JP2000228996A - Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria - Google Patents

Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria

Info

Publication number
JP2000228996A
JP2000228996A JP11030733A JP3073399A JP2000228996A JP 2000228996 A JP2000228996 A JP 2000228996A JP 11030733 A JP11030733 A JP 11030733A JP 3073399 A JP3073399 A JP 3073399A JP 2000228996 A JP2000228996 A JP 2000228996A
Authority
JP
Japan
Prior art keywords
methane
acetic acid
sludge
amount
assimilating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11030733A
Other languages
Japanese (ja)
Inventor
Akira Matsunaga
旭 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP11030733A priority Critical patent/JP2000228996A/en
Publication of JP2000228996A publication Critical patent/JP2000228996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To simply and exactly estimate the content of acetic acid-assimilating methane bacteria and the amount of the acetic acid-assimilating methane bacteria in the methane fermentation. SOLUTION: The methane formation activity of the sludge specimen collected from the fermentation tank in the methane tank is calculated from the VSS (crude suspended matter or organic suspended matter) and from the rate of the methane formation measured in an apparatus for measuring the acetic acid-assimilating methane bacteria by adding an adjusted culture medium and a prescribed amount of sodium acetate. Then, the calculated value of the methane formation activity is substituted into the computational equation between the content acetic acid-assimilating methane bacteria in the sludge and the methane formation activity whereby the content of the acetic acid-assimilating methane bacteria in the sludge can be estimated. Further the acetic acid-assimilating methane bacteria can be estimated from the relation between the content of the methane bacteria in the sludge, the value of the concentration of sludge specimen and the amount of the acetic acid-assimilating methane bacteria specimen concentration in the sludge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、メタン発酵にお
ける汚泥の活性を簡易測定して酢酸資化性メタン生成菌
汚泥含有比率と酢酸資化性メタン生成菌量を推定する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for simply measuring the activity of sludge in methane fermentation and estimating the sludge content ratio and the amount of acetic acid-utilizing methane-forming bacteria.

【0002】[0002]

【従来の技術】メタン発酵においてメタン生成活性やメ
タン生成菌量の測定を行なうことは発酵タンクにおける
汚泥の活性を知るうえで大変意義深いことである。
2. Description of the Related Art In methane fermentation, the measurement of methane production activity and the amount of methane-producing bacteria is very significant in knowing the activity of sludge in a fermentation tank.

【0003】通常、メタン生成活性は、リアクターから
汚泥の一部を採取して無機塩を含む緩衝液を入れたバイ
アル瓶に入れ、酢酸や水素などの基質を供給して、この
時のメタン生成速度と汚泥試料VSS(粗浮遊物または
有機性浮遊物)濃度から算出される。これをバイアル法
メタン生成活性と呼称する。珠坪らが環境工学研究論文
集,第32巻,pp.201〜212(1995)に報告したグラニュ
ール汚泥を対象としたメタン生成活性測定の記述による
と、この測定方法の概略は次のようである。バイアル瓶
には、あらかじめ煮沸、脱酸素操作を行ない、試験温度
に設定した無機塩類(NH4Cl、MgCl2・6H
2O、CaCl2、FeCl2・4H2O)を含むリン酸緩
衝液(バイアル内最終濃度25mM)とリアクターから採
取したグラニュール汚泥(ホモジナイズ処理したもの)
を投入する。ブチルゴム栓とアルミキャップでシールを
施した後、気相部を窒素ガスでパージし、レザズリン
(溶存酸素の有無を知るための指示薬、バイアル内最終
濃度1mg/l)、還元剤(Na2S・9H2O、バイア
ル内最終濃度250mg/l)を加える。30〜40分程度、
シェーカー内で振とう(ロータリーシェーカーを使用、
130rpm、振とう半径5cm)して、バイアル内の温度が
安定したところで酢酸、水素(H2:CO2=80:20,1.
4atm)などの各基質については、5〜8時間)の試験時
間中にバイアル部のメタン量を、経時的に5〜7点測定
することにより活性を求める。なお、以上の操作は加熱
した金属銅を用いて完全に酸素を除去した窒素ガスの気
流下で行なう。また、バイアル液相部の初発COD濃度
は、2000mgCOD/lとする。
[0003] Usually, the methane production activity is determined by collecting a part of the sludge from the reactor, placing it in a vial containing a buffer containing an inorganic salt, and supplying a substrate such as acetic acid or hydrogen. It is calculated from the velocity and the sludge sample VSS (coarse or organic suspension) concentration. This is referred to as vial methane production activity. Shutsubo et al., Journal of Environmental Engineering, Vol. According to the description of methane production activity measurement for granulated sludge reported in 201-212 (1995), the outline of this measurement method is as follows. In the vial bottle, inorganic salts (NH 4 Cl, MgCl 2 .6H
Phosphate buffer solution (final concentration in vial: 25 mM) containing 2 O, CaCl 2 , FeCl 2 · 4H 2 O) and granule sludge collected from the reactor (homogenized)
Input. After sealing with a butyl rubber stopper and an aluminum cap, the gas phase was purged with nitrogen gas, and resazurin (indicator for determining the presence or absence of dissolved oxygen, final concentration in vials 1 mg / l), reducing agent (Na 2 S. 9H 2 O, 250 mg / l final concentration in the vial). About 30-40 minutes,
Shake in shaker (use rotary shaker,
Acetic acid and hydrogen (H 2 : CO 2 = 80: 20, 1.20) when the temperature in the vial was stabilized at 130 rpm and a shaking radius of 5 cm.
For each substrate such as 4 atm), the activity is determined by measuring the amount of methane in the vial at 5 to 7 points over time during the test time of 5 to 8 hours). The above operation is performed under a stream of nitrogen gas from which oxygen has been completely removed using heated metallic copper. The initial COD concentration in the liquid portion of the vial is 2000 mg COD / l.

【0004】上記のバイアル法メタン生成活性に対し
て、リアクターのメタン生成速度とVSSからもメタン
生成活性を算出することができ、これをリアクターメタ
ン生成活性と呼称する。バイアル法メタン生成活性は、
リアクターに供給された基質に対する実際のメタン生成
活性を表している。
With respect to the methane production activity in the vial method described above, the methane production activity can be calculated from the methane production rate of the reactor and VSS, and this is referred to as reactor methane production activity. Vial methanogenic activity is:
It represents the actual methanogenic activity on the substrate fed to the reactor.

【0005】一方、メタン菌量を測定するいくつかの方
法が提案されており、MPN法(最確数法)は代表的な
ものである。最近ではメタン菌に特有でかつ普遍的に存
在する補酵素F420の量を蛍光測定する方法が開発されて
いる。しかし、既存の方法は操作が複雑すぎたり、間接
的であるなどの理由により実用レベルには達しておら
ず、日常的にメタン菌量の測定を行なっている例はな
い。
On the other hand, several methods for measuring the amount of methane bacteria have been proposed, and the MPN method (most probable number method) is representative. How to fluorescence measuring the amount of coenzyme F 420 that exist unique and and universal methane bacteria have been developed recently. However, the existing methods have not reached the practical level because the operation is too complicated or indirect, and there is no example of measuring the amount of methane bacteria on a daily basis.

【0006】発酵タンクにおけるメタン生成は、メタン
生成菌による有機物の嫌気性分解によって行なわれてお
り、その70〜75%が酢酸を経由している。この酢酸をメ
タンと二酸化炭素に分解できるメタン生成菌は、酢酸資
化性メタン生成菌と呼ばれている。また、残り30〜25%
は、水素資化性メタン生成菌による水素と二酸化炭素か
らメタンを生成する経路を介している。
[0006] Methane production in a fermentation tank is performed by anaerobic decomposition of organic matter by methanogens, 70 to 75% of which passes through acetic acid. Methanogens that can decompose acetic acid into methane and carbon dioxide are called acetic acid-utilizing methanogens. In addition, the remaining 30-25%
Is via a pathway that produces methane from hydrogen and carbon dioxide by hydrogen-assimilating methanogens.

