見た目に膨れが認められない。 中 :わずかに膨れが認められる。 大 :見た目に大きな膨れが認められる。None: No swelling is observed. Medium: slight swelling is observed. Large: Large swelling is observed.

【0028】また、サイクル特性は、4.2V、1Cの
CCCVで3時間充電、2.75V終止で1C放電のサ
イクル条件で100サイクルまで充放電を繰り返し、初
回と100サイクル目の放電容量の比率〔(100サイ
クル目の放電容量/初回の放電容量)×100〕で評価
した。
The cycle characteristics were as follows: charge / discharge was repeated up to 100 cycles under a cycle condition of charging at 4.2 V and 1 C CCCV for 3 hours, ending at 2.75 V and discharging at 1 C, and the ratio of the discharge capacity between the first cycle and the 100th cycle. It was evaluated by [(discharge capacity at 100th cycle / initial discharge capacity) × 100].

【0029】[0029]

【表1】 [Table 1]

【0030】表1に示す結果から明らかに示すように、
CO2 雰囲気中で組み立てた実施例1〜2は、内部抵抗
が小さく、組立時には膨れがあるものの、充電後には膨
れがなくなり、サイクル特性が優れていた。
As clearly shown from the results shown in Table 1,
In Examples 1 and 2 assembled in a CO 2 atmosphere, although the internal resistance was small and swelled during assembly, the swelling disappeared after charging, and the cycle characteristics were excellent.

【0031】これに対して、ドライエア雰囲気中やアル
ゴン雰囲気中で組み立てた比較例1〜4は、実施例1〜
2に比べて内部抵抗が大きく、電池の膨れが充電後にも
残り、またサイクル特性も実施例1〜2に比べて劣って
いた。
On the other hand, Comparative Examples 1-4 assembled in a dry air atmosphere or an argon atmosphere are Examples 1 to 4.
2, the internal resistance was larger than that of Examples 1 and 2, and the swelling of the battery remained after charging, and the cycle characteristics were inferior to those of Examples 1 and 2.

【0032】なお、ポリマー電解質のゲル化に際して
は、上記実施例で示した以外に、例えば、ラジカル重合
型の不飽和ポリエステル、または、ラジカル重合型のア
クリル系エポキシアクリレート、ウレタンアクリレー
ト、ポリエステルアクリレート、アルキッドアクリレー
ト、シリコンアクリレートなどの光硬化性樹脂を紫外線
または電子線を用いてゲル化させるものであってもよ
い。また、ポリマー電解質層の作製も正極や負極などの
電極をゲル状でない通常の状態に作製し、その周囲を不
織布などの支持体で包囲し、それにゲル化成分を含有す
る電解液を含浸させてゲル化させることによってゲル状
ポリマー電解質にしてもよい。
In the gelation of the polymer electrolyte, in addition to those shown in the above examples, for example, radical polymerizable unsaturated polyester or radical polymerizable acrylic epoxy acrylate, urethane acrylate, polyester acrylate, alkyd A photocurable resin such as acrylate or silicon acrylate may be gelled using ultraviolet rays or electron beams. In addition, the preparation of the polymer electrolyte layer is also performed by preparing electrodes such as a positive electrode and a negative electrode in a normal state that is not gelled, surrounding the periphery with a support such as a nonwoven fabric, and impregnating the electrolyte containing a gelling component. A gel polymer electrolyte may be formed by gelation.

【0033】[0033]

【発明の効果】以上説明したように、本発明では、電池
組立時の雰囲気をCO2 雰囲気にすることにより、充電
後にはエアギャップを実質上なくし、寸法精度が高く、
内部抵抗が小さく、かつサイクル特性が優れたポリマー
電解質電池を提供することができた。
As described above, according to the present invention, the atmosphere at the time of assembling the battery is made to be a CO 2 atmosphere, so that the air gap is substantially eliminated after charging, and the dimensional accuracy is high.
It was possible to provide a polymer electrolyte battery having low internal resistance and excellent cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るポリマー電解質電池の一例を模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one example of a polymer electrolyte battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 ポリマー電解質層 4 外装体 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Polymer electrolyte layer 4 Package

