JP2000228189A - Negative electrode for alkaline storage battery and alkaline storage battery using it - Google Patents

Negative electrode for alkaline storage battery and alkaline storage battery using it

Info

Publication number
JP2000228189A
JP2000228189A JP11028243A JP2824399A JP2000228189A JP 2000228189 A JP2000228189 A JP 2000228189A JP 11028243 A JP11028243 A JP 11028243A JP 2824399 A JP2824399 A JP 2824399A JP 2000228189 A JP2000228189 A JP 2000228189A
Authority
JP
Japan
Prior art keywords
negative electrode
pressing
storage battery
core material
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11028243A
Other languages
Japanese (ja)
Inventor
Masumi Katsumoto
真澄 勝本
Tetsushi Kajikawa
哲志 梶川
Takuma Iida
琢磨 飯田
Fumihiko Yoshii
史彦 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11028243A priority Critical patent/JP2000228189A/en
Publication of JP2000228189A publication Critical patent/JP2000228189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode for an alkaline storage battery excellent in a high-efficiency discharge characteristic, and an alkaline storage battery using it. SOLUTION: This alkaline storage battery comprising a negative electrode 3 formed by coating a paste 1 containing a hydrogen storage alloy, a binding agent and a conductive agent on conductive core material 2, and by drying and pressing, a nickel positive electrode, a separator interposed between the negative electrode 3 and the positive electrode, and alkali electrolyte solution, is so composed that, supposing a porosity of the negative electrode 3 after pressing is Z, an apparent volume of the negative electrode 3 after pressing is V, a true volume of the coated hydrogen storage alloy is Vm, and a true volume of the conductive core material 2 is Vs, the value of the porosity of the negative electrode 3 after pressing expressed by the equation, Z=(V-Vm-Vs)/ V, satisfies the relation, 0.10<=Z<=0.30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池お
よびアルカリ蓄電池用負極に関し、詳しくは大電流放電
時の放電特性に優れたアルカリ蓄電池の提供に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery and a negative electrode for the alkaline storage battery, and more particularly to the provision of an alkaline storage battery having excellent discharge characteristics when discharging a large current.

【0002】[0002]

【従来の技術】近年、高容量のアルカリ二次電池として
ニッケル−水素蓄電池が使用されている。ニッケル−水
素蓄電池は、水素を電気化学的に吸蔵・放出できる水素
吸蔵合金を集電体に保持してなる負極と、水酸化ニッケ
ルを同じく集電体に保持してなる正極とを電気絶縁性の
セパレータを介して構成、ケース内に収容し、さらに所
定量のアルカリ電解液を注液した後、全体を密閉構造に
して組み立てられる。
2. Description of the Related Art In recent years, nickel-hydrogen storage batteries have been used as high capacity alkaline secondary batteries. Nickel-hydrogen storage batteries have an electrical insulation property between a negative electrode that holds a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen on a current collector and a positive electrode that also holds nickel hydroxide on the current collector. After being housed in a case through a separator and injecting a predetermined amount of an alkaline electrolyte, the whole is assembled in a closed structure.

【0003】この電池に組み込まれる水素吸蔵合金電極
は、一般に次のように製造される。
[0003] The hydrogen storage alloy electrode to be incorporated in this battery is generally manufactured as follows.

【0004】水素吸蔵合金と、カーボン粉末やニッケル
粉末に代表される導電材、メチルセルロース、カルボキ
シメチルセルロースに代表される増粘剤、スチレン−ブ
タジエンゴム、ポリエチレンに代表される結着剤、イオ
ン交換水や蒸留水を混合、練合し、所定粘度の合剤ペー
ストを調製する。そして、パンチングメタル(多孔板)
やエキスパンドメタル(ネット)のような集電芯材の両
面に、上記した合剤ペーストを塗布した後、乾燥し、全
体をロールプレスして所定の厚みに調整することによっ
て水素吸蔵合金電極が得られる。
A hydrogen storage alloy, a conductive material represented by carbon powder and nickel powder, a thickener represented by methylcellulose and carboxymethylcellulose, a binder represented by styrene-butadiene rubber and polyethylene, ion-exchanged water, Distilled water is mixed and kneaded to prepare a mixture paste having a predetermined viscosity. And punching metal (perforated plate)
The above-mentioned mixture paste is applied to both sides of a current collector core material such as metal or expanded metal (net), dried, roll-pressed as a whole and adjusted to a predetermined thickness to obtain a hydrogen storage alloy electrode. Can be

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな方法により製造した水素吸蔵合金電極は、従来のニ
ッケル−カドミウム蓄電池に用いられているカドミウム
電極と比較して、高率放電時の分極が大きいという課題
を有していた。このため、電動工具、電気自動車用電源
などの大電流での放電特性が要求される分野では放電電
圧の低下が著しくなるため、十分な特性を発揮すること
が難しいと考えられていた。
However, the hydrogen storage alloy electrode manufactured by such a method has a larger polarization at the time of high-rate discharge than the cadmium electrode used in the conventional nickel-cadmium storage battery. There was a problem that. For this reason, it has been considered that it is difficult to exhibit sufficient characteristics in a field such as a power tool or a power supply for an electric vehicle, which requires discharge characteristics at a large current, since the discharge voltage is significantly reduced.