【0007】Valckeらは、酢酸資化性メタン生成菌の菌
重量を測定する実用的な方法を提案し、Journal Water
Pollution Control Federation,55(9)1191〜1195(1
983)に発表した。この方法は一定量の汚泥試料に対し
て、酢酸ナトリウムの添加量を増加させていくことによ
って、混合液1リットル当り、1日当りの最高メタン生
成速度を測定し、一定温度では最大比活性(菌重量当り
最高メタン生成速度)は一定であると仮定して、菌量
(汚泥1リットル当り菌重量)を算出する。
[0007] Valcke et al. Proposed a practical method for measuring the weight of acetic acid-assimilating methane-producing bacteria.
Pollution Control Federation, 55 (9) 1191-1195 (1
983). This method measures the maximum methane production rate per liter of the mixed liquid per day by increasing the amount of sodium acetate added to a fixed amount of sludge sample. Assuming that the maximum methane production rate per weight) is constant, the amount of bacteria (the weight of bacteria per liter of sludge) is calculated.

【0008】次にこの方法について順次述べる。Next, this method will be described sequentially.

【0009】(1)酢酸資化性メタン生成菌測定装置 Valckeらの方法では図1に示すような測定装置を用いて
いる。この装置の構成は次の様になっている。即ち、容
積2リットルの三角フラスコ1に汚泥試料、培地および
基質として酢酸ナトリウムを入れ、これに磁石製の攪拌
子5を入れて磁気攪拌機4を用いて攪拌する。酢酸が分
解して生成したガスは二酸化炭素を除去するための1
N、NaOHを入れた洗気ビン2を通過して、ガス捕集
器3に貯留される。このガス捕集器3はメスシリンダー
6に水を満たして水槽7の水面上に逆さに立てたもの
で、ガスがたまるとメスシリンダー6の水面が低下す
る。メスシリンダー6の水面位置の変化を読み取ること
により、メタン生成量がわかるようになっている。この
図1に示す装置と同じものを数セット用意したものが一
つの測定装置となる。
(1) Measuring device for acetic acid-utilizing methane-producing bacteria In the method of Valcke et al., A measuring device as shown in FIG. 1 is used. The configuration of this device is as follows. That is, a sludge sample, a medium, and sodium acetate as a substrate are put into a 2 liter Erlenmeyer flask 1, a magnetic stirrer 5 is put therein, and the mixture is stirred using a magnetic stirrer 4. The gas generated by the decomposition of acetic acid is used to remove carbon dioxide.
After passing through the air-washing bottle 2 containing N and NaOH, it is stored in the gas collector 3. The gas collector 3 is configured by filling the measuring cylinder 6 with water and standing upside down on the water surface of the water tank 7, and when the gas accumulates, the water surface of the measuring cylinder 6 lowers. By reading the change in the water surface position of the measuring cylinder 6, the amount of methane generated can be determined. One set of the same device as shown in FIG. 1 is one measuring device.

【0010】図2は、Valckeらの方法に準じた酢酸資化
性メタン生成菌測定装置の部分構成である。この装置は
磁気攪拌を行っていないことやガス捕集器や保温機構な
どにValckeらの方法との相違があるが、測定原理は同じ
である。図2において、符号21は容積1リットルの細口
瓶であり、この細口瓶21を恒温水槽22に入れ、水槽の両
端にまたがる棒から紐で結んで吊るす。細口瓶21は恒温
水槽22の水に浮き、水が攪拌されることによって揺れ動
く。細口瓶21には汚泥試料とミネラル溶液及び酢酸ナト
リウムが入れられ、発生したガスは細口瓶21の上部のガ
ス出口からガス導管23を通過して、1NのNaOHを満
たした洗気瓶24を通過する。洗気瓶でCO2が除去され
たガスはガスホルダー25に入り、飽和食塩水26の上に貯
留され、ガスホルダーの上下動をスケール27で読み取り
メタン生成量が測定される。
FIG. 2 shows a partial configuration of an apparatus for measuring acetic acid assimilating methane-producing bacteria according to the method of Valcke et al. Although this device does not perform magnetic stirring and differs from the method of Valcke et al. In a gas collector and a heat retaining mechanism, the measurement principle is the same. In FIG. 2, reference numeral 21 denotes a small-mouthed bottle having a capacity of 1 liter. The small-mouthed bottle 21 is placed in a constant temperature water bath 22 and is hung with a string from a rod extending over both ends of the water bath. The narrow-mouthed bottle 21 floats on the water in the constant temperature water tank 22 and swings as the water is stirred. The sludge sample, mineral solution and sodium acetate are put in the narrow-mouthed bottle 21, and the generated gas passes through the gas conduit 23 from the gas outlet at the upper part of the narrow-mouthed bottle 21 and passes through the gas washing bottle 24 filled with 1N NaOH. I do. The gas from which CO 2 has been removed by the gas washing bottle enters a gas holder 25 and is stored on a saturated saline solution 26. The vertical movement of the gas holder is read by a scale 27 to measure the amount of methane generated.

【0011】図3は、Valckeらの方法に準じた酢酸資化
性メタン生成菌測定装置の全体構成である。この装置の
構造は次のようになっている。投げ込み式ヒーター36を
設置した恒温水槽34(容積20リットル)に容積1リット
ルの細口ビン31を6本入れる。恒温水槽34の両端にまた
がる棒39を2本渡し、この棒39に細口ビン31をひも40で
結んで吊るす。細口ビン31は恒温水槽34の水に浮き、水
が攪拌されることによって揺れ動く。細口ビン31には汚
泥試料と培地および酢酸ナトリウムを入れ、発生したガ
スは細口ビン31上部のガス出口からガス導管38を通過し
て、1N、NaOHを満たした洗気ビン32を通過する。
洗気ビン32でCO2が除去されたガスはガスホルダー37
に貯留され、ガスホルダー37の上下動をスケール33で読
み取り、メタン生成量が算出される。
FIG. 3 shows the overall configuration of an apparatus for measuring acetic acid assimilating methane-producing bacteria according to the method of Valcke et al. The structure of this device is as follows. Six 1-liter narrow-mouthed bottles 31 are placed in a constant temperature water tank 34 (volume: 20 liters) in which a throw-in type heater 36 is installed. Two sticks 39 are passed over both ends of the constant temperature water tank 34, and the narrow mouth bottle 31 is tied to the sticks 39 with a string 40 and hung. The narrow-mouthed bottle 31 floats on the water in the constant temperature water bath 34 and swings as the water is stirred. The sludge sample, culture medium and sodium acetate are put in the narrow-mouthed bottle 31, and the generated gas passes through the gas conduit 38 from the gas outlet at the upper part of the narrow-mouthed bottle 31, and passes through the gas washing bottle 32 filled with 1N NaOH.
The gas from which CO 2 has been removed in the air purifying bottle 32 is supplied to the gas holder 37.
The vertical movement of the gas holder 37 is read by the scale 33, and the methane generation amount is calculated.

【0012】培地と汚泥試料の調整、生成メタンの測定
等について説明する。
The preparation of the culture medium and the sludge sample, the measurement of the generated methane, and the like will be described.

【0013】(2)培地の調整 KH2PO4;2.5g、K2HPO4;1.0g、NH4Cl;
1.0g、MgCl2;0.1g、酵母エキス;0.2g、Na2
S・9H2O;0.1gを1リットルの水に溶解して培地を
調整する。
(2) Preparation of medium KH 2 PO 4 ; 2.5 g, K 2 HPO 4 ; 1.0 g, NH 4 Cl;
1.0 g, MgCl 2 ; 0.1 g, yeast extract; 0.2 g, Na 2
A medium is prepared by dissolving 0.1 g of S · 9H 2 O in 1 liter of water.