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極およびポリマー電解質層を有
するポリマー電解質電池において、電池組立時の雰囲気
がCO2 雰囲気であることを特徴とするポリマー電解質
電池。
1. A polymer electrolyte battery having a positive electrode, a negative electrode, and a polymer electrolyte layer, wherein the atmosphere during battery assembly is a CO 2 atmosphere.
【請求項2】 電池組立時にエアギャップを構成する気
体が実質上CO2 である請求項1記載のポリマー電解質
電池。
2. The polymer electrolyte battery according to claim 1, wherein the gas constituting the air gap when the battery is assembled is substantially CO 2 .
【請求項3】 組立後、充電時に発生するリチウムまた
は負極の炭素系材料の内部に層間化合物を形成するリチ
ウムとの反応により負極に炭酸リチウムを形成し、エア
ギャップ内部のCO2 を消費して実質上エアギャップを
なくした請求項2記載のポリマー電解質電池。
3. After assembling, lithium carbonate is formed on the negative electrode by reaction with lithium generated during charging or lithium forming an intercalation compound inside the carbon-based material of the negative electrode, and CO 2 in the air gap is consumed. 3. The polymer electrolyte battery according to claim 2, wherein the air gap is substantially eliminated.
JP11033216A 1999-02-10 1999-02-10 Polymer electrolyte battery Withdrawn JP2000231938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11033216A JP2000231938A (en) 1999-02-10 1999-02-10 Polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11033216A JP2000231938A (en) 1999-02-10 1999-02-10 Polymer electrolyte battery

Publications (1)

Publication Number Publication Date
JP2000231938A true JP2000231938A (en) 2000-08-22

Family

ID=12380265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11033216A Withdrawn JP2000231938A (en) 1999-02-10 1999-02-10 Polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JP2000231938A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333522A1 (en) * 2002-02-01 2003-08-06 Batrec Industrie AG Method of and apparatus for storage and handling of objects comprising alkali metals, such as alkali metal containing batteries
WO2007007771A1 (en) 2005-07-07 2007-01-18 Fujifilm Corporation Solid electrolyte multilayer membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
WO2007007824A1 (en) 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
WO2014183040A1 (en) * 2013-05-10 2014-11-13 ZAF Energy Systems, Incorporated Alkaline battery with electrolyte gradient
CN104969407A (en) * 2013-02-04 2015-10-07 丰田自动车株式会社 Method for manufacturing lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333522A1 (en) * 2002-02-01 2003-08-06 Batrec Industrie AG Method of and apparatus for storage and handling of objects comprising alkali metals, such as alkali metal containing batteries
US7833646B2 (en) 2002-02-01 2010-11-16 Batrec Industrie Ag Method of and apparatus for dismantling and storage of objects comprising alkali metals, such as alkali metal containing batteries
WO2007007771A1 (en) 2005-07-07 2007-01-18 Fujifilm Corporation Solid electrolyte multilayer membrane, method and apparatus of producing the same, membrane electrode assembly, and fuel cell
WO2007007824A1 (en) 2005-07-07 2007-01-18 Fuji Film Corporation Solid electrolyte membrane, method and apparatus for producing the same, membrane electrode assembly and fuel cell
CN104969407A (en) * 2013-02-04 2015-10-07 丰田自动车株式会社 Method for manufacturing lithium ion secondary battery
WO2014183040A1 (en) * 2013-05-10 2014-11-13 ZAF Energy Systems, Incorporated Alkaline battery with electrolyte gradient

Similar Documents

Publication Publication Date Title
JP4136344B2 (en) Lithium secondary battery and manufacturing method thereof
JP2004095400A (en) Bipolar battery and its control method
JPWO2002043178A1 (en) Polymer electrolyte battery and method of manufacturing the same
WO2001095421A1 (en) Battery
US20230327180A1 (en) Method of producing lithium ion secondary battery and negative electrode material
JPWO2020004343A1 (en) Secondary battery and its manufacturing method
KR100462668B1 (en) Polymer cell
JP5072505B2 (en) Polymer electrolyte secondary battery
JP4193248B2 (en) Gel electrolyte battery
JP2003331838A (en) Lithium secondary battery
JP5553169B2 (en) Lithium ion secondary battery
JP5553170B2 (en) Lithium ion secondary battery
KR100459871B1 (en) Composition of non-aqueous electrolytes useful for batteries and capacitors
JP2000231938A (en) Polymer electrolyte battery
KR20190079960A (en) Reusing method for end of life cell
JP2000260470A (en) Polymer electrolyte battery
JP2002184466A (en) Battery for portable equipment
JP2000133274A (en) Polymer lithium secondary battery
JP4266290B2 (en) Solid electrolyte battery
JP2022100813A (en) Secondary battery
JP2002313420A (en) Lithium secondary battery
JP2000306607A (en) Nonaqueous electrolyte battery
JP7529704B2 (en) Positive electrode and secondary battery including the same
JP5614590B2 (en) Lithium ion secondary battery
JP2000123827A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509