【0006】本発明は、前記のような問題点に鑑みてな
されたものであり、高率放電時の放電特性に優れたアル
カリ蓄電池並びにアルカリ蓄電池用負極を提供すること
を本発明の目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an alkaline storage battery and a negative electrode for the alkaline storage battery which are excellent in discharge characteristics at high rate discharge. .

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明では、水素吸蔵合金、結着剤および導電剤を含
むペーストを導電性芯材に塗着し、乾燥、プレスして形
成した負極とニッケル正極と、前記負極と正極との間に
介在されるセパレータと、アルカリ電解液からなるアル
カリ蓄電池において、前記負極のプレス後の多孔度を
Z、前記負極のプレス後の見かけ体積をV、前記塗着さ
れた水素吸蔵合金の真体積をVm、前記導電性芯材の真
体積をVsとするとき、Z=(V−Vm−Vs)/Vの
関係式で示される前記負極のプレス後の多孔度Zの値が
0.10≦Z≦0.30となることを特徴とするアルカ
リ蓄電池としたものである。
According to the present invention, a paste containing a hydrogen storage alloy, a binder and a conductive agent is applied to a conductive core material, dried and pressed. In an alkaline storage battery comprising a negative electrode, a nickel positive electrode, a separator interposed between the negative electrode and the positive electrode, and an alkaline electrolyte, the porosity of the negative electrode after pressing is Z, and the apparent volume of the negative electrode after pressing is V. When the true volume of the coated hydrogen storage alloy is Vm and the true volume of the conductive core material is Vs, the negative electrode press represented by the relational expression of Z = (V−Vm−Vs) / V An alkaline storage battery is characterized in that the value of the porosity Z satisfies 0.10 ≦ Z ≦ 0.30.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、水素吸蔵合金、結着剤および導電剤を含むペースト
を導電性芯材に塗着し、乾燥、プレスして形成したアル
カリ蓄電池用負極において、前記負極のプレス後の多孔
度をZ、前記負極のプレス後の見かけ体積をV、前記塗
着された水素吸蔵合金の真体積をVm、前記導電性芯材
の真体積をVsとするとき、Z=(V−Vm−Vs)/
Vの関係式で示される前記負極のプレス後の多孔度Zの
値が0.10≦Z≦0.30となることを特徴とするも
のである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention relates to an alkali formed by applying a paste containing a hydrogen storage alloy, a binder and a conductive agent to a conductive core material, drying and pressing. In the negative electrode for a storage battery, the porosity of the negative electrode after pressing is Z, the apparent volume of the negative electrode after pressing is V, the true volume of the coated hydrogen storage alloy is Vm, and the true volume of the conductive core material is Vm. Vs, Z = (V−Vm−Vs) /
The value of the porosity Z of the negative electrode after pressing represented by the relational expression V is 0.10 ≦ Z ≦ 0.30.

【0009】また、上記の負極を用いてアルカリ蓄電池
を構成したものである。
Further, an alkaline storage battery is constituted by using the above-mentioned negative electrode.

【0010】本発明では、負極のプレス後の多孔度Zと
アルカリ蓄電池の放電特性との関係に着目し、0.10
≦Z≦0.30の関係式を満たしている場合に電池の高
率放電特性が向上することを見いだした。また、この多
孔度Zは、0.15≦Z≦0.25の範囲が最も好まし
く、アルカリ蓄電池の高率放電特性がより向上する。
The present invention focuses on the relationship between the porosity Z of the negative electrode after pressing and the discharge characteristics of the alkaline storage battery.
It has been found that when the relational expression of ≦ Z ≦ 0.30 is satisfied, the high rate discharge characteristics of the battery are improved. The porosity Z is most preferably in the range of 0.15 ≦ Z ≦ 0.25, and the high-rate discharge characteristics of the alkaline storage battery are further improved.

