JP2000230755A - Pulse tube refrigerating machine - Google Patents

Pulse tube refrigerating machine

Info

Publication number
JP2000230755A
JP2000230755A JP11031682A JP3168299A JP2000230755A JP 2000230755 A JP2000230755 A JP 2000230755A JP 11031682 A JP11031682 A JP 11031682A JP 3168299 A JP3168299 A JP 3168299A JP 2000230755 A JP2000230755 A JP 2000230755A
Authority
JP
Japan
Prior art keywords
pulse tube
temperature end
refrigerant gas
cold heat
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11031682A
Other languages
Japanese (ja)
Other versions
JP3935282B2 (en
Inventor
Shuji Fujimoto
修二 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP03168299A priority Critical patent/JP3935282B2/en
Publication of JP2000230755A publication Critical patent/JP2000230755A/en
Application granted granted Critical
Publication of JP3935282B2 publication Critical patent/JP3935282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the restriction of an aspect ratio and miniaturize a pulse tube refrigerating machine as a whole. SOLUTION: A refrigerating machine is provided with a compressor 1 for compressing refrigerant gas, a switching valve 2 for switching high-pressure refrigerant gas, supplied from the compressor 1, to low-pressure refrigerant gas, returning into the compressor 1, a cold heat storage device 3, connected to the switching valve 2 to store cold heat upon expansion of the high-pressure refrigerant gas, a pulse tube 5 for repeating compression and expansion by a pressure wave applied through the cold heat storage device 3 and a low- temperature end connecting tube 4 to generate cold heat, a buffer tank 7, connected to the high-temperature end unit of the pulse tube 5 through an orifice valve 6, and a double-inlet valve 8 for connecting the connecting part between the switching valve 2 and the cold heat storage device 3 to the high-temperature end of the pulse tube 5. In this case, surface treatment such as plating treatment, mirror work or the like is applied on at least the circular part of the high- temperature end and the low-temperature end as well as a cylindrical part near the circular parts among the inner surfaces of the pulse tube 5 to reduce an emissivity in these parts.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はパルス管冷凍機に
関し、さらに詳細にいえば、機械的に往復動するディス
プレーサに代えて、同様な機能を達成するパルス管を用
いるパルス管冷凍機に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a pulse tube refrigerator, and more particularly, to a pulse tube refrigerator using a pulse tube that achieves a similar function in place of a mechanically reciprocating displacer.

【0002】[0002]

【従来の技術】従来から、機械的に往復動するディスプ
レーサに代えて、同様な機能を達成するパルス管を用い
ることにより、機械的振動の発生を大幅に低減できるパ
ルス管冷凍機が提案されている。
2. Description of the Related Art Conventionally, there has been proposed a pulse tube refrigerator capable of greatly reducing the occurrence of mechanical vibration by using a pulse tube having the same function instead of a mechanically reciprocating displacer. I have.

【0003】このパルス管冷凍機は、冷媒ガスを圧縮す
る圧縮機と、この圧縮機からの高圧冷媒ガスと圧縮機に
戻る低圧冷媒ガスとを切り換える切り換え弁と、この切
り換え弁に連結されて高圧冷媒ガスの膨脹時の冷熱を蓄
冷する蓄冷器と、この蓄冷器および低温端接続管を通し
て加えられる圧力波によって圧縮、膨脹を繰り返して冷
熱を発生するパルス管と、パルス管の高温端部とオリフ
ィス弁を介して接続されたバッファタンクと、前記切り
換え弁と蓄冷器との接続部とパルス管の高温端部とを接
続するダブルインレット弁とを有している。
The pulse tube refrigerator has a compressor for compressing a refrigerant gas, a switching valve for switching between a high-pressure refrigerant gas from the compressor and a low-pressure refrigerant gas returning to the compressor, and a high-pressure valve connected to the switching valve. A regenerator that accumulates cold heat when the refrigerant gas expands, a pulse tube that generates cold heat by repeatedly compressing and expanding by a pressure wave applied through the regenerator and the low-temperature end connecting pipe, a high-temperature end of the pulse tube and an orifice It has a buffer tank connected via a valve, and a double inlet valve for connecting a connection between the switching valve and the regenerator and a high-temperature end of the pulse tube.