【0014】(3)汚泥試料の調整 汚泥消化タンクから約2リットルの汚泥を採取して、そ
の汚泥試料の一部を用いて、SS(浮遊物)及びVSS
(粗浮遊物または有機性浮遊物)を測定し、細口ビン11
に培地0.5リットルを入れてN2ガスで1分間以上曝気し
てから、汚泥試料を0.25リットル入れる。(混合後のV
SSは約5g/lとするので、汚泥試料のVSSの高低
により混合比を調整する必要がある。) (4)測定操作 細口ビン31にガス導管38を接続して、30℃で1〜2日保
温する。その後、5本の細口ビン31に酢酸ナトリウムを
それぞれ1.5、2.3、3.1、3.9、4.6g添加し(汚泥VS
S1g当りの酢酸換算添加量は0.3、0.45、0.6、0.75、
0.9gとなる)、それ以外の1本は酢酸ナトリウム無添
加の対象試料とする。1NのHClまたはNaOHを用
いて、pHを6.7に調整して、N2ガスで曝気してふたたび
ガス導管18を接続して1〜2日保温してメタン発生量を
測定する。
(3) Adjustment of sludge sample Approximately 2 liters of sludge is collected from a sludge digestion tank, and a part of the sludge sample is used for SS (suspended matter) and VSS.
(Coarse or organic suspended matter)
0.5 liter of medium and aerated with N 2 gas for 1 minute or more, and then 0.25 liter of sludge sample. (V after mixing
Since the SS is about 5 g / l, it is necessary to adjust the mixing ratio depending on the level of the VSS of the sludge sample. (4) Measurement operation Connect the gas conduit 38 to the narrow-mouthed bottle 31 and keep it warm at 30 ° C for 1 to 2 days. Thereafter, 1.5, 2.3, 3.1, 3.9, and 4.6 g of sodium acetate were added to the five narrow-mouthed bottles 31 (sludge VS).
Acetic acid conversion amount per gram of S is 0.3, 0.45, 0.6, 0.75,
0.9 g), and the other one is a target sample without sodium acetate. The pH is adjusted to 6.7 using 1N HCl or NaOH, aerated with N 2 gas, and the gas conduit 18 is connected again and kept warm for one to two days to measure the amount of methane generated.

【0015】(5)計算方法 経過時間と累積メタン生成量の関係より、24時間当りの
メタン生成量が最大となるところを選択して、これをV
max:1日当り最大メタン生成量(ml/gVSS・日)とす
る。
(5) Calculation method From the relationship between the elapsed time and the accumulated methane generation amount, a point where the methane generation amount per 24 hours is maximum is selected, and this is calculated as V
max: The maximum amount of methane produced per day (ml / g VSS · day).

【0016】酢酸資化性メタン生成菌の最大メタン発生
量を1000ml/gVSS・日と仮定すると次式により酢酸資
化性メタン生成菌量(実際には菌の重量濃度)が算出さ
れる。
Assuming that the maximum amount of methane-producing methane-producing bacteria is 1000 ml / g VSS · day, the amount of acetic-acid-producing methane-producing bacteria (actually, the weight concentration of bacteria) is calculated by the following equation.

【0017】[0017]

【数1】 (Equation 1)

【0018】尚、この式においてVmax/1000は酢酸資
化性メタン生成菌の汚泥含有比率(酢酸資化性メタン生
成菌量/VSS)に相当し、これに100を乗じたVma
x/10は百分率(%)表示となる。
In this equation, Vmax / 1000 corresponds to the sludge content ratio of acetic acid-utilizing methane-producing bacteria (acetic acid-utilizing methane-producing bacteria / VSS).
x / 10 is expressed in percentage (%).

【0019】[0019]

【発明が解決しようとする課題】Valckeらの方法による
酢酸資化性メタン生成菌量の測定方法では酢酸の添加量
を段階的に変化させて最大メタン生成量が得られるとこ
ろを選択する。そのため、1回の測定を行うために図1
に示した測定装置と同じものを数セット用意して、各セ
ット毎に同じ測定操作を行う必要があり、測定操作に要
する手間が多くなるという問題がある。
In the method of measuring the amount of acetic acid assimilating methane-producing bacteria according to the method of Valcke et al., The point at which the maximum amount of methane is obtained is selected by changing the amount of acetic acid added stepwise. Therefore, in order to perform one measurement, FIG.
It is necessary to prepare several sets of the same measuring apparatus as described in (1) and perform the same measuring operation for each set, which causes a problem that the time and effort required for the measuring operation are increased.

【0020】本発明は上記の事情に鑑みてなされたもの
で、測定の精度をあまり低下させずに測定操作に要する
手間を省くことができ、また自動測定装置の実用化を図
るうえで有用性の高いメタン発酵における酢酸資化性メ
タン生成菌汚泥含有比率推定方法と酢酸資化性メタン生
成菌量推定方法を提供することを目的とするものであ
る。
The present invention has been made in view of the above circumstances, and can save the labor required for the measurement operation without significantly lowering the measurement accuracy, and is useful in realizing the practical use of an automatic measurement device. It is an object of the present invention to provide a method for estimating the sludge content ratio of acetic acid assimilating methane-producing bacteria and the method of estimating the amount of acetic acid assimilating methane-producing bacteria in methane fermentation having a high level.

【0021】[0021]

【課題を解決するための手段】本発明は、上記の課題を
達成するために、第1発明は、メタン発酵タンクから採
取した汚泥試料と培地を容器に入れた後、その容器を一
定時間保温してから、一定量の酢酸ナトリウムを前記容
器に添加し、その後さらに一定時間保温してメタン生成
量を得た後に、得られたメタン生成量を基に前記汚泥試
料に対して一定量の酢酸ナトリウムを添加した時のメタ
ン生成活性と前記同一汚泥試料に対して測定された酢酸
資化性メタン生成菌汚泥含有比率との相関関係から導い
た演算式に前記メタン生成活性の値を代入して酢酸資化
性メタン生成菌汚泥含有比率を推定することを特徴とし
ている。
Means for Solving the Problems In order to achieve the above object, the present invention is directed to a first invention in which a sludge sample and a medium collected from a methane fermentation tank are put into a container, and the container is kept warm for a certain period of time. After that, a certain amount of sodium acetate was added to the container, and then further kept for a certain period of time to obtain a methane production amount.Based on the obtained methane production amount, a certain amount of acetic acid was added to the sludge sample. Substituting the value of the methanogenic activity into an arithmetic expression derived from the correlation between the methanogenic activity when sodium was added and the acetic acid assimilating methanogen sludge content ratio measured for the same sludge sample It is characterized by estimating the acetic acid assimilating methanogen sludge content ratio.

【0022】第2発明は、前記演算式が下記式からなる
ことを特徴としている。
A second invention is characterized in that the arithmetic expression comprises the following expression.

【0023】y=Ax+B A:31.6〜32.8 B:0.27〜0.45 x;メタン生成活性(kgCH4−COD/kgVSS・日) y;酢酸資化性メタン生成菌汚泥含有比率(%) 第3発明は、メタン発酵タンクから採取した汚泥試料と
培地を容器に入れた後、その容器を一定時間保温してか
ら、一定量の酢酸ナトリウムを前記容器に添加し、その
後さらに一定時間保温してメタン生成量を得た後に、得
られたメタン生成量を基に前記汚泥試料に対して一定量
の酢酸ナトリウムを添加した時の比メタン生成活性と前
記同一汚泥試料に対して測定された酢酸資化性メタン生
成菌汚泥含有比率との相関関係から導いた演算式に前記
メタン生成活性の値を代入して酢酸資化性メタン生成菌
汚泥含有比率を推定した後、酢酸資化性メタン生成菌量
と酢酸資化性メタン生成菌含有比率と汚泥試料濃度との
関係を示す演算式に前記酢酸資化性メタン生成菌汚泥含
有比率の値と前記汚泥試料濃度の値を代入して酢酸資化
性メタン生成菌量を推定することを特徴としている。
Y = Ax + B A: 31.6-32.8 B: 0.27-0.45 x; methanogenic activity (kgCH 4 -COD / kgVSS / day) y; acetic acid assimilating methanogenic sludge content ratio (%) After putting the sludge sample and the medium collected from the methane fermentation tank into a container, keeping the container warm for a certain period of time, adding a certain amount of sodium acetate to the container, and then further keeping the container warm for a certain period of time to produce methane. After obtaining the specific methane production activity when a certain amount of sodium acetate is added to the sludge sample based on the obtained methane production amount and the acetic acid assimilating methane measured for the same sludge sample. After estimating the acetic acid-utilizing methane-producing sludge content ratio by substituting the value of the methane-producing activity into the arithmetic expression derived from the correlation with the producing bacterium sludge content ratio, the amount of acetic acid-utilizing methane-producing bacteria and acetic acid were estimated. Assimilable methanogen content Substituting the value of the acetic acid-utilizing methane-producing bacterium sludge content ratio and the value of the sludge sample concentration into an arithmetic expression indicating the relationship with the sludge sample concentration, and estimating the amount of acetic-acid-utilizing methane-producing bacteria, I have.