【0011】すなわち、負極の多孔度Zが0.1より小
さい場合は、負極内部への電解液の拡散性が阻害される
ため、水素吸蔵合金と電解液との反応性が低下し、電池
としての反応抵抗が増大する。また、負極の多孔度Zが
0.3より大きい場合は、活物質同士の密着性が低下す
るため活物質粒子間の導電性が低下する。
That is, when the porosity Z of the negative electrode is smaller than 0.1, the diffusivity of the electrolytic solution into the negative electrode is hindered, so that the reactivity between the hydrogen storage alloy and the electrolytic solution decreases, and Reaction resistance increases. When the porosity Z of the negative electrode is larger than 0.3, the adhesion between the active materials decreases, and the conductivity between the active material particles decreases.

【0012】したがって、アルカリ蓄電池の高率放電特
性は負極板の多孔度に依存し、上記の多孔度Zの関係式
を満たす多孔度の負極を用いた電池を構成した場合に高
率放電特性が最適化されたアルカリ蓄電池を提供するこ
とができる。
Therefore, the high-rate discharge characteristics of the alkaline storage battery depend on the porosity of the negative electrode plate, and when a battery using a negative electrode having a porosity satisfying the above relational expression of the porosity Z is formed, the high-rate discharge characteristics become poor. An optimized alkaline storage battery can be provided.

【0013】また、負極は、水素吸蔵合金の芯材片面へ
のプレス後の塗着厚みをt、導電性芯材の厚みをTとす
るとき、t/T<2.2の関係式を満たしている場合に
は芯材から活物質全体に至るまでの集電性が向上するた
め、アルカリ蓄電池の高率放電特性をより向上させるこ
とができる。
The negative electrode satisfies the relational expression of t / T <2.2, where t is the coating thickness of the hydrogen storage alloy on one side of the core after pressing, and T is the thickness of the conductive core. In this case, the current collection from the core material to the entire active material is improved, so that the high-rate discharge characteristics of the alkaline storage battery can be further improved.

【0014】また、水素吸蔵合金粉末を予め、pH2.
0〜4.0程度の弱酸中に浸漬し、合金表面に生成する
絶縁性の希土類水酸化物層を除去することによって負極
の活性化処理を行うことでき、これにより、さらにアル
カリ蓄電池の高率放電特性を向上させることができる。
In addition, the hydrogen storage alloy powder is prepared in advance at pH 2.
The negative electrode can be activated by immersing it in a weak acid of about 0 to 4.0 to remove the insulating rare earth hydroxide layer formed on the surface of the alloy. Discharge characteristics can be improved.

【0015】[0015]

【実施例】以下に本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に限定されるもので
なく、その要旨を変更しない範囲において適宜変更して
実施することが可能なものである。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to the following examples and can be carried out by appropriately changing the scope of the invention without changing its gist. It is possible.

【0016】(実施例1)組成がMmNi4.0Co0.4
0.3Mn0.3である水素吸蔵合金を機械粉砕して200
メッシュ以下とした水素吸蔵合金粉末を80℃の6Nの
KOH水溶液に2時間浸漬して、この合金表面をアルカ
リエッチングし、その後、水洗、乾燥後、CMC(カル
ボキシメチルセルロース)2重量%の水溶液をこの合金
重量に対して15重量%、カーボンを0.5重量%加え
て攪拌し、ペースト1を調製した。
Example 1 The composition is MmNi 4.0 Co 0.4 A
l 0.3 Mn 0.3 hydrogen storage alloy is mechanically pulverized to 200
The hydrogen-absorbing alloy powder having a mesh size or less is immersed in a 6N KOH aqueous solution at 80 ° C. for 2 hours to alkali-etch the surface of the alloy, washed with water and dried. Paste 1 was prepared by adding 15% by weight and 0.5% by weight of carbon with respect to the alloy weight and stirring.

【0017】次にこのペースト1を導電性芯材2である
厚さ30μmもしくは60μmのパンチングメタル(鉄
製芯材の表面にニッケルメッキを行ったもの)の両面に
塗布し、90〜110℃で乾燥した後、ロールプレスし
て負極3を作製する。このときの負極3の圧延強度を調
整することにより、(表1)に示すようなプレス後の多
孔度Zの異なる負極3a〜3pを作製した。負極3a〜
3pを所定の寸法に切断し、理論容量2800mAhを
有するニッケル−水素蓄電池のKR23/43サイズ用
の負極3a〜3pを作製した。
Next, this paste 1 is applied to both surfaces of a 30 μm or 60 μm thick punched metal (iron core material whose surface is nickel-plated), which is a conductive core material 2, and dried at 90 to 110 ° C. After that, the roll is pressed to produce the negative electrode 3. By adjusting the rolling strength of the negative electrode 3 at this time, negative electrodes 3a to 3p having different porosity Z after pressing as shown in (Table 1) were produced. Negative electrode 3a-
3p was cut into a predetermined size to produce negative electrodes 3a to 3p for a KR23 / 43 size nickel-hydrogen storage battery having a theoretical capacity of 2800 mAh.