【0004】この構成のパルス管冷凍機を採用すれば、
切り換え弁を動作させることにより、蓄冷器および低温
端接続管を通してパルス管内に圧力波を供給して、パル
ス管内の冷媒ガスの圧縮、膨脹を反復させ、冷熱を発生
させる。そして、発生された冷熱を蓄冷器に蓄冷させ
る。また、オリフィス弁、バッファタンク、およびダブ
ルインレット弁によって、パルス管内の冷媒ガスの圧
縮、膨脹の位相を制御して、前記冷熱の発生を良好に行
うことができる。
[0004] If a pulse tube refrigerator of this configuration is adopted,
By operating the switching valve, a pressure wave is supplied into the pulse tube through the regenerator and the low-temperature end connection tube, and the compression and expansion of the refrigerant gas in the pulse tube are repeated to generate cold heat. Then, the generated cold heat is stored in the regenerator. In addition, the orifice valve, the buffer tank, and the double inlet valve can control the phase of the compression and expansion of the refrigerant gas in the pulse tube, so that the cold heat can be favorably generated.

【0005】[0005]

【発明が解決しようとする課題】上記の構成のパルス管
冷凍機を採用した場合には、機械的に往復動するディス
プレーサを有していないので機械的振動の発生を大幅に
低減できる反面、パルス管の高温端部と低温端部との間
の輻射熱が増加し、冷凍能力が小さくなってしまうとい
う不都合がある。
In the case where the pulse tube refrigerator having the above-mentioned structure is employed, since there is no mechanically reciprocating displacer, the occurrence of mechanical vibration can be greatly reduced. There is the disadvantage that the radiant heat between the hot end and the cold end of the tube increases and the refrigeration capacity decreases.

【0006】特に、2段或いは3段のパルス管冷凍機に
おいては、この輻射熱のために、2段目或いは3段目の
パルス管のアスペクト比(直径/長さの比)に制約があ
り、このアスペクト比を大きくすることができないの
で、パルス管冷凍機が大型化してしまう。
Particularly, in a two-stage or three-stage pulse tube refrigerator, the aspect ratio (diameter / length ratio) of the second-stage or third-stage pulse tube is restricted due to the radiant heat. Since the aspect ratio cannot be increased, the size of the pulse tube refrigerator increases.

【0007】[0007]

【発明の目的】この発明は上記の問題点に鑑みてなされ
たものであり、アスペクト比の制約を小さくして、全体
として小型化できるパルス管冷凍機を提供することを目
的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide a pulse tube refrigerator that can reduce the restriction on the aspect ratio and can be reduced in size as a whole.

【0008】[0008]

【課題を解決するための手段】請求項1のパルス管冷凍
機は、冷媒ガスを圧縮する圧縮機と、この圧縮機からの
高圧冷媒ガスと圧縮機に戻る低圧冷媒ガスとを切り換え
る切り換え弁と、この切り換え弁に連結されて高圧冷媒
ガスの膨脹時の冷熱を蓄冷する蓄冷器と、この蓄冷器を
通して加えられる圧力波によって圧縮、膨脹を繰り返し
て冷熱を発生する少なくとも1つのパルス管とを有する
ものであって、パルス管として、輻射率が小さい内面を
有するものを採用するものである。
According to a first aspect of the present invention, there is provided a pulse tube refrigerator including a compressor for compressing a refrigerant gas, and a switching valve for switching between a high pressure refrigerant gas from the compressor and a low pressure refrigerant gas returning to the compressor. A regenerator connected to the switching valve for accumulating cold energy when the high-pressure refrigerant gas expands, and at least one pulse tube for generating cold energy by repeating compression and expansion by a pressure wave applied through the regenerator. And a pulse tube having an inner surface with a small emissivity is used.