【0024】第4発明は、前記の酢酸資化性メタン生成
菌量と酢酸資化性メタン生成菌含有比率と汚泥試料濃度
との関係を示す演算式が下記式からなることを特徴とし
ている。
A fourth aspect of the present invention is characterized in that an arithmetic expression showing the relationship between the amount of acetic acid-utilizing methane-producing bacteria, the content ratio of acetic-acid-utilizing methane-producing bacteria, and the sludge sample concentration is as follows.

【0025】z=xy/100 x:汚泥VSS(g/l) y:酢酸資化性メタン生成菌汚泥含有比率(%) z:酢酸資化性メタン生成菌量(g/l)Z = xy / 100 x: sludge VSS (g / l) y: acetic acid-utilizing methane-producing sludge content ratio (%) z: amount of acetic-acid-utilizing methane-producing bacteria (g / l)

【0026】[0026]

【発明の実施の形態】本発明に先立ち、発明者は、従来
の技術で述べた酢酸資化性メタン生成菌量測定方法とは
異なった方法、すなわち、メタン発酵タンクにおけるメ
タン生成活性および比メタン転化活性という指標を用い
た酢酸資化性メタン生成菌量および酢酸資化性メタン生
成菌の汚泥含有比率を推定する方法を発明した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the present invention, the present inventor has proposed a method different from the method for measuring the amount of acetic acid-utilizing methane-producing bacteria described in the prior art, namely, the methane-producing activity and specific methane in a methane fermentation tank. A method for estimating the amount of acetic acid-utilizing methane-producing bacteria and the sludge content ratio of acetic acid-utilizing methane-producing bacteria using an index called conversion activity was invented.

【0027】これらの方法は、経験的に、メタン生成活
性と酢酸資化性メタン生成菌量の関係およびメタン転化
活性と酢酸資化性メタン生成菌の汚泥含有比率の関係に
おいて相関が見られることから、メタン生成活性および
メタン転化活性を測定して、得られた測定値を相関回帰
式に代入して酢酸資化性メタン生成菌量および酢酸資化
性メタン生成菌の汚泥含有比率を推定することを特徴と
している。
According to these methods, empirically, there is a correlation between the relationship between the methanogenic activity and the amount of acetic acid-utilizing methane-forming bacteria, and the relationship between the methane conversion activity and the sludge content ratio of acetic-acid-utilizing methane-forming bacteria. From, the methanogenic activity and methane conversion activity are measured, and the measured values are substituted into the correlation regression equation to estimate the amount of acetic acid-utilizing methane-forming bacteria and the sludge content ratio of acetic-acid-utilizing methane-forming bacteria. It is characterized by:

【0028】先ず、酢酸資化性メタン生成菌量推定方法
について述べる。メタン発酵タンクから採取した汚泥試
料を培地と共に容器(細口瓶)に入れた後、その容器を
一定時間保温してから、一定量の酢酸ナトリウムを前記
容器に溶かし、その後さらに一定時間保温してメタン生
成量を得た後に、得られたメタン生成量と前記汚泥試料
のVSS(粗浮遊物または有機性浮遊物)濃度を基に計
算した汚泥のメタン生成活性に対して、前記汚泥試料の
測定された酢酸資化性メタン菌量との相関関係から導い
た計算式に前記メタン生成活性の値を代入して酢酸資化
性メタン生成菌量を推定する。
First, a method for estimating the amount of acetic acid-utilizing methane-producing bacteria will be described. After putting the sludge sample collected from the methane fermentation tank together with the medium into a container (small-mouthed bottle), the container is kept warm for a certain period of time, then a certain amount of sodium acetate is dissolved in the container, and then the methane is kept for another certain period of time. After obtaining the production amount, the sludge sample is measured for the methane production activity of the sludge calculated based on the obtained methane production amount and the VSS (coarse suspended matter or organic suspended matter) concentration of the sludge sample. The value of the methanogenic activity is substituted into a calculation formula derived from the correlation with the amount of acetic acid assimilating methane bacteria to estimate the amount of acetic acid assimilating methane bacteria.

【0029】前記計算式は(1)式で表される。The above calculation formula is represented by formula (1).

【0030】y=Ax+B・・・・・・(1) A:5.00〜6.00 B:0.08〜0.15 x:メタン生成活性(kgCH4-COD/kgVSS・日) y:酢酸資化性メタン生成菌量(g/l) 尚、ここで言及するメタン生成活性は(2)式により算
出されるので、バイアル法と定義は同じであるが測定方
法が異なりバイアル法より簡易化されている。そこで、
以後、簡易測定(酢酸添加)メタン生成活性と呼称す
る。また、(2)式における汚泥VSSは、試料そのもの
ではなく、培地と汚泥試料とを混合してVSS濃度が約
5g/lとなるように調整した濃度である。
Y = Ax + B (1) A: 5.00 to 6.00 B: 0.08 to 0.15 x: Methanogenic activity (kgCH 4 -COD / kgVSS / day) y: Amount of acetic acid assimilating methanogen (G / l) Since the methane production activity referred to here is calculated by equation (2), the definition is the same as that of the vial method, but the measurement method is different and the method is simpler than the vial method. Therefore,
Hereinafter, it is referred to as simple measurement (acetic acid addition) methane generation activity. The sludge VSS in the expression (2) is not the sample itself but a concentration adjusted by mixing a medium and a sludge sample so that the VSS concentration becomes about 5 g / l.

【0031】[0031]

【数2】 (Equation 2)

【0032】簡易測定(酢酸添加)メタン生成活性は、
図2に示すValckeらの方法に準じた酢酸資化性メタン生
成菌測定装置の部分構成と同じ装置を用いて、操作も酢
酸資化性メタン生成菌測定方法と類似しているが、酢酸
ナトリウムの添加量を一定にして測定を行なうので、図
2に示す装置が1セットあれば1回の測定ができる。
Simple measurement (addition of acetic acid)
Using the same apparatus as the partial configuration of the apparatus for measuring acetic acid assimilating methane-forming bacteria according to the method of Valcke et al. Shown in FIG. Since the measurement is performed with the addition amount of, a single measurement can be performed if one set of the apparatus shown in FIG. 2 is used.

【0033】酢酸ナトリウム添加量は、酢酸として0.45
g酢酸/gVSSとなるように選択したが、この添加量は
バイアル法と同程度(初期COD濃度:2200mg/l)
となる。メタン生成速度は、測定開始後2日間に数回、
累積メタン生成量を測定して、経過時間とメタン生成量
の関係から最小自乗法による回帰を行なって算出する。
The amount of sodium acetate added was 0.45 as acetic acid.
g acetic acid / g VSS, but the amount added was similar to the vial method (initial COD concentration: 2200 mg / l)
Becomes The methane production rate was measured several times in two days after the start of the measurement.
The cumulative methane production is measured and calculated by performing regression by the least squares method from the relationship between the elapsed time and the methane production.

【0034】次に、酢酸資化性メタン生成菌汚泥含有比
率推定方法について述べる。メタン発酵タンクから採取
した汚泥試料を培地と共に容器(細口瓶)に入れた後、
その容器を一定時間保持してから、一定量の酢酸ナトリ
ウムを前記容器に溶かし、その後さらに一定時間保温し
てメタン生成速度を測定する。そして、メタン生成速度
と酢酸の添加量および前記汚泥試料のVSS(粗浮遊物
または有機性浮遊物)濃度を基に汚泥のメタン転化活性
を計算する。さらに、メタン転化活性と酢酸資化性メタ
ン生成菌汚泥含有比率との相関関係から導いた計算式に
前記メタン転化活性の値を代入して酢酸資化性メタン生
成菌汚泥含有比率を推定する。
Next, a method for estimating the sludge content ratio of acetic acid-utilizing methane-producing bacteria will be described. After putting the sludge sample collected from the methane fermentation tank together with the culture medium in a container (small mouth bottle),
After holding the container for a certain period of time, a certain amount of sodium acetate is dissolved in the container, and then the temperature is further kept for a certain period to measure the methane production rate. Then, the methane conversion activity of the sludge is calculated based on the methane production rate, the amount of acetic acid added, and the VSS (coarse suspended matter or organic suspended matter) concentration of the sludge sample. Further, the value of the methane conversion activity is substituted into a calculation formula derived from the correlation between the methane conversion activity and the content ratio of the acetic acid-utilizing methane-producing bacterium sludge to estimate the acetic acid-utilizing methane-producing bacterium sludge content ratio.