【0018】上記の負極3の模式断面図を図1に示す。
図1中、tは水素吸蔵合金ペースト1の芯材片面へのプ
レス後の塗着厚みを、Tは導電性芯材2の厚みを示す。
FIG. 1 shows a schematic sectional view of the above-mentioned negative electrode 3.
In FIG. 1, t indicates the coating thickness of the hydrogen storage alloy paste 1 after pressing one surface of the core material, and T indicates the thickness of the conductive core material 2.

【0019】負極3aを一対の焼結式ニッケル極4と共
に親水化処理を施したポリプロピレン製不織布からなる
セパレータ5を介して捲回し、電極群を作製した。この
ような電極群と6NのKOHと1NのLiOHからなる
アルカリ電解液を円筒状ケース6に収納し、ケース6の
上部を封口板7で密閉して理論容量2000mAhのK
R23/43サイズの円筒型ニッケル−水素蓄電池Aを
組み立てた。この電池の半裁断面図を図2に示す。
The negative electrode 3a was wound together with a pair of sintered nickel electrodes 4 via a separator 5 made of a nonwoven fabric made of polypropylene which had been subjected to a hydrophilic treatment to prepare an electrode group. Such an electrode group and an alkaline electrolyte composed of 6N KOH and 1N LiOH are housed in a cylindrical case 6, the upper part of the case 6 is sealed with a sealing plate 7, and a theoretical capacity of 2000 mAh K
An R23 / 43 size cylindrical nickel-hydrogen storage battery A was assembled. FIG. 2 shows a half sectional view of this battery.

【0020】負極3aの代わりに負極3b〜3pのそれ
ぞれを用いた以外は電池Aと同様な構成とした電池B〜
Pをそれぞれ作製した。
Batteries B to B having the same structure as battery A except that each of the anodes 3b to 3p was used instead of the anode 3a.
P was produced respectively.

【0021】(実施例2)実施例2では、水素吸蔵合金
に対する酸による活性化処理の効果について評価を行
う。
(Embodiment 2) In Embodiment 2, the effect of the activation treatment with an acid on the hydrogen storage alloy is evaluated.

【0022】実施例1における水素吸蔵合金のアルカリ
エッチング工程の後に、水素吸蔵合金を合金1gに対し
て30cc程度のpH値が4.0である酢酸水溶液中に
30分間浸漬し、純水で十分な水洗を行った。その後、
実施例1に示した方法と同様に乾燥後、CMC水溶液を
加えて攪拌し、ペーストを調製した。
After the hydrogen storage alloy alkali etching step in Example 1, the hydrogen storage alloy was immersed in an aqueous acetic acid solution having a pH value of about 30 cc and 4.0 for 1 g of the alloy for 30 minutes. Washing was performed. afterwards,
After drying in the same manner as in Example 1, a CMC aqueous solution was added and stirred to prepare a paste.

【0023】得られたペーストを実施例1と同様に厚さ
60μmのパンチングメタルの両面に塗布し、乾燥後、
ロールプレスによる圧延条件を変化させることにより
(表2)に示すような多孔度Zの異なる理論容量280
0mAhの負極3k〜3mのそれぞれを作製した。
The obtained paste is applied to both sides of a punching metal having a thickness of 60 μm in the same manner as in Example 1, dried, and
By changing the rolling conditions by the roll press, the theoretical capacity 280 having different porosity Z as shown in (Table 2)
Each of 0 mAh negative electrodes 3 k to 3 m was produced.

【0024】負極3aの代わりに負極3k〜3mのそれ
ぞれを用いた以外は実施例1に示した電池Aと同様な電
池構成とした理論容量2000mAhでKR23/43
サイズのニッケル−水素蓄電池K〜Mのそれぞれを作製
した。
A battery was constructed in the same manner as the battery A shown in Example 1 except that each of the negative electrodes 3k to 3m was used instead of the negative electrode 3a.
Each of the nickel-hydrogen storage batteries K to M having a size was produced.