【0009】[0009]

【作用】請求項1のパルス管冷凍機であれば、圧縮機に
よって冷媒ガスを圧縮し、切り換え弁によって、この圧
縮機からの高圧冷媒ガスと圧縮機に戻る低圧冷媒ガスと
を切り換え、切り換え弁によって切り換えられる高圧冷
媒ガスと低圧冷媒ガスとを交互にパルス管に供給して圧
縮、膨脹を繰り返して冷熱を発生させ、発生した冷熱を
蓄冷器に蓄冷することができる。そして、パルス管とし
て、輻射率が小さい内面を有するものを採用しているの
であるから、パルス管の高温端部と低温端部との間の輻
射熱を低減してパルス管のアスペクト比の制約を緩和
し、全体としての小型化を達成することができる。
According to the pulse tube refrigerator of the first aspect, the refrigerant gas is compressed by the compressor, and the switching valve switches between the high-pressure refrigerant gas from the compressor and the low-pressure refrigerant gas returning to the compressor. The high-pressure refrigerant gas and the low-pressure refrigerant gas, which are switched by the above, are alternately supplied to the pulse tube to repeatedly compress and expand to generate cold heat, and the generated cold heat can be stored in the regenerator. Since the pulse tube has an inner surface with a low emissivity, the radiation heat between the high-temperature end and the low-temperature end of the pulse tube is reduced to restrict the aspect ratio of the pulse tube. It is possible to reduce the size and achieve the size reduction as a whole.

【0010】[0010]

【発明の実施の形態】以下、添付図面を参照して、この
発明のパルス管冷凍機の実施態様を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a pulse tube refrigerator according to the present invention will be described in detail with reference to the accompanying drawings.

【0011】図1はこの発明のパルス管冷凍機の一実施
態様を示す概略図である。
FIG. 1 is a schematic view showing an embodiment of a pulse tube refrigerator according to the present invention.

【0012】このパルス管冷凍機は、冷媒ガスを圧縮す
る圧縮機1と、この圧縮機1からの高圧冷媒ガスと圧縮
機1に戻る低圧冷媒ガスとを切り換える切り換え弁2
と、この切り換え弁2に連結されて高圧冷媒ガスの膨脹
時の冷熱を蓄冷する蓄冷器3と、この蓄冷器3および低
温端接続管4を通して加えられる圧力波によって圧縮、
膨脹を繰り返して冷熱を発生するパルス管5と、パルス
管5の高温端部とオリフィス弁6を介して接続されたバ
ッファタンク7と、前記切り換え弁2と蓄冷器3との接
続部とパルス管5の高温端部とを接続するダブルインレ
ット弁8とを有している。なお、パルス管5内に破線で
示す部分はガスピストンである。
The pulse tube refrigerator has a compressor 1 for compressing a refrigerant gas, and a switching valve 2 for switching between a high-pressure refrigerant gas from the compressor 1 and a low-pressure refrigerant gas returning to the compressor 1.
A regenerator 3 connected to the switching valve 2 for accumulating cold heat when the high-pressure refrigerant gas is expanded, and a compression wave generated by the pressure wave applied through the regenerator 3 and the low-temperature end connection pipe 4.
A pulse tube 5 for generating cold heat by repeating expansion, a buffer tank 7 connected to a high-temperature end of the pulse tube 5 via an orifice valve 6, a connection portion between the switching valve 2 and the regenerator 3, and a pulse tube 5 has a double inlet valve 8 for connecting to the high temperature end. The portion indicated by a broken line in the pulse tube 5 is a gas piston.