【0035】前記計算式は(3)式で表される。The above equation is expressed by equation (3).

【0036】y=Cx+D・・・・・・(3) C:65.0〜80.0 D:0.20〜0.60 x:メタン転化活性(m3/kgVSS) y:酢酸資化性メタン生成菌汚泥含有比率(%) 尚、ここでメタン転化活性は、(4)式により簡易測定
(酢酸添加)法によるメタン生成活性を酢酸ナトリウム
のCOD換算添加量で除して計算される。
Y = Cx + D (3) C: 65.0 to 80.0 D: 0.20 to 0.60 x: Methane conversion activity (m 3 / kgVSS) y: Content ratio of acetic acid assimilating methanogen sludge (%) Here, the methane conversion activity is calculated by the formula (4) by dividing the methane production activity by the simple measurement (acetic acid addition) method by the amount of sodium acetate added in terms of COD.

【0037】[0037]

【数3】 (Equation 3)

【0038】先に説明したように前者の酢酸資化性メタ
ン資化性生成菌汚泥含有比率推定方法を実施する場合に
用いる演算式である(1)式は、遠心濃縮及び重力濃縮
下水生汚泥の中温半連続汚泥消化室内実験における簡易
測定(酢酸添加)メタン生成活性と酢酸資化性メタン生
成菌量の関係から相関回帰を行なって導いたものである
が、図4に示されるように相関係数は0.879(n=27)
であった。一方、後者の酢酸資化性メタン生成菌汚泥含
有比率の推定方法を実施する場合に用いる演算式である
(3)式は、同じ実験におけるメタン転化活性と酢酸資
化性メタン生成菌汚泥含有比率の関係から相関回帰を行
なって導いたものであるが、相関係数は0.971(n=2
7)であった。
As described above, equation (1), which is an arithmetic expression used when the former method for estimating the sludge content ratio of acetic acid assimilating methane assimilating bacterium, is carried out by centrifugal concentration and gravity concentrated sewage sludge. The correlation regression was derived from the relationship between the methane production activity and the amount of acetic acid-utilizing methane-producing bacteria in a simple measurement (addition of acetic acid) in a medium-temperature semi-continuous sludge digestion laboratory experiment, as shown in Fig. 4. The relation number is 0.879 (n = 27)
Met. On the other hand, equation (3), which is an arithmetic expression used when the latter method for estimating the content ratio of acetic acid assimilating methane-forming bacterium sludge, is expressed by the following formula: The correlation coefficient was 0.971 (n = 2).
7).

【0039】したがって、前者である(1)式を用いて
簡易測定(酢酸添加)メタン生成活性から酢酸資化性メ
タン生成菌量を推定する方法は、後者の方法である
(3)式を用いて簡易測定(酢酸添加)メタン転化活性
から酢酸資化性メタン生成菌汚泥含有比率を推定する方
法と比較して相関係数が低い分、推定の確度が低くなる
という問題がある。図4を見ると、簡易測定(酢酸添
加)メタン生成活性が高い領域でばらつきが大きくなる
傾向があるようである。
Therefore, the former method of estimating the amount of acetic acid assimilating methane-producing bacteria from the methane-producing activity by simple measurement (addition of acetic acid) using the expression (1) uses the latter method (3). Therefore, there is a problem that the accuracy of the estimation is reduced because the correlation coefficient is low compared with the method of estimating the content ratio of the acetic acid assimilating methane-producing bacteria from the methane conversion activity by simple measurement (acetic acid addition). FIG. 4 shows that the dispersion tends to be large in a region where the methane production activity is high in the simple measurement (acetic acid addition).

【0040】簡易測定によるメタン生成活性の測定の意
義は、バイアル法による場合と同じであり、バイアル法
よりも簡単に測定できるという特徴がある。
The significance of the measurement of the methane production activity by the simple measurement is the same as in the case of the vial method, and is characterized in that it can be measured more easily than the vial method.

【0041】そこで、上記の課題に鑑み、本発明に係る
形態例において簡易測定結果(酢酸添加)メタン生成活
性からよりいっそう精度良くかつ容易に酢酸資化性メタ
ン生成菌汚泥含有比率と酢酸資化性メタン生成菌量を推
定する方法を提供する。
Therefore, in view of the above problems, in the embodiment according to the present invention, the simple measurement results (addition of acetic acid) from the methanogenic activity can be achieved more accurately and easily with the acetic acid assimilating methanogen sludge content ratio and acetic acid assimilation. The present invention provides a method for estimating the amount of soluble methanogens.

【0042】以下、本発明の実施の形態を図面に基づい
て説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0043】(実施の第1形態)酢酸資化性メタン生成
菌汚泥含有比率推定方法 図2に示す酢酸資化性メタン生成菌測定装置の部分構成
を1セットとして、1回分の簡易測定(酢酸添加)メタ
ン生成活性を測定する。具体的な測定手順は、次の
(1)〜(4)の通りである。
(First Embodiment) Method of Estimating Sludge Content Ratio of Acetic Acid-Utilizing Methanogen Bacteria Sludge measurement method for a single measurement (partial configuration of the apparatus for measuring acetic acid-assimilating methane-producing bacteria shown in FIG. 2) Addition) Measure methanogenic activity. The specific measurement procedure is as follows (1) to (4).

【0044】(1)培地の調整 KH2PO4;2.5g、K2HPO4;1.0g、NH4Cl;
1.0g、MgCl2;0.1g、酵母エキス;0.2g、Na2
S・9H2O;0.1gを1リットルの水に溶解して培地を
調整する。
(1) Preparation of medium KH 2 PO 4 ; 2.5 g, K 2 HPO 4 ; 1.0 g, NH 4 Cl;
1.0 g, MgCl 2 ; 0.1 g, yeast extract; 0.2 g, Na 2
A medium is prepared by dissolving 0.1 g of S · 9H 2 O in 1 liter of water.

【0045】(2)試料の調整 汚泥消化タンクから汚泥を採取して、その汚泥試料の一
部を用いてVSS(粗浮遊物または有機性浮遊物)濃度
を測定する。細口瓶21にミネラル溶液0.5〜0.6リットル
を入れてN2ガスを1分間以上バブリングしてから汚泥
試料0.2〜0.3リットルを投入する(混合液のVSSは、
約5g/lとするので、汚泥試料のVSSの高低により
混合比を調整する必要がある)。
(2) Preparation of Samples Sludge is collected from a sludge digestion tank, and VSS (coarse suspended matter or organic suspended matter) concentration is measured using a part of the sludge sample. VSS of the narrow mouth bottle 21 to the N 2 gas is put mineral solution from 0.5 to 0.6 liters from the bubbling over 1 minute charged sludge samples from 0.2 to 0.3 liters (mixture,
Since it is about 5 g / l, it is necessary to adjust the mixing ratio depending on the level of the VSS of the sludge sample.)

【0046】(3)測定操作 次にガス導管23を接続して、30℃で1〜2日保温する。
その後、細口瓶21に酢酸ナトリウムを2.3g添加する。
汚泥VSS1g当りの酢酸換算添加量は0.45gに相当
し、液相における酢酸の初期COD換算濃度は2.2g/
lとなる。1NのHClまたはNaOHを用いて、pH
を6.7に調整してN2ガスをバブリングしてから、再びガ
ス導管23を接続して1〜2日間保温してメタン生成量を
測定する。累積メタン生成量の経時的変化より最小自乗
法による回帰を行なってメタン生成速度を算出する。
(3) Measurement operation Next, the gas conduit 23 is connected, and the temperature is kept at 30 ° C. for 1 to 2 days.
Thereafter, 2.3 g of sodium acetate is added to the narrow-mouthed bottle 21.
The amount of acetic acid conversion per g of sludge VSS was 0.45 g, and the initial COD conversion concentration of acetic acid in the liquid phase was 2.2 g / g.
l. PH is adjusted using 1N HCl or NaOH.
Was adjusted to 6.7, and bubbling of N 2 gas was performed. Then, the gas conduit 23 was connected again, and the temperature was maintained for 1 to 2 days to measure the amount of methane produced. The methane production rate is calculated by performing regression by the least squares method from the change over time of the accumulated methane production.

【0047】(4)計算方法 (2)式にメタン生成速度、濃度調整後の汚泥試料VSS
濃度等を代入して、簡易測定(酢酸添加)メタン生成活
性を算出する。
(4) Calculation method The sludge sample VSS after adjusting the methane production rate and concentration is calculated by the equation (2).
By simply substituting the concentration and the like, the methane generation activity is calculated by simple measurement (acetic acid addition).

【0048】次に、経験的に得られた簡易測定(酢酸添
加)メタン生成活性と酢酸資化性メタン生成菌汚泥含有
比率の相関関係式である(5)式に、簡易測定(酢酸添
加)メタン生成活性の測定値を代入して酢酸資化性メタ
ン生成菌汚泥含有比率を算出する。
Next, a simple measurement (addition of acetic acid) obtained from an empirically obtained simple measurement (addition of acetic acid) Equation (5), which is a correlation equation between the methane production activity and the content ratio of acetic acid-assimilating methane-producing bacteria sludge, was obtained. The measured value of the methanogenic activity is substituted to calculate the acetic acid-utilizing methanogen sludge content ratio.

【0049】y=Ex+F・・・・・・(5) E:31.6〜32.8 F:0.27〜0.45 x:簡易測定(酢酸添加)メタン生成活性(kgCH4-CO
D/kgVSS・日) y:酢酸資化性メタン生成菌汚泥含有比率(%) 表1に遠心濃縮及び重力濃縮下水生汚泥の中温半連続汚
泥消化室内実験におけるリアクターメタン生成活性及び
簡易測定(酢酸添加)メタン生成活性などとその他の指
標との相関係数を示す。
Y = Ex + F (5) E: 31.6 to 32.8 F: 0.27 to 0.45 x: Simple measurement (addition of acetic acid) Methanogenesis activity (kgCH 4 -CO)
Y: Amount of acetic acid-utilizing methanogen sludge content (%) Table 1 shows the reactor methane production activity and simple measurement (medium acetic acid) in a medium temperature semi-continuous sludge digestion laboratory experiment of centrifugally concentrated and gravity concentrated sewage sludge. Addition) shows the correlation coefficient between methane generation activity and other indices.

【0050】[0050]

【表1】 [Table 1]

【0051】相関係数が0.9以上となる相関が認められ
たのは、リアクターメタン生成活性とメタン生成速度と
の関係(r=0.966)および簡易測定(酢酸添加)メタ
ン生成活性と酢酸資化性メタン生成菌量との関係(r=
0.949)であった。
The correlation with a correlation coefficient of 0.9 or more was observed because of the relationship between the reactor methane production activity and the methane production rate (r = 0.966) and the simple measurement (addition of acetic acid). Relationship with the amount of methanogen (r =
0.949).

【0052】次に、図5に遠心濃縮及び重力濃縮下水生
汚泥の中温半連続汚泥消化室内実験における簡易測定
(酢酸添加)メタン生成活性およびリアクターメタン生
成活性と有機物容積負荷との関係を示す。
Next, FIG. 5 shows the relationship between the methane generation activity and the reactor methane generation activity and the methane generation activity of the simple measurement (addition of acetic acid) in the medium temperature semi-continuous sludge digestion laboratory experiment in the centrifugal concentration and gravity concentration sewage sludge.

【0053】x:有機物容積負荷、y:リアクターメタ
ン生成活性とすると、異常発酵(図中の点線で囲んだ部
分)を除外した場合の相関回帰式はy=0.0258x+0.05
1(r=0.898,n=17)となり、高い相関が得られた。
一方、x:有機物容積負荷、y:簡易的測定(酢酸添
加)メタン生成活性とすると、異常発酵を除外した場合
の相関回帰式はy=0.0084x+0.107(r=0.474,n=
19)となった。リアクターメタン生成活性と簡易測定
(酢酸添加)メタン生成活性を比較すると前者は後者よ
りも有機物容積負荷に対する依存性が高いことがわか
る。また、有機物容積負荷:3kg/m3・日を境界と
して比較的低負荷条件下では前者より後者の方が、活性
が高くなる傾向が見られた。
Assuming that x is the organic substance volume load and y is the reactor methane production activity, the correlation regression equation excluding abnormal fermentation (portion surrounded by a dotted line in the figure) is y = 0.0258x + 0.05.
1 (r = 0.898, n = 17), indicating a high correlation.
On the other hand, assuming that x: organic substance volume load, y: simple measurement (acetic acid addition) methanogenic activity, the correlation regression equation excluding abnormal fermentation is y = 0.0084x + 0.107 (r = 0.474, n =
19). Comparing the reactor methanogenic activity with the simple measurement (acetic acid addition) methanogenic activity shows that the former is more dependent on the organic matter volume load than the latter. Also, under relatively low load conditions with an organic substance volume load of 3 kg / m 3 · day as a boundary, the latter tended to have a higher activity than the former.

【0054】これは低負荷条件下においてリアクターメ
タン生成活性は基質の供給量が少ないことによって活性
の上昇が抑制されるのに対して、簡易測定(酢酸添加)
メタン生成活性の測定条件下においては酢酸資化性メタ
ン生成菌に対して基質が十分に供給されるためと考えら
れる。一方、高負荷条件下においてリアクターメタン生
成活性の方が簡易測定(酢酸添加)メタン生成活性より
高くなるのは、リアクターにおいて酢酸以外に水素も基
質として供給され供給されて水素資化性メタン生成菌が
メタン生成に寄与するためと考えられる。
This is because under a low load condition, the increase in the activity of the reactor methane formation is suppressed by a small supply of the substrate, whereas the simple measurement (acetic acid addition) is performed.
It is considered that the substrate is sufficiently supplied to the acetic acid assimilating methanogen under the measurement conditions of the methane production activity. On the other hand, under high load conditions, the reactor methanogenic activity is higher than the simple measurement (acetic acid addition) methanogenic activity because hydrogen is supplied and supplied as a substrate in addition to acetic acid in the reactor. Is thought to contribute to methane production.

【0055】以上の結果より、簡易測定(酢酸添加)メ
タン生成活性は酢酸資化性菌の菌量や汚泥含有比率と関
係が深いことがわかる。
From the above results, it can be seen that the methane production activity in the simple measurement (addition of acetic acid) is closely related to the amount of acetic acid assimilating bacteria and the sludge content ratio.

【0056】本実施の形態例において、簡易測定(酢酸
添加)メタン生成活性の測定値から酢酸資化性メタン生
成菌汚泥含有比率を推定するのに用いた演算式(5)式
は、遠心濃縮及び重力濃縮下水生汚泥の中温半連続汚泥
消化室内実験において図6に示す簡易測定(酢酸添加)
メタン生成活性とValckeらの方法に準じて測定した酢酸
資化性メタン生成菌汚泥含有比率の関係より相関回帰よ
って導いた式である。遠心濃縮及び重力濃縮下水生汚泥
の中温半連続汚泥消化室内実験における消化汚泥のみを
対象とした場合の相関係数は0.962(n=21)、その他
の消化汚泥および生汚泥なども含めた場合は0.949(n
=27)となり、高い相関が認められる。 また、図4の
場合と比較してもメタン生成活性が高い領域においても
ばらつきが小さいことから酢酸資化性メタン生成菌汚泥
含有率の推定の確度が高くなる効果がある。
In this embodiment, the equation (5) used for estimating the content ratio of the acetic acid assimilating methane-forming bacteria sludge from the measured value of the methane-forming activity in the simple measurement (addition of acetic acid) is represented by the following equation: Measurement shown in Fig. 6 (addition of acetic acid) in a medium-temperature semi-continuous sludge digestion laboratory experiment of sewage sludge and gravity concentrated
This is an equation derived by correlation regression from the relationship between the methanogenic activity and the content ratio of acetic acid-assimilating methanogen sludge measured according to the method of Valcke et al. The correlation coefficient for only digested sludge in the medium temperature semi-continuous sludge digestion laboratory experiment of centrifugal concentration and gravity concentrated sewage sludge is 0.962 (n = 21), and when other digested sludge and raw sludge are also included. 0.949 (n
= 27), indicating a high correlation. In addition, since the variation is small even in the region where the methane generation activity is high as compared with the case of FIG. 4, there is an effect that the estimation accuracy of the acetic acid-utilizing methane-producing bacterium sludge content rate is increased.

【0057】(実施の第2形態)酢酸資化性メタン生成
菌量推定方法 本実施の形態例においては、簡易測定(酢酸添加)メタ
ン生成活性から酢酸資化性メタン生成菌量を容易に推定
する方法を考案した。
(Second Embodiment) Method for Estimating the Amount of Acetate-Utilizing Methanogen In this embodiment, the amount of acetic-acid-utilizing methane-producing bacteria is easily estimated from the simple measurement (addition of acetic acid) methane-producing activity. Devised a way to do that.

【0058】先ず、第1形態例に従って、試料となる汚
泥に対して簡易測定(酢酸添加)メタン生成活性を測定
して、この測定値を(5)式に代入して酢酸資化性メタ
ン生成菌汚泥含有率の推定値を算出する。
First, according to the first embodiment, a simple measurement (addition of acetic acid) of methane generation activity was measured for sludge serving as a sample, and this measured value was substituted into equation (5) to produce acetic acid assimilating methane. Calculate the estimated value of the bacterial sludge content.

【0059】次に、(6)式に酢酸資化性メタン生成菌
汚泥含有比率の推定値と汚泥試料VSSの測定値を代入
して酢酸資化性メタン生成量を推定する。尚、この場合
のVSSは、濃度調整を行なう前の汚泥試料のVSSで
ある。
Next, the estimated value of the acetic acid assimilating methane-producing sludge content ratio and the measured value of the sludge sample VSS are substituted into the equation (6) to estimate the amount of acetic acid assimilating methane produced. Note that the VSS in this case is the VSS of the sludge sample before performing the concentration adjustment.

【0060】z=xy/100・・・・・・(6) x:汚泥試料VSS(g/l) y:酢酸資化性メタン生成菌汚泥含有比率(%) z:酢酸資化性メタン生成菌量(g/l) 表2に遠心濃縮および重力濃縮下水生汚泥の中温半連続
汚泥消化室内実験における酢酸資化性メタン生成菌量お
よび酢酸資化性メタン生成菌汚泥含有比率とその他の指
標との相関係数を示す(n=19〜22,異常発酵を含
む)。
Z = xy / 100 (6) x: sludge sample VSS (g / l) y: acetic acid-utilizing methane-forming bacterium sludge content ratio (%) z: acetic acid-utilizing methane-forming Bacterial amount (g / l) Table 2 shows the amount of acetic acid-utilizing methane-producing bacteria, the ratio of acetic acid-utilizing methane-producing bacteria sludge, and other indexes in a medium-temperature semi-continuous sludge digestion laboratory experiment of centrifugally concentrated and gravity-concentrated sewage sludge. (N = 19 to 22, including abnormal fermentation).

【0061】[0061]

【表2】 [Table 2]

【0062】相関係数が0.9以上となる相関が認められ
たのは、酢酸資化性メタン生成菌汚泥含有比率と簡易測
定(酢酸添加)メタン生成活性および簡易測定(酢酸添
加)メタン転化活性などとの関係であった。
The correlations with a correlation coefficient of 0.9 or more were observed because the sludge content ratio of acetic acid-assimilating methane-producing bacteria and the methane generation activity in simple measurement (with acetic acid) and the methane conversion activity in simple measurement (with acetic acid). The relationship was.

【0063】酢酸資化性メタン生成菌量との相関係数が
0.9以上となる相関が認められる指標が得られなかった
ことから、第2形態例においては推定精度の高い第1形
態例の方法により酢酸資化性メタン生成菌汚泥含有比率
を推定して、これにVSSの測定値を代入する方法を採
用したが、第1形態例と同様の高い推定確度が得られる
効果がある。
The correlation coefficient with the amount of acetic acid-assimilating methane-producing bacteria was
Since no index indicating a correlation of 0.9 or more was obtained, the ratio of acetic acid assimilating methane-producing bacteria sludge was estimated in the second embodiment by the method of the first embodiment with high estimation accuracy. The method of substituting the measured value of VSS into the above is adopted, but there is an effect that the same high estimation accuracy as in the first embodiment can be obtained.

【0064】[0064]

【発明の効果】以上述べたように、本発明に係る方法よ
れば、メタン発酵タンクにおける汚泥に酢酸ナトリウム
を一定量添加して測定したメタン生成活性の値を用いて
精度良くかつ容易に酢酸資化性メタン生成菌汚泥含有比
率と酢酸資化性メタン生成菌量を推定すことが可能とな
る。
As described above, according to the method of the present invention, acetic acid resources can be accurately and easily obtained using the value of methane production activity measured by adding a fixed amount of sodium acetate to sludge in a methane fermentation tank. It is possible to estimate the sludge content ratio of methane-producing bacteria and the amount of methane-utilizing methane-producing bacteria.

【0065】さらに、本発明に係る方法は、比較的簡単
な汚泥の活性測定により酢酸資化性メタン生成菌量およ
び酢酸資化性メタン生成菌汚泥含有比率などのメタン発
酵の制御を行うための有用な情報が得られる利点があ
り、しかも汚泥の活性測定方法が簡素化されているの
で、自動化が可能となり、その実用性が高まる。
Furthermore, the method according to the present invention is a method for controlling methane fermentation such as the amount of acetic acid-utilizing methane-producing bacteria and the content ratio of acetic acid-utilizing methane-producing bacteria by relatively simple measurement of sludge activity. There is an advantage that useful information can be obtained, and the method for measuring sludge activity is simplified, so that automation becomes possible and its practicality is enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】酢酸資化性メタン生成菌測定装置を示す概略構
成図。
FIG. 1 is a schematic configuration diagram showing an apparatus for measuring acetic acid assimilating methane-producing bacteria.

【図2】酢酸資化性メタン生成菌測定装置を示す部分構
成図。
FIG. 2 is a partial configuration diagram showing an apparatus for measuring acetic acid assimilating methane-producing bacteria.

【図3】酢酸資化性メタン生成菌測定装置を示す概略構
成図。
FIG. 3 is a schematic configuration diagram showing an apparatus for measuring acetic acid assimilating methane-producing bacteria.

【図4】中温半連続汚泥消化室内実験における簡易測定
(酢酸添加)メタン生成活性と酢酸資化性メタン生成菌
量の関係を示す特性図。
FIG. 4 is a characteristic diagram showing the relationship between the methane production activity and the amount of acetic acid-assimilating methane-producing bacteria in a simple experiment (addition of acetic acid) in a medium-temperature semi-continuous sludge digestion laboratory experiment.

【図5】中温半連続汚泥消化室内実験における簡易測定
(酢酸添加)メタン生成活性およびリアクターメタン生
成活性と有機物容積負荷の関係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the methane production activity and the methane production activity of the reactor (measured with acetic acid) in the semi-continuous sludge digestion laboratory at medium temperature and the organic matter volume load.

【図6】中温半連続汚泥消化室内実験における簡易測定
(酢酸添加)メタン生成活性および酢酸資化性メタン生
成菌汚泥含有比率の関係を示す本発明の方法による特性
図。
FIG. 6 is a characteristic diagram of the method of the present invention showing the relationship between the methane production activity and the acetic acid-assimilating methane-producing bacteria sludge content ratio in a simple experiment (addition of acetic acid) in an intermediate temperature semi-continuous sludge digestion laboratory experiment.