【0025】次に負極のプレス後の見かけ体積をV、水
素吸蔵合金の真体積をVm、導電性芯材の真体積をVs
および負極のプレス後の多孔度をZとし、Z=(V−V
m−Vs)/Vの式を用いて実施例1と実施例2で作製
した負極3a〜3mのプレス後の多孔度Zを算出し、そ
の結果を(表1)に示す。
Next, the apparent volume of the negative electrode after pressing is V, the true volume of the hydrogen storage alloy is Vm, and the true volume of the conductive core material is Vs.
And the porosity of the negative electrode after pressing is Z, and Z = (V−V
The porosity Z of the negative electrodes 3a to 3m produced in Examples 1 and 2 after pressing was calculated using the equation of (m−Vs) / V, and the results are shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例1および実施例2で作製したニッケ
ル−水素蓄電池A〜Mをそれぞれについて、25℃の雰
囲気下で、0.2Aの電流値で15h充電した後、2A
の電流値で電池電圧1.0V至るまで放電することによ
り初充放電を行い、その後、2Aの電流値で1.5h充
電後、2Aの電流値で1.0Vまで放電する充放電を1
0サイクル繰り返し、それぞれの電池の初期活性化を行
った。
Each of the nickel-metal hydride storage batteries A to M manufactured in Example 1 and Example 2 was charged at a current value of 0.2 A for 15 hours in an atmosphere of 25 ° C., and then charged at 2 A.
The battery is initially charged and discharged by discharging to a battery voltage of 1.0 V at a current value of 1 A, and thereafter, is charged for 1.5 h at a current value of 2 A, and then charged and discharged at a current value of 2 A to 1.0 V.
Zero cycles were repeated to perform initial activation of each battery.

【0028】活性化処理後のそれぞれの電池について以
下に示す高率放電特性の評価を行った。
The following high-rate discharge characteristics of the batteries after the activation treatment were evaluated.

【0029】上記の電池A〜Mについて、まず25℃の
雰囲気下で2Aの電流値で1.2h充電し、1h休止さ
せた後、2Aの電流値で電池電圧が1.0Vに達するま
で放電させた場合の放電容量(Da)と放電時の平均電
池電圧(Va)を算出した。
The batteries A to M were charged at a current value of 2 A for 1.2 hours in an atmosphere of 25 ° C., paused for 1 hour, and then discharged at a current value of 2 A until the battery voltage reached 1.0 V. The discharge capacity (Da) and the average battery voltage (Va) at the time of discharge were calculated.

【0030】続いて、電池を1h休止させて電池電圧を
復帰させた後、上記と同様に25℃の雰囲気下で2Aの
電流値で1.2h充電し、1h休止させた後、10Aの
電流値で電池電圧が1.0Vに達するまで放電させた場
合の放電容量(Db)と放電時の平均電池電圧(Vb)
を算出した。
Subsequently, after the battery was suspended for 1 hour to recover the battery voltage, the battery was charged at a current value of 2 A in an atmosphere of 25 ° C. for 1.2 hours in the same manner as described above, suspended for 1 hour, and then discharged for 10 A. Discharge capacity (Db) when the battery is discharged until the battery voltage reaches 1.0 V in value and average battery voltage (Vb) at the time of discharge
Was calculated.

【0031】高率放電特性は、このときの(放電容量の
比(%))=((Db)/(Da))×100と(放電
時の平均電池電圧の差)=(Va)−(Vb)の値によ
り評価を行い、放電容量の比が大きく、放電時の平均電
池電圧の差が小さいほど、大電流放電時の容量低下や電
池電圧低下の少ない高率放電特性に優れた電池であると
判断でき、これらの算出した結果と負極のプレス後の多
孔度Zを(表2)に示す。
The high rate discharge characteristics are as follows: (discharge capacity ratio (%)) = ((Db) / (Da)) × 100 and (difference in average battery voltage during discharge) = (Va) − ( Vb) was evaluated based on the value of the battery. The larger the discharge capacity ratio and the smaller the difference in the average battery voltage during discharge, the smaller the battery capacity and the battery voltage during large current discharge. It can be determined that there is, and the calculated results and the porosity Z of the negative electrode after pressing are shown in (Table 2).

【0032】[0032]

【表2】 [Table 2]

【0033】(表2)より明らかなように高率放電特性
は、負極のプレス後の多孔度Zに依存し、多孔度Zが
0.1〜0.3の範囲が好ましく、0.15〜0.25
の場合に最も高率放電特性が向上する。
As is clear from Table 2, the high rate discharge characteristics depend on the porosity Z of the negative electrode after pressing, and the porosity Z is preferably in the range of 0.1 to 0.3, and is preferably in the range of 0.15 to 0.35. 0.25
In the case of (1), the highest rate discharge characteristics are most improved.

【0034】また、水素吸蔵合金の塗着厚み(t)と芯
材厚み(T)がt/T<2.2の関係を満たす3j〜3
nは3b〜3fと比較してより高率放電特性が優れてい
る。
Further, the coating thickness (t) of the hydrogen storage alloy and the core material thickness (T) satisfy the relationship of t / T <2.2.
n is superior in high-rate discharge characteristics as compared with 3b to 3f.

【0035】さらに、水素吸蔵合金に酢酸水溶液による
酸処理を実施した3q、3r、3sは酸処理を行ってい
ない3k、3l、3mと比較してそれぞれさらに高率放
電特性が向上していることが確認できる。
Furthermore, 3q, 3r, and 3s obtained by subjecting the hydrogen storage alloy to an acid treatment with an acetic acid aqueous solution show that the high-rate discharge characteristics are further improved as compared with 3k, 3l, and 3m not subjected to the acid treatment. Can be confirmed.

【0036】上記実施例では、水素吸蔵合金としてMm
Ni4.0Co0.4Al0.3Mn0.3の組成で示される合金を
用いたが、使用される水素吸蔵合金はこれに限定される
ものではない。
In the above embodiment, the hydrogen storage alloy was Mm
Although an alloy represented by the composition of Ni 4.0 Co 0.4 Al 0.3 Mn 0.3 was used, the hydrogen storage alloy used is not limited to this.

【0037】また、上記実施例では、ニッケル−水素蓄
電池に用いる正極として焼結式ニッケル極を用いたが、
スポンジ状ニッケル多孔性基体に活物質である水酸化ニ
ッケルを充填した構造に代表される非焼結式ニッケル極
を用いても同様の効果が得られる。
In the above embodiment, the sintered nickel electrode was used as the positive electrode used in the nickel-hydrogen storage battery.
Similar effects can be obtained by using a non-sintered nickel electrode typified by a structure in which a nickel sponge-like porous substrate is filled with nickel hydroxide as an active material.

【0038】さらに、上記実施例では活性化処理に用い
る酸として酢酸を使用したが、塩酸、シュウ酸、オキソ
酸などの他の酸を用いても同様の効果が得られる。
Further, in the above embodiment, acetic acid was used as the acid used for the activation treatment. However, similar effects can be obtained by using other acids such as hydrochloric acid, oxalic acid and oxo acid.

【0039】[0039]

【発明の効果】以上述べたように本発明によれば、電動
工具や電気自動車用電源などの大電流放電が求められる
用途に適した高率放電特性に優れたアルカリ蓄電池用負
極およびこれを用いたアルカリ蓄電池を得ることができ
る。
As described above, according to the present invention, a negative electrode for an alkaline storage battery having excellent high-rate discharge characteristics suitable for an application requiring a large current discharge, such as a power tool or a power supply for an electric vehicle, and the use of the same. The obtained alkaline storage battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における負極のプレス後の模式
断面図
FIG. 1 is a schematic cross-sectional view after a negative electrode is pressed in an example of the present invention.

【図2】同ニッケル−水素蓄電池の半裁断面図FIG. 2 is a half sectional view of the nickel-hydrogen storage battery.

【符号の説明】[Explanation of symbols]

1 水素吸蔵合金ペースト 2 導電性芯材 3 負極 4 焼結式ニッケル正極 5 セパレータ 6 電池ケース 7 封口板 DESCRIPTION OF SYMBOLS 1 Hydrogen storage alloy paste 2 Conductive core material 3 Negative electrode 4 Sintered nickel positive electrode 5 Separator 6 Battery case 7 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 琢磨 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 吉井 史彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H016 AA02 AA05 AA10 BB02 BB05 BB08 CC03 EE01 EE09 HH02 HH06 HH08 HH13 5H028 AA02 AA05 BB03 BB04 BB05 EE01 EE06 HH01 HH03 HH05 HH06  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takuma Iida 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. Terms (reference) 5H016 AA02 AA05 AA10 BB02 BB05 BB08 CC03 EE01 EE09 HH02 HH06 HH08 HH13 5H028 AA02 AA05 BB03 BB04 BB05 EE01 EE06 HH01 HH03 HH05 HH06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】水素吸蔵合金と結着剤および導電剤とを含
むペーストを導電性芯材の両面に塗着し、乾燥、プレス
して形成したアルカリ蓄電池用負極において、前記負極
のプレス後の多孔度をZ、前記負極のプレス後のみかけ
体積をV、前記塗着された水素吸蔵合金の真体積をV
m、前記導電性芯材の真体積をVsとするとき、 Z=(V−Vm−Vs)/V の関係式で示される前記負極のプレス後の多孔度Zの値
が0.10≦Z≦0.30となることを特徴とするアル
カリ蓄電池用負極。
1. A negative electrode for an alkaline storage battery formed by applying a paste containing a hydrogen storage alloy, a binder and a conductive agent to both surfaces of a conductive core material, and drying and pressing the same. The porosity is Z, the apparent volume of the negative electrode after pressing is V, and the true volume of the coated hydrogen storage alloy is V
m, when the true volume of the conductive core material is Vs, the value of the porosity Z of the negative electrode after pressing represented by the relational expression of Z = (V−Vm−Vs) / V is 0.10 ≦ Z ≦ 0.30, the negative electrode for an alkaline storage battery.
【請求項2】負極は、水素吸蔵合金の芯材片面へのプレ
ス後の塗着厚みをt、導電性芯材の厚みをTとすると
き、 t/T<2.2 の関係式を満たしていることを特徴とする請求項1記載
のアルカリ蓄電池用負極。
2. The negative electrode satisfies the relational expression of t / T <2.2, where t is the thickness of the coated hydrogen storage alloy on one surface of the core material after pressing, and T is the thickness of the conductive core material. The negative electrode for an alkaline storage battery according to claim 1, wherein
【請求項3】水素吸蔵合金は、pH2.0〜4.0の弱
酸中に浸漬して活性化処理が行われることを特徴とする
請求項1記載のアルカリ蓄電池用負極。
3. The negative electrode for an alkaline storage battery according to claim 1, wherein the hydrogen storage alloy is activated by immersing it in a weak acid having a pH of 2.0 to 4.0.
【請求項4】水素吸蔵合金と結着剤および導電剤とを含
むペーストを導電性芯材の両面に塗着し、乾燥、プレス
して形成したアルカリ蓄電池用負極において、前記負極
のプレス後の多孔度をZ、前記負極のプレス後のみかけ
体積をV、前記塗着された水素吸蔵合金の真体積をV
m、前記導電性芯材の真体積をVsとするとき、Z=
(V−Vm−Vs)/Vの関係式で示される前記負極の
プレス後の多孔度Zの値が0.15≦Z≦0.25とな
ることを特徴とするアルカリ蓄電池用負極。
4. A negative electrode for an alkaline storage battery formed by applying a paste containing a hydrogen storage alloy, a binder and a conductive agent on both surfaces of a conductive core material, and drying and pressing the same. The porosity is Z, the apparent volume of the negative electrode after pressing is V, and the true volume of the coated hydrogen storage alloy is V
m, when the true volume of the conductive core material is Vs, Z =
A negative electrode for an alkaline storage battery, wherein a value of a porosity Z of the negative electrode after pressing represented by a relational expression of (V−Vm−Vs) / V is 0.15 ≦ Z ≦ 0.25.
【請求項5】負極は、水素吸蔵合金の芯材片面へのプレ
ス後の塗着厚みをt、導電性芯材の厚みをTとすると
き、 t/T<2.2 の関係式を満たしていることを特徴とする請求項4記載
のアルカリ蓄電池用負極。
5. The negative electrode satisfies the relational expression of t / T <2.2, where t is the coating thickness of the hydrogen storage alloy on one surface of the core material after pressing, and T is the thickness of the conductive core material. The negative electrode for an alkaline storage battery according to claim 4, wherein:
【請求項6】水素吸蔵合金は、pH2.0〜4.0の弱
酸中に浸漬して活性化処理が行われることを特徴とする
請求項4記載のアルカリ蓄電池用負極。
6. The negative electrode for an alkaline storage battery according to claim 4, wherein the hydrogen storage alloy is activated by being immersed in a weak acid having a pH of 2.0 to 4.0.
【請求項7】水素吸蔵合金、結着剤および導電剤を含む
ペーストを導電性芯材に塗着し、乾燥、プレスして形成
した負極とニッケル正極と、前記負極と正極との間に介
在されるセパレータと、アルカリ電解液からなるアルカ
リ蓄電池において、前記負極のプレス後の多孔度をZ、
前記負極のプレス後の見かけ体積をV、前記塗着された
水素吸蔵合金の真体積をVm、前記導電性芯材の真体積
をVsとするとき、 Z=(V−Vm−Vs)/V の関係式で示される前記負極のプレス後の多孔度Zの値
が0.10≦Z≦0.30となることを特徴とするアル
カリ蓄電池。
7. A negative electrode and a nickel positive electrode formed by applying a paste containing a hydrogen storage alloy, a binder, and a conductive agent to a conductive core material, drying and pressing, and interposed between the negative electrode and the positive electrode. Separator, in an alkaline storage battery comprising an alkaline electrolyte, the porosity of the negative electrode after pressing Z,
When the apparent volume of the negative electrode after pressing is V, the true volume of the coated hydrogen storage alloy is Vm, and the true volume of the conductive core material is Vs, Z = (V−Vm−Vs) / V Wherein the value of the porosity Z of the negative electrode after pressing represented by the following relationship is 0.10 ≦ Z ≦ 0.30.
【請求項8】負極は、水素吸蔵合金の芯材片面へのプレ
ス後の塗着厚みをt、導電性芯材の厚みをTとすると
き、 t/T<2.2 の関係式を満たしていることを特徴とする請求項7記載
のアルカリ蓄電池。
8. The negative electrode satisfies the relational expression of t / T <2.2, where t is the thickness of the coated hydrogen storage alloy on one surface of the core material after pressing, and T is the thickness of the conductive core material. The alkaline storage battery according to claim 7, wherein:
【請求項9】水素吸蔵合金は、pH2.0〜4.0の弱
酸中に浸漬して活性化処理が行われることを特徴とする
請求項7記載のアルカリ蓄電池。
9. The alkaline storage battery according to claim 7, wherein the activation treatment is performed by immersing the hydrogen storage alloy in a weak acid having a pH of 2.0 to 4.0.
【請求項10】水素吸蔵合金、結着剤および導電剤を含
むペーストを導電性芯材に塗着し、乾燥、プレスして形
成した負極とニッケル正極と、前記負極と正極との間に
介在されるセパレータと、アルカリ電解液からなるアル
カリ蓄電池において、前記負極のプレス後の多孔度を
Z、前記負極のプレス後の見かけ体積をV、前記塗着さ
れた水素吸蔵合金の真体積をVm、前記導電性芯材の真
体積をVsとするとき、 Z=(V−Vm−Vs)/V の関係式で示される前記負極のプレス後の多孔度Zの値
が0.15≦Z≦0.25となることを特徴とするアル
カリ蓄電池。
10. A negative electrode and a nickel positive electrode formed by applying a paste containing a hydrogen storage alloy, a binder, and a conductive agent to a conductive core material, drying and pressing, and interposed between the negative electrode and the positive electrode. Separator, in an alkaline storage battery comprising an alkaline electrolyte, the porosity of the negative electrode after pressing Z, the apparent volume of the negative electrode after pressing V, the true volume of the coated hydrogen storage alloy Vm, When the true volume of the conductive core material is Vs, the value of the porosity Z of the negative electrode after pressing represented by the relational expression of Z = (V−Vm−Vs) / V is 0.15 ≦ Z ≦ 0. 25. An alkaline storage battery, characterized in that:
【請求項11】負極は、水素吸蔵合金の芯材片面へのプ
レス後の塗着厚みをt、導電性芯材の厚みをTとすると
き、 t/T<2.2 の関係式を満たしていることを特徴とする請求項10記
載のアルカリ蓄電池。
11. The negative electrode satisfies the relational expression of t / T <2.2, where t is the thickness of the coated hydrogen storage alloy on one surface of the core material after pressing, and T is the thickness of the conductive core material. The alkaline storage battery according to claim 10, wherein:
【請求項12】水素吸蔵合金は、pH2.0〜4.0の
弱酸中に浸漬して活性化処理が行われることを特徴とす
る請求項10記載のアルカリ蓄電池。
12. The alkaline storage battery according to claim 10, wherein the hydrogen storage alloy is activated by immersing it in a weak acid having a pH of 2.0 to 4.0.
JP11028243A 1999-02-05 1999-02-05 Negative electrode for alkaline storage battery and alkaline storage battery using it Pending JP2000228189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11028243A JP2000228189A (en) 1999-02-05 1999-02-05 Negative electrode for alkaline storage battery and alkaline storage battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028243A JP2000228189A (en) 1999-02-05 1999-02-05 Negative electrode for alkaline storage battery and alkaline storage battery using it

Publications (1)

Publication Number Publication Date
JP2000228189A true JP2000228189A (en) 2000-08-15

Family

ID=12243154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028243A Pending JP2000228189A (en) 1999-02-05 1999-02-05 Negative electrode for alkaline storage battery and alkaline storage battery using it

Country Status (1)

Country Link
JP (1) JP2000228189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110419138A (en) * 2017-03-23 2019-11-05 松下知识产权经营株式会社 Nickel-metal hydride battery and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110419138A (en) * 2017-03-23 2019-11-05 松下知识产权经营株式会社 Nickel-metal hydride battery and its manufacturing method
CN110419138B (en) * 2017-03-23 2022-05-24 松下知识产权经营株式会社 Nickel-metal hydride battery and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
WO2001059866A1 (en) Nickel hydroxide paste with pectin binder
JP3245072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH11162468A (en) Alkaline secondary battery
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2000228189A (en) Negative electrode for alkaline storage battery and alkaline storage battery using it
JP2987873B2 (en) Alkaline storage battery
US6803148B2 (en) Nickel positive electrode plate and akaline storage battery
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3851022B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2001283902A (en) Alkaline battery
JP2000200612A (en) Rectangular alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP3744306B2 (en) Manufacturing method of sintered nickel electrode for alkaline storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP3118812B2 (en) Alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH1040950A (en) Alkaline secondary battery
JPH09213363A (en) Manufacture of alkali storage battery
JP3742149B2 (en) Alkaline secondary battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH06168719A (en) Negative electrode plate for nickel-hydrogen battery, manufacture thereof, and nickel-hydrogen battery
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050628