【0013】そして、パルス管5の内面のうち、少なく
とも、高温端、低温端の円形部およびこれらの近傍の円
筒部にメッキ処理(金、ニッケル、亜鉛、錫、アルミニ
ウムなどを用いるメッキ処理)、鏡面加工などの表面処
理を施して、これらの部分における輻射率を小さくして
いる(具体的には、金メッキした場合の輻射率は0.0
1〜0.02、銅の研磨面の輻射率は0.02であ
る)。また、上記の処理を行った後に該当する表面が酸
化すると輻射率が大きくなる(具体的には、銅の酸化面
の輻射率は0.6である)ので、大気に曝さないように
するなどの酸化防止策を施すことが好ましい。もちろ
ん、パルス管5の内面の全範囲に対して上記の表面処理
を施してもよい。
[0013] At least the inner and outer circular portions of the pulse tube 5 at the high-temperature end and the low-temperature end and a cylindrical portion in the vicinity thereof are plated (plating using gold, nickel, zinc, tin, aluminum, or the like). Surface treatment such as mirror finishing is performed to reduce the emissivity in these parts (specifically, the emissivity in the case of gold plating is 0.0
1 to 0.02, the emissivity of the polished copper surface is 0.02). In addition, if the surface is oxidized after the above-described treatment, the emissivity increases (specifically, the emissivity of the oxidized surface of copper is 0.6). It is preferable to take measures to prevent oxidation. Of course, the above-mentioned surface treatment may be applied to the entire inner surface of the pulse tube 5.

【0014】この構成のパルス管冷凍機を採用すれば、
切り換え弁2を動作させることにより、蓄冷器3および
低温端接続管4を通してパルス管5内に圧力波を供給し
て、パルス管5内の冷媒ガスの圧縮、膨脹を反復させ、
冷熱を発生させる。そして、発生された冷熱を蓄冷器3
に蓄冷させる。また、オリフィス弁6、バッファタンク
7、およびダブルインレット弁8によって、パルス管5
内の冷媒ガスの圧縮、膨脹の位相を制御して、前記冷熱
の発生を良好に行うことができる。
If the pulse tube refrigerator having this configuration is adopted,
By operating the switching valve 2, a pressure wave is supplied into the pulse tube 5 through the regenerator 3 and the low-temperature end connection tube 4, and the compression and expansion of the refrigerant gas in the pulse tube 5 are repeated,
Generate cold heat. Then, the generated cold heat is stored in the regenerator 3
Let cool. The orifice valve 6, buffer tank 7, and double inlet valve 8 allow the pulse tube 5
By controlling the phases of the compression and expansion of the refrigerant gas in the inside, the cold heat can be favorably generated.

【0015】また、パルス管5の高温端部と低温端部と
の間における輻射熱を大幅に低減できるので、パルス管
5のアスペクト比を大きくすることができ、ひいては、
パルス管冷凍機を全体として小型化することができる。
Further, since radiant heat between the high-temperature end and the low-temperature end of the pulse tube 5 can be greatly reduced, the aspect ratio of the pulse tube 5 can be increased, and
The pulse tube refrigerator can be downsized as a whole.

【0016】図2はこの発明のパルス管冷凍機の他の実
施態様を示す概略図である。
FIG. 2 is a schematic view showing another embodiment of the pulse tube refrigerator of the present invention.

【0017】このパルス管冷凍機が図1のパルス管冷凍
機と異なる点は、パルス管5を2段にした点のみであ
る。
This pulse tube refrigerator differs from the pulse tube refrigerator of FIG. 1 only in that the pulse tube 5 has two stages.

【0018】さらに詳細に説明する。This will be described in more detail.