【符号の説明】[Explanation of symbols]

21・・・細口瓶(容積1リットル) 22・・・恒温水槽 23・・・ガス導管 24・・・洗気瓶(1N、NaOH) 25・・・ガスホルダー 26・・・飽和食塩水 27・・・スケール 21 ・ ・ ・ Narrow-necked bottle (capacity: 1 liter) 22 ・ ・ ・ Constant temperature water tank 23 ・ ・ ・ Gas conduit 24 ・ ・ ・ Gas washing bottle (1N, NaOH) 25 ・ ・ ・ Gas holder 26 ・ ・ ・ Saturated saline 27 ・··scale

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メタン発酵タンクから採取した汚泥試料
と培地を容器に入れた後、その容器を一定時間保温して
から、一定量の酢酸ナトリウムを前記容器に添加し、そ
の後さらに一定時間保温してメタン生成量を得た後に、
得られたメタン生成量を基に前記汚泥試料に対して一定
量の酢酸ナトリウムを添加した時のメタン生成活性と前
記同一汚泥試料に対して測定された酢酸資化性メタン生
成菌汚泥含有比率との相関関係から導いた演算式に前記
メタン生成活性の値を代入して酢酸資化性メタン生成菌
汚泥含有比率を推定することを特徴とする酢酸資化性メ
タン生成菌汚泥含有比率推定方法。
After a sludge sample and a medium collected from a methane fermentation tank are put into a container, the container is kept warm for a certain period of time, and then a certain amount of sodium acetate is added to the container. After obtaining methane production
Based on the obtained amount of methane production, the methane production activity when a certain amount of sodium acetate was added to the sludge sample based on the obtained methane production amount, and the acetic acid assimilating methane-producing bacteria sludge content ratio measured for the same sludge sample, A method for estimating the content ratio of acetic acid-utilizing methane-forming bacteria sludge by substituting the value of the methane-producing activity into an arithmetic expression derived from the correlation of
【請求項2】 前記演算式は下記式からなることを特徴
とする請求項1記載の酢酸資化性メタン生成菌汚泥含有
比率推定方法。 y=Ax+B A:31.6〜32.8 B:0.27〜0.45 x;メタン生成活性(kgCH4−COD/kgVSS・日) y;酢酸資化性メタン生成菌汚泥含有比率(%)
2. The method for estimating the acetic acid-utilizing methane-producing bacterium sludge content ratio according to claim 1, wherein the arithmetic expression comprises the following expression. y = Ax + B A: 31.6 to 32.8 B: 0.27 to 0.45 x; methanogenic activity (kgCH 4 -COD / kgVSS / day) y; acetic acid assimilating methanogen sludge content ratio (%)
【請求項3】 メタン発酵タンクから採取した汚泥試料
と培地を容器に入れた後、その容器を一定時間保温して
から、一定量の酢酸ナトリウムを前記容器に添加し、そ
の後さらに一定時間保温してメタン生成量を得た後に、
得られたメタン生成量を基に前記汚泥試料に対して一定
量の酢酸ナトリウムを添加した時の比メタン生成活性と
前記同一汚泥試料に対して測定された酢酸資化性メタン
生成菌汚泥含有比率との相関関係から導いた演算式に前
記メタン生成活性の値を代入して酢酸資化性メタン生成
菌汚泥含有比率を推定した後、酢酸資化性メタン生成菌
量と酢酸資化性メタン生成菌含有比率と汚泥試料濃度と
の関係を示す演算式に前記酢酸資化性メタン生成菌汚泥
含有比率の値と前記汚泥試料濃度の値を代入して酢酸資
化性メタン生成菌量を推定することを特徴とする酢酸資
化性メタン生成菌量推定方法。
3. A sludge sample and a medium collected from a methane fermentation tank are put into a container, the container is kept warm for a certain period of time, and then a certain amount of sodium acetate is added to the container. After obtaining methane production
Specific methane production activity when a fixed amount of sodium acetate was added to the sludge sample based on the obtained methane production amount and the acetic acid assimilating methane-producing bacteria sludge content ratio measured for the same sludge sample After substituting the value of the methane production activity into the equation derived from the correlation with the above and estimating the sludge content ratio of acetic acid-utilizing methane-forming bacteria, the amount of acetic acid-utilizing methane-forming bacteria and The value of the acetic acid-utilizing methane-producing bacteria sludge content ratio and the value of the sludge sample concentration are substituted into an arithmetic expression showing the relationship between the bacterial content ratio and the sludge sample concentration, and the amount of acetic acid-utilizing methane-producing bacteria is estimated. A method for estimating the amount of acetic acid-utilizing methane-producing bacteria, characterized in that:
【請求項4】 前記の酢酸資化性メタン生成菌量と酢酸
資化性メタン生成菌含有比率と汚泥試料濃度との関係を
示す演算式は下記式からなることを特徴とする請求項3
記載の酢酸資化性メタン生成菌量推定方法。 z=xy/100 x:汚泥試料VSS(g/l) y:酢酸資化性メタン生成菌汚泥含有比率(%) z:酢酸資化性メタン生成菌量(g/l)
4. An arithmetic expression representing the relationship between the amount of acetic acid-utilizing methane-producing bacteria, the content ratio of acetic acid-utilizing methane-producing bacteria, and the concentration of a sludge sample is represented by the following expression.
The method for estimating the amount of acetic acid assimilating methane-producing bacteria described in the above. z = xy / 100 x: sludge sample VSS (g / l) y: acetic acid assimilating methanogen sludge content ratio (%) z: acetic acid assimilating methanogen amount (g / l)
JP11030733A 1999-02-09 1999-02-09 Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria Pending JP2000228996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11030733A JP2000228996A (en) 1999-02-09 1999-02-09 Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11030733A JP2000228996A (en) 1999-02-09 1999-02-09 Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria

Publications (1)

Publication Number Publication Date
JP2000228996A true JP2000228996A (en) 2000-08-22

Family

ID=12311883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11030733A Pending JP2000228996A (en) 1999-02-09 1999-02-09 Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria

Country Status (1)

Country Link
JP (1) JP2000228996A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130617A1 (en) * 2008-06-02 2009-12-09 Politechnika Lubelska Method for intensification of methane production in refuse collection depot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130617A1 (en) * 2008-06-02 2009-12-09 Politechnika Lubelska Method for intensification of methane production in refuse collection depot

Similar Documents

Publication Publication Date Title
Reeburgh et al. Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments 1
Games et al. Methane-producing bacteria: natural fractionations of the stable carbon isotopes
Brooks Avery et al. Controls on methane production in a tidal freshwater estuary and a peatland: methane production via acetate fermentation and CO2 reduction
Massey et al. Phase separation of anaerobic stabilization by kinetic controls
Parajuli Biogas measurement techniques and the associated errors
Sokol Oxidation of an inhibitory substrate by washed cells (oxidation of phenol by Pseudomonas putida)
Pamatmat et al. Heat production, ATP concentration and electron transport activity of marine sediments
Naqvi et al. Carbon and oxygen isotopic records of benthic foraminifera from the Northeast Indian Ocean: implications on glacial-interglacial atmospheric CO2 changes
CN108645758A (en) A kind of pollutants in sediments dynamic release analysis method
Suschka et al. Activated sludge respirometric measurements
BR112013013407B1 (en) process to increase cell density in microbial fermentation of gaseous substrate comprising hydrogen
CN108414716A (en) A kind of detection device and method of sewage organic matter fraction
Butlin et al. SULPHIDE PRODUCTION FROM SULPHATE‐ENRICHED SEWAGE SLUDGES
McGarity et al. Use of an electrolytic respirometer to study denitrification in soil
Mahl et al. Nitrogen fixation by cell-free extracts of Klebsiella pneumoniae
Omelchenko et al. Psychrophilic methanotroph from tundra soil
Smith et al. Big Soda Lake (Nevada). 2. Pelagic sulfate reduction
Schink et al. Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments
Ozturk et al. Control of interspecies electron transfer flow during anaerobic digestion: dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs
Ghaly et al. Continuous production of biogas from dairy manure using an innovative no-mix reactor
JP2000228996A (en) Estimation of the content of acetic acid-assimilating methane bacteria in sludge and estimation of the amount of acetic acid-assimilating methane bacteria
Granéli A comparison of carbon dioxide production and oxygen uptake in sediment cores from four south Swedish lakes
JPH07103965A (en) Method and device for quickly measuring biochemical oxygen demand (bod)
CN107055764A (en) The simple measuring device and assay method of a kind of sludge activity and its application in Sewage Biological Treatment
CN208648862U (en) Waste water aerobic biodegrade experimental provision