【0019】図2の実施態様においては、蓄冷器3とし
て、第1段の蓄冷器3aと第2段の蓄冷器3bとが互い
に直列接続されてなるものを採用し、第1段の蓄冷器3
aおよび低温端接続管4aを通して加えられる圧力波に
よって圧縮、膨脹を繰り返して冷熱を発生する第1のパ
ルス管5aと、第1段の蓄冷器3a、第2段の蓄冷器3
bおよび低温端接続管4bを通して加えられる圧力波に
よって圧縮、膨脹を繰り返して冷熱を発生する第2のパ
ルス管5bとを設けている。そして、第1のパルス管5
aの高温端部とオリフィス弁6aを介して接続されたバ
ッファタンク7aと、切り換え弁2と第1段の蓄冷器3
aとの接続部と第1のパルス管5aの高温端部とを接続
するダブルインレット弁8aとを有している。また、第
2のパルス管5bの高温端部とオリフィス弁6bを介し
て接続されたバッファタンク7bと、切り換え弁2と第
1段の蓄冷器3aとの接続部と第2のパルス管5bの高
温端部とを接続するダブルインレット弁8bとを有して
いる。なお、第1のパルス管5a、第2のパルス管5b
内に破線で示す部分はガスピストンである。
In the embodiment shown in FIG. 2, a regenerator 3 in which a first-stage regenerator 3a and a second-stage regenerator 3b are connected in series with each other is adopted as the regenerator 3. 3
a, a first pulse tube 5a that repeatedly compresses and expands by a pressure wave applied through the low-temperature end connection pipe 4a to generate cold heat, a first-stage regenerator 3a, and a second-stage regenerator 3
b and a second pulse tube 5b which generates cold heat by repeating compression and expansion by a pressure wave applied through the low temperature end connection tube 4b. And the first pulse tube 5
a, a switching tank 2 and a first-stage regenerator 3
a and a high-temperature end of the first pulse tube 5a. Also, a buffer tank 7b connected to the high-temperature end of the second pulse tube 5b via the orifice valve 6b, a connection between the switching valve 2 and the first stage regenerator 3a, and a second pulse tube 5b. And a double inlet valve 8b for connecting to the high temperature end. Note that the first pulse tube 5a and the second pulse tube 5b
The part shown by a broken line is a gas piston.

【0020】図2の構成のパルス管冷凍機を採用した場
合には、各パルス管において図1の実施態様と同様の動
作を行って冷熱を発生させ、対応する蓄冷器に蓄冷させ
ることができるとともに、各パルス管内の冷媒ガスの圧
縮、膨脹の位相を制御して、前記冷熱の発生を良好に行
うことができる。
When the pulse tube refrigerator having the structure shown in FIG. 2 is employed, the same operation as that of the embodiment shown in FIG. 1 is performed in each pulse tube to generate cold heat and to store the heat in the corresponding regenerator. At the same time, the phase of the compression and expansion of the refrigerant gas in each pulse tube is controlled so that the cold heat can be favorably generated.

【0021】また、各パルス管の高温端部と低温端部と
の間における輻射熱を大幅に低減できるので、パルス管
のアスペクト比を大きくすることができ、ひいては、パ
ルス管冷凍機を全体として小型化することができる。
Further, since the radiant heat between the high-temperature end and the low-temperature end of each pulse tube can be greatly reduced, the aspect ratio of the pulse tube can be increased, and the pulse tube refrigerator can be reduced in size as a whole. Can be

【0022】さらに詳細に説明する。This will be described in more detail.

【0023】一般にパルス管冷凍機の冷凍能力Qは、数
1で求められる。
Generally, the refrigerating capacity Q of a pulse tube refrigerator is obtained by the following equation (1).

【0024】[0024]

【数1】 ただし、Aはパルス管の断面積、Sはガスピストンのス
トローク、fは運転周波数(圧力波の周波数)、Lは熱
損失である。
(Equation 1) Here, A is the cross-sectional area of the pulse tube, S is the stroke of the gas piston, f is the operating frequency (frequency of the pressure wave), and L is the heat loss.

【0025】数1から分かるように、パルス管の断面積
を大きくすると冷凍能力Qを大きくすることができる
が、パルス管の高温端部の内表面と低温端部の内方面と
の間における輻射熱のやりとりに起因する熱損失が大き
くなる。ここで、平行な2面間における輻射熱交換量Q
radは、数2で与えられる。
As can be seen from equation (1), the refrigeration capacity Q can be increased by increasing the cross-sectional area of the pulse tube, but the radiant heat between the inner surface of the high-temperature end and the inner surface of the low-temperature end of the pulse tube can be increased. The heat loss resulting from the exchange of heat increases. Here, the radiant heat exchange amount Q between two parallel surfaces
rad is given by Equation 2.

【0026】[0026]

【数2】 ただし、Aは面の表面積、T1は高温側表面の温度、T
2は低温側表面の温度、ε1は高温側表面の輻射率、ε
2は低温側表面の輻射率、σはステファン・ボルツマン
の定数(=5.67×10-8W/m2・K4)である。
(Equation 2) Here, A is the surface area of the surface, T1 is the temperature of the high temperature side surface, T
2 is the temperature of the low-temperature surface, ε1 is the emissivity of the high-temperature surface, ε
2 is the emissivity of the low-temperature side surface, and σ is Stefan-Boltzmann's constant (= 5.67 × 10 −8 W / m 2 · K 4 ).

【0027】したがって、単にパルス管の断面積を大き
くしても、必ずしも冷凍能力を大きくすることはできな
い。しかし、パルス管の高温端部の内表面と低温端部の
内方面とにおける輻射率を小さくすれば、輻射熱のやり
とりに起因する熱損失を小さくして冷凍能力Qを大きく
することができる。また、輻射熱のやりとりに起因する
熱損失が小さくなるので、パルス管のアスペクト比を大
きくすることができ、パルス管冷凍機を全体として小型
化することができる。
Therefore, simply increasing the cross-sectional area of the pulse tube cannot necessarily increase the refrigerating capacity. However, if the emissivity between the inner surface of the high-temperature end and the inner surface of the low-temperature end of the pulse tube is reduced, the heat loss due to the exchange of radiant heat can be reduced and the refrigerating capacity Q can be increased. In addition, since the heat loss due to the exchange of radiant heat is reduced, the aspect ratio of the pulse tube can be increased, and the pulse tube refrigerator can be downsized as a whole.

【0028】具体的には、特に表面処理を施していない
材料でパルス管の高温端部の内表面と低温端部の内方面
とを構成した場合にはこれらの輻射率は1.0となるの
に対して、パルス管の高温端部の内表面と低温端部の内
方面とに鏡面加工、メッキ処理などの表面処理を施した
場合にはこれらの輻射率は0.1以下になる。
More specifically, when the inner surface of the high-temperature end and the inner surface of the low-temperature end of the pulse tube are made of a material that has not been subjected to a surface treatment, the emissivity thereof becomes 1.0. On the other hand, when the inner surface of the high-temperature end and the inner surface of the low-temperature end of the pulse tube are subjected to surface treatment such as mirror finishing or plating, their emissivity becomes 0.1 or less.

【0029】ここで、1段冷凍機(T1=300K、T
2=80K)と、2段冷凍機(T1=300K、T2=
20K)とについて、輻射熱のやりとりに起因する熱損
失の影響を考えると、パルス管の直径が3cmである場
合に、輻射率が1.0であれば、輻射熱量は1段冷凍
機、2段冷凍機、共に0.32Wであるのに対して、輻
射率が0.1であれば、輻射熱量は1段冷凍機、2段冷
凍機、共に0.02Wである。したがって、冷却ステー
ジの温度(各段の冷凍機の低温端部側表面の温度T2が
80Kの場合と20Kの場合とで大きな差は現れない。
しかしながら、2段冷凍機の第2ステージは、第1ステ
ージや1段冷凍機に比べて、他の損失(蓄冷器の非効率
による損失など)が大きくなって冷凍能力が小さくなる
のが一般的であるから、単位冷凍能力に対する輻射熱損
失の占める割合が大きくなる。したがって、数2に基づ
く計算結果からは輻射熱量の差は現れないにも拘わら
ず、輻射熱損失の寄与率は大きく異なる。 以上の説明
から明らかなように、パルス管のアスペクト比を大きく
しなくても、輻射熱損失を小さくできることに起因し
て、冷凍能力を大きくすることができる。また、輻射熱
損失が小さくなることに起因してパルス管のアスペクト
比を大きくすれば、冷凍能力を大きくすることができる
だけでなく、パルス管冷凍機を全体として小型化するこ
とができる。
Here, a one-stage refrigerator (T1 = 300K, T
2 = 80K) and a two-stage refrigerator (T1 = 300K, T2 =
20K), considering the effect of heat loss due to the exchange of radiant heat, when the pulse tube diameter is 3 cm and the emissivity is 1.0, the amount of radiant heat is one-stage refrigerator, two-stage When the emissivity is 0.1, the radiation heat is 0.02 W for both the single-stage refrigerator and the two-stage refrigerator. Therefore, a large difference does not appear between the temperature of the cooling stage (the case where the temperature T2 of the low-temperature end side surface of the refrigerator in each stage is 80K and 20K).
However, in the second stage of the two-stage refrigerator, other losses (loss due to inefficiency of the regenerator) and the refrigerating capacity are generally reduced as compared with the first stage and the one-stage refrigerator. Therefore, the ratio of the radiant heat loss to the unit refrigeration capacity increases. Therefore, although the difference in the amount of radiant heat does not appear from the calculation result based on Equation 2, the contribution ratio of the radiant heat loss is significantly different. As is clear from the above description, the refrigeration capacity can be increased without increasing the aspect ratio of the pulse tube, because the radiation heat loss can be reduced. In addition, if the aspect ratio of the pulse tube is increased due to the reduced radiation heat loss, not only can the refrigeration capacity be increased, but also the pulse tube refrigerator can be downsized as a whole.

【0030】なお、図2のパルス管冷凍機においては、
第2のパルス管5bを、第1段の蓄冷器3aおよび第2
段の蓄冷器3bからなる蓄冷器と並列に接続している
が、第2のパルス管5bを第2段の蓄冷器3bのみと並
列に接続することが可能である。ただし、このように構
成すると、オリフィス弁6bおよびバッファタンク7b
をも低温化しなければならないので、図2の構成を採用
することが好ましい。また、パルス管を3つ以上設ける
構成を採用することも可能である。
In the pulse tube refrigerator shown in FIG.
The second pulse tube 5b is connected to the first stage regenerator 3a and the second regenerator 3a.
Although it is connected in parallel with the regenerator composed of the regenerators 3b in the stage, the second pulse tube 5b can be connected in parallel with only the regenerator 3b in the second stage. However, with this configuration, the orifice valve 6b and the buffer tank 7b
It is preferable to adopt the configuration shown in FIG. It is also possible to adopt a configuration in which three or more pulse tubes are provided.

【0031】[0031]

【発明の効果】請求項1の発明は、、パルス管の高温端
部と低温端部との間の輻射熱を低減してパルス管のアス
ペクト比の制約を緩和し、全体としての小型化を達成す
ることができるという特有の効果を奏する。
According to the first aspect of the present invention, the radiant heat between the high-temperature end and the low-temperature end of the pulse tube is reduced, the restriction on the aspect ratio of the pulse tube is relaxed, and the overall size is reduced. It has a specific effect that it can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明のパルス管冷凍機の一実施態様を示す
概略図である。
FIG. 1 is a schematic view showing one embodiment of a pulse tube refrigerator of the present invention.

【図2】この発明のパルス管冷凍機の他の実施態様を示
す概略図である。
FIG. 2 is a schematic view showing another embodiment of the pulse tube refrigerator of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 切り換え弁 3 蓄冷器 3a 第1段の蓄冷器 3b 第2段の蓄冷器 5 パルス管 5a 第1のパルス管 5b 第2のパルス管 REFERENCE SIGNS LIST 1 compressor 2 switching valve 3 regenerator 3a regenerator on first stage 3b regenerator on second stage 5 pulse tube 5a first pulse tube 5b second pulse tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスを圧縮する圧縮機(1)と、こ
の圧縮機(1)からの高圧冷媒ガスと圧縮機(1)に戻
る低圧冷媒ガスとを切り換える切り換え弁(2)と、こ
の切り換え弁(2)に連結されて高圧冷媒ガスの膨脹時
の冷熱を蓄冷する蓄冷器(3)(3a)(3b)と、こ
の蓄冷器(3)(3a)(3b)を通して加えられる圧
力波によって圧縮、膨脹を繰り返して冷熱を発生する少
なくとも1つのパルス管(5)(5a)(5b)とを有
するパルス管冷凍機であって、 パルス管(5)(5a)(5b)として、輻射率が小さ
い内面を有するものを採用していることを特徴とするパ
ルス管冷凍機。
1. A compressor (1) for compressing a refrigerant gas, a switching valve (2) for switching between a high-pressure refrigerant gas from the compressor (1) and a low-pressure refrigerant gas returning to the compressor (1), Regenerators (3), (3a), (3b) connected to the switching valve (2) for storing cold heat during expansion of the high-pressure refrigerant gas, and pressure waves applied through the regenerators (3), (3a), (3b) A pulse tube refrigerator having at least one pulse tube (5), (5a), (5b) that repeatedly compresses and expands to generate cold heat, wherein the pulse tube (5), (5a), (5b) emits radiation. A pulse tube refrigerator having an inner surface with a low efficiency.
JP03168299A 1999-02-09 1999-02-09 Pulse tube refrigerator Expired - Fee Related JP3935282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03168299A JP3935282B2 (en) 1999-02-09 1999-02-09 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03168299A JP3935282B2 (en) 1999-02-09 1999-02-09 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JP2000230755A true JP2000230755A (en) 2000-08-22
JP3935282B2 JP3935282B2 (en) 2007-06-20

Family

ID=12337877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03168299A Expired - Fee Related JP3935282B2 (en) 1999-02-09 1999-02-09 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP3935282B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304799C (en) * 2005-10-09 2007-03-14 浙江大学 Dual-way air-intake vascular refrigeator with corrugated pipe direct-current blocking-up structure
CN104807233A (en) * 2015-03-30 2015-07-29 中国科学院理化技术研究所 Gas coupling type high-frequency pulse tube refrigerator
JP7507966B2 (en) 2020-08-27 2024-06-28 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッド Coaxial double inlet valve for pulse tube coolers.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304799C (en) * 2005-10-09 2007-03-14 浙江大学 Dual-way air-intake vascular refrigeator with corrugated pipe direct-current blocking-up structure
CN104807233A (en) * 2015-03-30 2015-07-29 中国科学院理化技术研究所 Gas coupling type high-frequency pulse tube refrigerator
JP7507966B2 (en) 2020-08-27 2024-06-28 スミトモ (エスエイチアイ) クライオジェニックス オブ アメリカ インコーポレイテッド Coaxial double inlet valve for pulse tube coolers.

Also Published As

Publication number Publication date
JP3935282B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
US7363767B2 (en) Multi-stage pulse tube cryocooler
US5107683A (en) Multistage pulse tube cooler
EP3477225B1 (en) Cryogenic system
US7143587B2 (en) Low frequency pulse tube system with oil-free drive
CA2562029A1 (en) Cryocooler system with frequency modulating mechanical resonator
JP4362632B2 (en) Pulse tube refrigerator
US7234307B2 (en) Cryocooler with grooved flow straightener
US5387252A (en) Cryogenic refrigerator
CN109556318B (en) Thermoacoustic refrigerator
JP2000230755A (en) Pulse tube refrigerating machine
JP2609327B2 (en) refrigerator
JPH03117855A (en) Chiller type cryogenic refrigerator
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
US5697219A (en) Cryogenic refrigerator
JP2007093120A (en) Pulse tube refrigerating machine
JPH1194382A (en) Pulse tube refrigerator
CN113237246B (en) Stirling refrigerating and heating integrated machine
JP2723342B2 (en) Cryogenic refrigerator
Gawali et al. Performance prediction and experimental investigations on integral pulse tube cryocooler for 15 W at 70 K using indigenously developed linear compressor
JP2880154B1 (en) Pulse tube refrigerator
JP2698477B2 (en) Cryogenic refrigerator
JP2004347175A (en) Impulse wave tube refrigerator
JP2001289522A (en) U-shaped pulse-tube refrigerator
JP2001317824A (en) Very low temperature freezer
JPH11351686A (en) Pulse tube refrigerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees