JP2000227671A - Organic photoreceptor and its production - Google Patents

Organic photoreceptor and its production

Info

Publication number
JP2000227671A
JP2000227671A JP3035799A JP3035799A JP2000227671A JP 2000227671 A JP2000227671 A JP 2000227671A JP 3035799 A JP3035799 A JP 3035799A JP 3035799 A JP3035799 A JP 3035799A JP 2000227671 A JP2000227671 A JP 2000227671A
Authority
JP
Japan
Prior art keywords
substrate
base
surface roughness
cutting
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3035799A
Other languages
Japanese (ja)
Inventor
Shoji Ishiwatari
正二 石渡
Fumio Miyamoto
文夫 宮本
Hiroyuki Goto
浩之 後藤
Shuji Kasai
修治 笠井
Toshio Mochizuki
俊夫 望月
Sukeaki Ishiura
資昭 石浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3035799A priority Critical patent/JP2000227671A/en
Publication of JP2000227671A publication Critical patent/JP2000227671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the lowering of image quality by the enlargement of the exposure diameter of a record image due to moire and multiple reflection. SOLUTION: Regular surface roughness wave-forms are formed on the surface 21 of a substrate 2, fine ruggedness of 0.1-1.5 μm height is provided to each of the wave-forms and excess laser light which reaches the surface of the substrate 2 is diffused and scattered in an undercoat layer 3 by the fine ruggedness of 0.1-1.5 μm height in every regular surface roughness wave-form of the surface 21 of the substrate 2 to prevent multiple reflection due to the excess laser light which reaches the surface of the substrate 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電子写真方式の
複写機やプリンタ装置等の画像形成装置に使用する有機
感光体の製造方法、特に良質な画像の形成に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic photoreceptor used for an image forming apparatus such as an electrophotographic copying machine or a printer, and more particularly to a method for forming a high quality image.

【0002】[0002]

【従来の技術】電子写真方式の複写機等において、感光
体にレーザ光を照射して静電潜像を形成するときに、感
光層内でレーザ光の多重反射が生じ、感光体表面の反射
光との間で干渉が生じ、形成された画像に干渉縞の模様
が現れ、画質が劣化するおそれがある。この感光層内に
おける多重反射と感光体表面の反射による干渉を防ぐ感
光体が例えば特開平6−282089号公報や特公平5
−26191号公報,特開昭60−186850号公報
に開示されている。
2. Description of the Related Art In an electrophotographic copying machine or the like, when a photosensitive member is irradiated with a laser beam to form an electrostatic latent image, multiple reflections of the laser beam occur in the photosensitive layer, and the surface of the photosensitive member is reflected. Interference occurs with light, and a pattern of interference fringes appears in the formed image, which may degrade image quality. A photosensitive member for preventing interference between multiple reflections in the photosensitive layer and reflection on the surface of the photosensitive member is disclosed in, for example, Japanese Patent Application Laid-Open No.
-26191 and JP-A-60-186850.

【0003】特開平6−282089号公報に示された
感光体は、円筒状基体の感光層表面に、幅が10μm〜
500μmで、深さが露光時の入射光の波長のλ/2以
上である0.3μm〜30μmの溝を並列的に形成して
テーパー反射面を規則的に形成し、感光体にレー光を照
射して書き込むときに生じる光の干渉を防止するように
している。
The photoreceptor disclosed in Japanese Patent Application Laid-Open No. 6-28089 has a width of 10 μm or less on a photosensitive layer surface of a cylindrical substrate.
Grooves of 500 μm and 0.3 μm to 30 μm having a depth of λ / 2 or more of the wavelength of the incident light at the time of exposure are formed in parallel to form a tapered reflecting surface regularly, and to apply a laser beam to the photoconductor The interference of light generated when irradiating and writing is prevented.

【0004】特公平5−26191号公報に示された感
光体は、ベース上に光導電層を含む感光体において、ベ
ース表面に切削や研削により0.1μm〜1.0μm程
度の微細な凹凸を形成して、ベース表面を波長700n
m以上のレーザ光に対して均等拡散反射面に近い状態の
光拡散面とし、感光体内部に多重反射が生じることを防
いでいる。
In the photoreceptor disclosed in Japanese Patent Publication No. 5-26191, a photoreceptor having a photoconductive layer on a base has fine irregularities of about 0.1 μm to 1.0 μm formed on the base surface by cutting or grinding. After forming, the base surface has a wavelength of 700 n.
The light diffusing surface is in a state close to the uniformly diffuse reflecting surface for the laser beam of m or more, thereby preventing the occurrence of multiple reflection inside the photoconductor.

【0005】特開昭60−186850号公報に示され
た感光体は、導電性支持体と感光層の間に、平均表面粗
さがレーザ光の半波長分以上とした光拡散反射面を有す
る下引層を設け、レーザ光の強度に対し50%又は65
%以上の強度で光拡散反射を生じさせて光の干渉を抑制
するようにしている。また、レーザ光の強度に対し50
%又は65%以上の強度で光拡散反射を生じさせため
に、下引層の表面粗さをレーザ光の波長の1/2以上で
ある0.5μm以上にしている。さらに、導電性支持体
上に2種の相溶性液により塗膜を形成し、一方の樹脂を
溶解除去して残存樹脂により粗面を形成し、任意の大き
さと密度の表面凹凸を有する下引層を形成するようにし
ている。
The photoreceptor disclosed in Japanese Patent Application Laid-Open No. 60-186850 has a light diffusion / reflection surface having an average surface roughness of at least half a wavelength of laser light between a conductive support and a photosensitive layer. An undercoat layer is provided, and 50% or 65% of the intensity of the laser beam.
%, The light diffuse reflection is caused to suppress the interference of light. In addition, the intensity of the laser beam is 50
% Or 65% or more, the surface roughness of the undercoat layer is 0.5 μm or more, which is 1 / or more of the wavelength of the laser light. Further, a coating film is formed on the conductive support with two types of compatible liquids, and one of the resins is dissolved and removed to form a rough surface with the remaining resin, and the undercoat has a surface irregularity of an arbitrary size and density. A layer is formed.

【0006】[0006]

【発明が解決しようとする課題】特開平6−28208
9号に示された感光体は、テーパー反射面が正反射面と
なるために、感光層形成時の塗膜濡れ均一化のための下
引層を透明膜で形成すると、反射光が下引層内で吸収さ
れずに感光層裏側より再度吸収及び反射距離の短い多重
反射が起こり易い。また、感光層を単層で形成すると、
感光層中の光吸収率が低い場合はテーパー反射面での正
反射成分が多くなり、感光層バインダーにポリカーボネ
イト等を主材とするため屈折率が1.5〜1.6と大き
く、入射した光は多重反射を起こし易くなる。これを防
止するため下引層内に酸化Ti等の光分散用顔料と光分
散を有効にするための膜厚5〜15μmを確保するとと
もに膜の抵抗の上昇を制御する導電剤として酸化Sn等
を同時に分散しなければならず、製造コストの上昇を招
く。また、導電剤を分散し成膜すると、塗膜形成表面に
導電剤粒子が露出し易く、再度感光層形成前に絶縁層を
設けないと電荷リークによる微少画像欠陥が生じ易くな
る等の問題があり、さらに製造コストの上昇を招く。
Problems to be Solved by the Invention Japanese Patent Laid-Open No. 6-28208
In the photoreceptor shown in No. 9, the tapered reflection surface becomes a regular reflection surface. Therefore, when the undercoat layer is formed of a transparent film for uniform coating wetness when forming the photosensitive layer, reflected light is reduced. Multiple reflections with shorter absorption and reflection distances are likely to occur again from the back side of the photosensitive layer without being absorbed in the layer. Also, if the photosensitive layer is formed as a single layer,
When the light absorptance in the photosensitive layer is low, the specular reflection component on the tapered reflective surface increases, and the refractive index is as large as 1.5 to 1.6 because polycarbonate or the like is used as the main component of the binder for the photosensitive layer. Light tends to undergo multiple reflections. In order to prevent this, a pigment for light dispersion such as Ti oxide and a film thickness of 5 to 15 μm for making light dispersion effective are secured in the undercoat layer and Sn oxide or the like is used as a conductive agent for controlling an increase in resistance of the film. Must be dispersed at the same time, leading to an increase in manufacturing costs. Also, when the conductive agent is dispersed and formed into a film, the conductive agent particles are likely to be exposed on the surface on which the coating film is formed, and if the insulating layer is not provided again before the formation of the photosensitive layer, minute image defects due to charge leakage are likely to occur. Yes, further increasing the manufacturing cost.

【0007】また、テーパー反射面が正反射面であると
塗膜形成時の液の濡れ性が悪く、膜の保持力が小さくな
ってテーパー反射面の線状突起体部に液の溜りやひけが
発生したり、下引層を絶縁層にするための薄膜化が困難
であるという短所がある。
On the other hand, if the tapered reflecting surface is a specular reflecting surface, the wettability of the liquid at the time of forming the coating film is poor, and the holding power of the film is reduced, so that the liquid accumulates or sinks on the linear projections of the tapered reflecting surface. Disadvantages occur, and it is difficult to reduce the thickness of the undercoat layer to an insulating layer.

【0008】特公平5−26191号公報に示された感
光体は、多重反射を防止するレーザ光に対して均等拡散
反射面に近い状態の光拡散面を形成するときに、ベース
表面に切削や研削により微細な凹凸を形成しているが、
切削法では連続的な粗さを持った面が形成され、研削法
では被研削物と砥石との回転速度差による断続的な長さ
の粗さを持った面が形成される。この切削法で均等拡散
反射面に近い状態の光拡散面を得るためには、切削加工
工程中に例えばドライアイスペレット吹き付け租面化法
等の他の方法を組み合わせる必要がある。
The photoreceptor disclosed in Japanese Patent Publication No. 5-26191 forms a light diffusing surface close to an evenly diffusing surface with respect to a laser beam for preventing multiple reflections. Although fine irregularities are formed by grinding,
In the cutting method, a surface having a continuous roughness is formed, and in the grinding method, a surface having an intermittent length of roughness due to a difference in rotation speed between an object to be ground and a grindstone is formed. In order to obtain a light diffusing surface in a state close to the uniform diffusion reflecting surface by this cutting method, it is necessary to combine another method such as, for example, dry ice pellet spraying and flattening method during the cutting process.

【0009】また、特開昭60−186850号公報に
示されたように、導電性支持体と感光層との間にレーザ
光の半波長分以上とした光拡散反射面を持った下引層を
設けた構成は、感光層が単層の感光体に適用され、感光
層内部で拡散した反射光を再吸収させるものであり、形
成される像はレーザ光のビーム径より拡大したものとな
り、形成されたトナー画像は鮮明さを欠くという短所が
ある。
Further, as disclosed in JP-A-60-186850, an undercoat layer having a light-diffuse reflection surface between a conductive support and a photosensitive layer, the light-diffusion surface having a wavelength equal to or longer than half a wavelength of laser light. Is provided, the photosensitive layer is applied to a single-layer photoreceptor, is to re-absorb the reflected light diffused inside the photosensitive layer, the image formed is larger than the beam diameter of the laser light, The formed toner image has a disadvantage that it lacks sharpness.

【0010】この発明はかかる短所を改善し、光書き込
み用のレーザ光の未吸収透過光に対し円筒状感光体基体
表面でより有効に拡散反射をさせ、レーザー光の可干渉
性からくるモアレや多重反射による記録画像の露光径拡
大などによる画質低下を防止できる有機感光体の製造方
法を提供することを目的とするものである。
According to the present invention, the disadvantages are improved, and the unabsorbed and transmitted light of the laser beam for optical writing is diffused and reflected more effectively on the surface of the cylindrical photoreceptor substrate. It is an object of the present invention to provide a method for manufacturing an organic photoreceptor capable of preventing a deterioration in image quality due to an increase in an exposure diameter of a recorded image due to multiple reflection.

【0011】[0011]

【課題を解決するための手段】この発明に係る有機感光
体は、円筒状のアルミニウム又はアルミニウム合金の基
体の表面に光散乱剤が分散された下引層が形成され、下
引層の表面に電荷発生層と電荷移動層が形成されている
有機感光体であって、基体の表面を規則的な面粗さ波形
で形成し、該規則的な面粗さ波形の各波形中に高さが
0.1μm〜1.5μmの微細な凹凸を有することを特
徴とする。
In the organic photoreceptor according to the present invention, an undercoat layer in which a light scattering agent is dispersed is formed on the surface of a cylindrical aluminum or aluminum alloy substrate, and the surface of the undercoat layer is formed on the surface of the undercoat layer. An organic photoreceptor having a charge generation layer and a charge transfer layer formed thereon, wherein the surface of the substrate is formed with a regular surface roughness waveform, and the height is included in each of the regular surface roughness waveforms. It is characterized by having fine irregularities of 0.1 μm to 1.5 μm.

【0012】この発明に係る有機感光体の製造方法は、
円筒状のアルミニウム又はアルミニウム合金の基体の表
面に光散乱剤が分散された下引層が形成され、下引層の
表面に電荷発生層と電荷移動層が形成されている有機感
光体の製造方法であって、基体の表面を旋削する切削工
具の刃先コーナ半径をr、送り量をSとすると、基体の
表面を幾何学的面粗さRmax=S2 /8rで現せる規
則的な面粗さ波形で形成し、該規則的な面粗さ波形の各
波形中に高さが0.1μm〜1.5μmの微細な凹凸を
形成することを特徴とする。
The method for producing an organic photoreceptor according to the present invention comprises:
A method for producing an organic photoreceptor in which an undercoat layer in which a light scattering agent is dispersed is formed on the surface of a cylindrical aluminum or aluminum alloy substrate, and a charge generation layer and a charge transfer layer are formed on the surface of the undercoat layer Where r is the radius of the cutting edge of the cutting tool for turning the surface of the substrate, and S is the feed amount, the regular surface roughness is expressed by the geometric surface roughness Rmax = S 2 / 8r. It is characterized in that fine irregularities having a height of 0.1 μm to 1.5 μm are formed in each of the regular surface roughness waveforms.

【0013】上記基体の表面を、刃先コーナ半径r=1
〜∞の大きさの切削工具で旋削すると良い。
The surface of the above-mentioned base is made to have a cutting edge radius r = 1.
It is better to turn with a cutting tool of size ~ ∞.

【0014】また、基体の表面を旋削する切削工具の刃
先材質を焼結ダイヤモンドとし、刃先の逃げ面を砥粒平
均粒径が10〜40μmのダイヤモンド砥石で粗さ0.
1〜1.5μmに仕上げたり、あるいは刃先の逃げ面を
放電加工で粗さ0.1〜1.5μmに仕上げ、基体の表
面の規則的な面粗さ波形の各波形中に高さが0.1μm
〜1.5μmの微細な凹凸を転写すると良い。
The cutting tool for turning the surface of the substrate is made of sintered diamond, and the flank of the cutting edge is made of a diamond grindstone having an average grain size of 10 to 40 μm.
1 to 1.5 μm, or the flank of the cutting edge is finished to a roughness of 0.1 to 1.5 μm by electric discharge machining, and a height of 0 in each of the regular surface roughness waveforms of the substrate surface. .1 μm
It is preferable to transfer fine irregularities of about 1.5 μm.

【0015】さらに、切削工具の刃先すくい面を砥粒平
均粒径が5〜12μmのダイヤモンド砥石で研削加工し
て仕上げ、切削工具のすくい角を−5〜−15度、逃げ
角を5〜15度の範囲にすることが望ましい。
Further, the cutting rake face of the cutting tool is finished by grinding with a diamond grindstone having an average grain diameter of 5 to 12 μm, and the rake angle of the cutting tool is -5 to -15 degrees and the clearance angle is 5 to 15 degrees. It is desirable to be in the range of degrees.

【0016】また、上記基体内に円筒状の防振材を圧入
して基体の表面を旋削すると良い。
It is preferable that a cylindrical vibration isolator is press-fitted into the base and the surface of the base is turned.

【0017】さらに、基体の表面を旋削加工後に、基体
をpH10〜11のアルカリ性洗浄液により液温40〜
50℃で3〜5分間洗浄してからpH12〜13のアル
カリ性洗浄液により液温40〜50℃で3〜5分間再度
洗浄処理してから水洗いすることが望ましい。
Further, after turning the surface of the substrate, the substrate is washed with an alkaline cleaning liquid having a pH of 10 to 11 to a temperature of 40 to 40 ° C.
After washing at 50 ° C. for 3 to 5 minutes, it is preferable to wash again with an alkaline washing solution having a pH of 12 to 13 at a liquid temperature of 40 to 50 ° C. for 3 to 5 minutes and then with water.

【0018】[0018]

【発明の実施の形態】この発明の感光体は、円筒状のア
ルミニウム又はアルミニウム合金の基体の表面に光散乱
剤が分散された下引層が形成され、下引層の表面に電荷
発生層と電荷移動層の感光層が形成されている。この感
光体を製造するときに、基体の表面はRバイトを用いて
旋削加工する。このRバイトを用いて基体の表面を切削
するとき、切削加工した基体の表面の幾何学的面粗さR
maxは、主としてRバイトの刃先形状の巨視的刃形転
写できまり、刃先コーナ半径(刃先ノーズ半径)をr、
送り量をSとすると、Rmax=S2 /8rで現せる規
則的な面粗さ波形で形成される。この規則的な面粗さ波
形には1波形毎に刃先の微視的刃形転写による微細な凹
凸が生じる。この面粗さ波形の各波形中の微細な凹凸の
高さが0.1μm〜1.5μmになるようにRバイトの
刃先を加工して基体の表面を旋削加工し、基体の表面の
規則的な面粗さ波形に各波形中に高さが0.1μm〜
1.5μmの微細な凹凸を転写する。
BEST MODE FOR CARRYING OUT THE INVENTION The photoreceptor of the present invention has an undercoat layer in which a light scattering agent is dispersed formed on the surface of a cylindrical aluminum or aluminum alloy substrate. A photosensitive layer as a charge transfer layer is formed. When manufacturing this photoconductor, the surface of the substrate is turned using an R bite. When the surface of the substrate is cut using the R bite, the geometric surface roughness R
max is mainly determined by the macroscopic transfer of the cutting edge shape of the R tool, and the cutting edge radius (the cutting edge nose radius) is r,
Assuming that the feed amount is S, a regular surface roughness waveform represented by Rmax = S 2 / 8r is formed. In this regular surface roughness waveform, fine irregularities are generated for each waveform by microscopic transfer of the blade edge. The surface of the substrate is turned by processing the cutting edge of the R bit so that the height of the fine irregularities in each of the surface roughness waveforms is 0.1 μm to 1.5 μm, and the surface of the substrate is regularly arranged. 0.1μm height in each waveform
1.5 μm fine irregularities are transferred.

【0019】この基体を使用して形成した感光体にトナ
ー像を形成するために光書込用のレーザ光を照射する
と、照射されたレーザ光が電荷移動層から電荷発生層に
到達すると光キャリヤを発生して静電潜像を形成する。
この感光体にレーザ光を照射して光書込みをしたとき
に、電荷発生層で吸収されなかった余剰の光は、光散乱
剤が分散された下引層に入射する。下引層に入射して下
引層内で散乱されない余剰のレーザ光が基体の表面に到
達する。基体の表面に到達した余剰のレーザ光は、基体
の表面の規則的な面粗さ波形毎に、高さが0.1μm〜
1.5μmの微細な凹凸により拡散され多重反射を防止
する。このようにして下引層を薄膜化して感光体表面に
光の干渉が生じることを防ぐことができる。
When a laser beam for optical writing is irradiated to form a toner image on a photoreceptor formed by using the substrate, when the irradiated laser beam reaches the charge generation layer from the charge transfer layer, the optical carrier Is generated to form an electrostatic latent image.
When the photosensitive member is irradiated with laser light to perform optical writing, excess light not absorbed by the charge generation layer enters the undercoat layer in which the light scattering agent is dispersed. Excess laser light that enters the undercoat layer and is not scattered in the undercoat layer reaches the surface of the base. Excess laser light that reaches the surface of the substrate has a height of 0.1 μm or more for each regular surface roughness waveform on the surface of the substrate.
It is diffused by 1.5 μm fine unevenness to prevent multiple reflection. In this way, the undercoat layer can be made thinner to prevent light interference on the photoreceptor surface.

【0020】[0020]

【実施例】図1は電子写真方式の複写機等の画像形成装
置でトナー像を形成する感光体の部分断面図である。図
に示すように、感光体1は円筒状のアルミニウム又はア
ルミニウム合金の基体2の表面21に光散乱剤が分散さ
れた下引層3が形成され、下引層3の表面に電荷発生層
4と電荷移動層5の感光層6が形成されている。この感
光体1を製造するときに、基体2の表面21はRバイト
を用いて旋削加工する。このRバイトを用いて基体2の
表面21を切削するとき、切削加工した基体2の表面2
1の幾何学的面粗さRmaxは、図2(a)の粗さ断面
曲線図に示すように、主としてRバイト7の刃先形状の
巨視的刃形転写できまり、刃先コーナ半径(刃先ノーズ
半径)をr、送り量をSとすると、Rmax=S2 /8
rで現せる規則的な面粗さ波形22で形成される。この
規則的な面粗さ波形22には、図2(b)の部分拡大粗
さ断面曲線図に示すように、1波形毎に刃先の微視的刃
形転写による微細な凹凸23が生じる。この面粗さ波形
22の各波形中の微細な凹凸23の高さが0.1μm〜
1.5μmになるようにRバイト7の刃先を加工する。
FIG. 1 is a partial sectional view of a photoreceptor for forming a toner image in an image forming apparatus such as an electrophotographic copying machine. As shown in the figure, the photoreceptor 1 has an undercoat layer 3 in which a light scattering agent is dispersed formed on a surface 21 of a cylindrical aluminum or aluminum alloy substrate 2, and a charge generation layer 4 on the surface of the undercoat layer 3. And the photosensitive layer 6 of the charge transfer layer 5 is formed. When manufacturing the photoconductor 1, the surface 21 of the base 2 is turned using an R bite. When cutting the surface 21 of the base 2 using the R bite, the surface 2
As shown in the roughness cross-sectional curve diagram of FIG. 2A, the geometric surface roughness Rmax of No. 1 is mainly determined by the macroscopic transfer of the cutting edge shape of the R bit 7 and the cutting edge radius (the cutting edge nose radius). ) and r, the feed amount when the S, Rmax = S 2/8
It is formed with a regular surface roughness waveform 22 represented by r. In this regular surface roughness waveform 22, as shown in the partial enlarged roughness cross-sectional curve diagram of FIG. 2B, fine irregularities 23 are generated for each waveform by microscopic transfer of the blade edge. The height of the fine irregularities 23 in each of the surface roughness waveforms 22 is from 0.1 μm to
The edge of the R bite 7 is machined so as to have a thickness of 1.5 μm.

【0021】この感光体1にトナー像を形成するために
画像を書込むときは、図3の斜視図に示すように、表面
が帯電した感光体1に半導体レーザ装置8から形成する
画像の走査に応じてレーザ光9を照射する。この照射さ
れたレーザ光9が感光体1の電荷移動層5から電荷発生
層4に到達すると光キャリヤを発生して静電潜像を形成
する。感光体1に形成された静電潜像は現像装置10で
トナーが付着されて可視化される。この感光体1にレー
ザ光9を照射して光書込みをしたときに、電荷発生層4
で吸収されなかった余剰の光は、光散乱剤が分散された
下引層3に入射する。このとき下引層3が例えば5〜2
0μmと十分な厚さの膜厚である場合、レーザ光9は基
体2の表面21に到達せずに散乱してしまうが、膜厚を
厚くすると電気抵抗を低くすることが困難となり、導電
剤を分散して電気抵抗を1012Ωcm以下に調整するこ
とが必要になるとともに下引層3と電荷発生層4との間
にポリアミド樹脂等の薄膜の絶縁層を形成する必要があ
る。
When an image is written to form a toner image on the photoconductor 1, scanning of an image formed by the semiconductor laser device 8 on the photoconductor 1 having a charged surface is performed as shown in the perspective view of FIG. Is irradiated with a laser beam 9 in accordance with. When the irradiated laser beam 9 reaches the charge generation layer 4 from the charge transfer layer 5 of the photoreceptor 1, it generates an optical carrier to form an electrostatic latent image. The electrostatic latent image formed on the photoreceptor 1 is visualized by the toner attached by the developing device 10. When the photoreceptor 1 is irradiated with laser light 9 for optical writing, the charge generation layer 4
Excess light that has not been absorbed by the substrate enters the undercoat layer 3 in which the light scattering agent is dispersed. At this time, the undercoat layer 3 is, for example, 5 to 2
When the thickness is 0 μm, the laser light 9 scatters without reaching the surface 21 of the base 2. However, when the thickness is large, it is difficult to reduce the electric resistance, and the conductive agent And it is necessary to adjust the electric resistance to 10 12 Ωcm or less and to form an insulating layer of a thin film such as a polyamide resin between the undercoat layer 3 and the charge generation layer 4.

【0022】これに対して下引層3の膜厚が薄い場合に
は、図2(b)に示すように、下引層3で散乱されない
余剰のレーザ光91が基体2の表面21に到達する。基
体2の表面21に到達した余剰のレーザ光91は、基体
2の表面21の規則的な面粗さ波形毎に、高さが0.1
μm〜1.5μmの微細な凹凸23により散乱し、多重
反射を防止する。このようにして下引層3を薄膜化して
感光体1表面に光の干渉が生じることを防ぐことができ
る。
On the other hand, when the thickness of the undercoat layer 3 is small, as shown in FIG. 2B, excess laser light 91 not scattered by the undercoat layer 3 reaches the surface 21 of the base 2. I do. The surplus laser light 91 reaching the surface 21 of the base 2 has a height of 0.1 for each regular surface roughness waveform of the surface 21 of the base 2.
The light is scattered by the fine irregularities 23 of μm to 1.5 μm to prevent multiple reflection. Thus, the undercoat layer 3 can be made thinner to prevent light interference on the surface of the photoreceptor 1.

【0023】この基体2の表面21を例えば刃先に微細
な凹凸0.1〜1.5μmを有するRバイト7を使用
し、送り量をS=0.19mmで切削したときの、基体
2の表面21を表面粗さ計で測定した結果を図4に示
す。図4に示すように、基体2の表面21にはピッチ
0.19mmで規則的な面粗さ波形22が形成され、各
波形毎に高さが0.1μm〜1.5μmの微細な凹凸2
3が転写されて形成されている。この基体2を使用して
感光体1を製作し、光書込みに使用される書込口径D=
70〜90μmのレーザ光9を照射した結果、感光体1
表面には干渉縞が全く生ぜず、基体2の表面21に到達
した余剰のレーザ光91が表面21で拡散されて下引層
3で散乱したことを確認できた。
The surface 21 of the base 2 is cut, for example, with an R bit 7 having fine irregularities of 0.1 to 1.5 μm at the cutting edge and a feed amount of S = 0.19 mm. FIG. 4 shows the result of measuring No. 21 with a surface roughness meter. As shown in FIG. 4, a regular surface roughness waveform 22 is formed on the surface 21 of the base 2 at a pitch of 0.19 mm, and fine irregularities 2 having a height of 0.1 μm to 1.5 μm are formed for each waveform.
3 is formed by transfer. A photoreceptor 1 is manufactured using the substrate 2, and a writing aperture D =
As a result of irradiating a laser beam 9 of 70 to 90 μm,
No interference fringes were generated on the surface, and it was confirmed that the excess laser beam 91 reaching the surface 21 of the base 2 was diffused on the surface 21 and scattered on the undercoat layer 3.

【0024】この基体2の表面21を切削するRバイト
7の刃先先端の刃先コーナ半径rは任意の値、例えばr
=1〜∞で形成して、基体2の表面21に送り量S毎に
高さが0.1〜1.5μmの微細な凹凸23を周期的に
形成しても良い。例えば、刃先コーナ半径r=∞とし
て、基体2の表面21に、送り量S=0.33毎に高さ
が0.1〜1.5μmの微細な凹凸23を周期的に形成
し、基体2の表面21を表面粗さ計で測定した結果を図
5に示す。この基体2により感光体1を製作し、書込口
径D=70〜90μmのレーザ光9を照射した結果、感
光体1表面には干渉縞が全く生ぜず、基体2の表面21
に到達した余剰のレーザ光91が表面21で拡散されて
いることが確認できた。
The cutting edge radius r of the cutting edge of the R bit 7 for cutting the surface 21 of the base 2 is an arbitrary value, for example, r.
= 1 to ∞, and fine irregularities 23 having a height of 0.1 to 1.5 μm for each feed amount S may be periodically formed on the surface 21 of the base 2. For example, assuming that the edge radius is r = ∞, fine irregularities 23 having a height of 0.1 to 1.5 μm are periodically formed on the surface 21 of the base 2 at every feed amount S = 0.33, FIG. 5 shows the results obtained by measuring the surface 21 with a surface roughness meter. The photoreceptor 1 was manufactured from the substrate 2 and irradiated with a laser beam 9 having a writing aperture D = 70 to 90 μm. As a result, no interference fringes were generated on the surface of the photoreceptor 1 and the surface 21 of the substrate 2
It has been confirmed that the surplus laser light 91 arriving at the surface 21 is diffused on the surface 21.

【0025】このように基体2の表面21を旋盤にて旋
削加工するときのRバイト7は、図6に示すように、シ
ャンク部71の先端に焼結ダイヤモンドのチップからな
る刃先72を有する。刃先72の焼結ダイヤモンドのチ
ップはダイヤモンド粒子をWC−Coの微粉末をバイン
ダーとして高温高圧で焼結しているため導電性があり放
電加工が可能である。この刃先72のすくい面73はす
くい角α=−5〜−15度と通常のダイヤモンドバイト
より大きく取り、切り屑の排出が容易になるようにして
いる。ここで切削代を60μm以上とする場合は、すく
い角α=−10〜−15度と大きめにする。また、刃先
72の逃げ面74の逃げ角βも通常のダイヤモンドバイ
トの1〜3度より大きくとり、逃げ角β=5〜10度に
して切削抵抗を減らすようにする。さらに、すくい面7
3の面粗さは、砥粒平均粒径が5〜12μmのダイヤモ
ンド砥石で研削加工して鏡面仕上げをして切り屑の排出
を容易にしている。また、刃先72のr部75の逃げ面
74は砥粒平均粒径を10〜40μmのダイヤモンド砥
石で刃付け研削加工したり、放電加工して表面粗さが
0.1〜1.5μmの粗面を形成し、基体2の表面21
に高さが0.1〜1.5μmの微細な凹凸23を転写す
るようにしてある。このRバイト7を使用して基体2の
表面を精密旋削加工することにより、Rバイト7の逃げ
面74の粗面が基体2の表面21に転写されて微細な凹
凸23を形成することができる。この基体2の表面21
を旋削加工するするときに、Rバイト7のシャンク部7
1に設けられた切粉案内面角度γを、γ=40〜45度
にすると、図7の斜視図に示すように、切粉24を安定
して排出することができる。なお、図7は実際に旋削加
工する場合を180度反転した状態を示し、実際に旋削
加工する場合、Rバイト7の刃先72は下向きである。
As shown in FIG. 6, the R tool 7 when the surface 21 of the base 2 is turned by a lathe has a cutting edge 72 made of a sintered diamond tip at the tip of a shank 71 as shown in FIG. Since the sintered diamond tip of the cutting edge 72 is formed by sintering diamond particles at a high temperature and a high pressure using WC-Co fine powder as a binder, it has conductivity and can be subjected to electric discharge machining. The rake face 73 of the cutting edge 72 has a rake angle α = −5 to −15 degrees, which is larger than that of a normal diamond cutting tool, so that chips can be easily discharged. Here, when the cutting margin is set to 60 μm or more, the rake angle α is set to be as large as −10 to −15 degrees. In addition, the clearance angle β of the flank 74 of the cutting edge 72 is set to be larger than 1 to 3 degrees of a normal diamond tool, and the clearance angle β is set to 5 to 10 degrees to reduce the cutting resistance. Furthermore, rake face 7
The surface roughness of No. 3 is obtained by grinding with a diamond grindstone having an average grain diameter of 5 to 12 μm and mirror finishing to facilitate the discharge of chips. The flank 74 of the r portion 75 of the cutting edge 72 is ground with a diamond grindstone having an average grain diameter of 10 to 40 μm, or is subjected to electric discharge machining to have a surface roughness of 0.1 to 1.5 μm. And a surface 21 of the substrate 2
The fine irregularities 23 having a height of 0.1 to 1.5 [mu] m are transferred. By performing precision turning on the surface of the base 2 using the R bit 7, the rough surface of the flank 74 of the R bit 7 is transferred to the surface 21 of the base 2, and fine irregularities 23 can be formed. . Surface 21 of base 2
When turning, the shank part 7 of the R bite 7
When the chip guide surface angle γ provided in 1 is γ = 40 to 45 degrees, the chips 24 can be stably discharged as shown in the perspective view of FIG. 7. Note that FIG. 7 shows a state in which the actual turning operation is reversed by 180 degrees, and in the case where the actual turning operation is performed, the cutting edge 72 of the R bit 7 is directed downward.

【0026】このように基体2を旋削加工するとき、図
8(a)の斜視図と(b)の側面図に示すように、ノズ
ル11から石油系炭化水素径のケロシンと軽油の混合物
からなる切削油を供給しながらRバイト7で基体2を旋
削加工し、生じた切粉24ををRバイト7の下部に設
け、切粉吸引装置に接続された切粉排出フード12で吸
引して回収する。この基体2を旋削加工しているとき
に、切粉排出フード12の空気吸引風速を切削速度の
1.2〜1.5倍とすることにより、切粉24が基体2
の表面21に巻き込んだり擦れることを防止して、基体
2の表面21にRバイト7の逃げ面74の粗面を転写し
て微細な凹凸23を形成することができる。
When the base body 2 is turned in this way, as shown in the perspective view of FIG. 8A and the side view of FIG. 8B, the nozzle 2 is made of a mixture of kerosene having a petroleum hydrocarbon diameter and light oil from the nozzle 11. The base 2 is turned with the R-bit 7 while supplying the cutting oil, and the generated chips 24 are provided at the lower portion of the R-bit 7 and collected by suctioning with the chip discharge hood 12 connected to the chip suction device. I do. When the substrate 2 is being turned, the airflow of the chip discharge hood 12 is set to 1.2 to 1.5 times the cutting speed, so that the chips 24
The rough surface of the flank surface 74 of the R bite 7 can be transferred to the surface 21 of the base 2 to prevent the unevenness 23 from being formed.

【0027】また、基体2を旋削加工するときに、図9
(a)の正面断面図と(b)の側面断面図に示す円筒状
の防振部材13を基体2の内径に圧入して、基体2の剛
性を高め、かつ振動を吸収して、基体2の表面21にR
バイト7の逃げ面74の粗面を精度良く転写することが
できる。この円筒状の防振部材13は、図9に示すよう
に、芯金131に例えばゴム硬度40〜60度の耐油性
ゴム、例えば耐油性のある多硫化ゴム、フッ素ゴム、ウ
レタンゴム、アクリルゴム、ニトリルゴムなどからなる
複数の円盤状防振材132をスペーサ133を介して挿
入し、この円盤状防振材132をポリアミド樹脂の布又
はフッ素樹脂をラミネートしたりコーティングした織布
等からなる被覆材134で被覆し、両端を押え板135
で固定してある。芯金131は円盤状防振材132を挿
入して固定から円盤状防振材132の表面を研削加工で
きるように中央にセンタ穴136が設けられている。そ
して円筒状の防振部材13を基体2に挿入したときに、
円筒状の防振部材13の被覆材134の押接量が基体2
の中央部、例えば基体2の全長の1/3の範囲で0.1
5〜0.25mmとなり、両側で0.05〜0.15m
mになるように、芯金131に円盤状防振材132とス
ペーサ133を固定してから、円盤状防振材132の表
面を研削し、円筒状の防振部材13を基体2内に挿入し
たときに基体2の径が拡張することを防ぐぎ、円筒状の
防振部材13を基体2に容易に挿入することができると
ともに基体2の剛性を高め、加工時の振動を吸収するこ
とができる。また、被覆材134として使用するポリア
ミド樹脂の布は摩擦係数0.1でフッ素樹脂に比較して
やや大きいが、切削油剤に対して耐久性があり安価で加
工性が良い。また、フッ素樹脂をラミネートしたりコー
ティングした織布は摩擦係数0.05と小さく滑り易く
なり、基体2内に容易に挿入して押接力を高める防振効
果を有効に発揮することができる。
When turning the base 2, FIG.
The cylindrical anti-vibration member 13 shown in the front sectional view of (a) and the side sectional view of (b) is press-fitted into the inner diameter of the base 2 to increase the rigidity of the base 2 and absorb the vibration, and R on the surface 21
The rough surface of the flank 74 of the cutting tool 7 can be accurately transferred. As shown in FIG. 9, the cylindrical vibration-isolating member 13 is formed such that an oil-resistant rubber having a rubber hardness of 40 to 60 degrees, for example, an oil-resistant polysulfide rubber, a fluorine rubber, a urethane rubber, an acrylic rubber , A plurality of disc-shaped vibration insulators 132 made of nitrile rubber or the like are inserted through spacers 133, and the disc-shaped vibration insulators 132 are covered with a polyamide resin cloth or a woven cloth obtained by laminating or coating a fluororesin. Covered with material 134, and holding plates 135 at both ends
It is fixed with. The core metal 131 has a center hole 136 at the center so that the surface of the disk-shaped vibration isolator 132 can be ground after the disk-shaped vibration isolator 132 is inserted and fixed. When the cylindrical anti-vibration member 13 is inserted into the base 2,
The pressing amount of the covering member 134 of the cylindrical vibration isolator 13 is
, For example, in the range of 1/3 of the total length of
5 to 0.25 mm, 0.05 to 0.15 m on both sides
m, the disk-shaped vibration isolator 132 and the spacer 133 are fixed to the cored bar 131, the surface of the disk-shaped vibration isolator 132 is ground, and the cylindrical vibration isolator 13 is inserted into the base 2. In order to prevent the diameter of the base 2 from being expanded when it is made, the cylindrical vibration isolator 13 can be easily inserted into the base 2 and the rigidity of the base 2 can be increased to absorb vibration during processing. it can. The polyamide resin cloth used as the coating material 134 has a coefficient of friction of 0.1, which is slightly larger than that of the fluororesin, but is durable, inexpensive and has good workability to cutting oil. Further, the woven fabric laminated or coated with a fluororesin has a friction coefficient of 0.05 and is easily slippery, and can be easily inserted into the base 2 to effectively exhibit a vibration-proof effect of increasing the pressing force.

【0028】この円筒状の防振部材13は、図10に示
すように、芯金131のセンタ穴136を精密旋盤のテ
ール側テーパ勘合型治具14の軸に挿入して締付板15
で締め付けてテーパ勘合型治具14に固定される。この
防振部材13に基体2を取り付け、精密旋盤の開きコレ
ットチャック16で芯出しを行いテール軸17を前進さ
せて基体2をクランプする。この基体2をクランプする
ときのテール軸17を押圧する押圧荷重は10〜50K
gとし、基体2の径と板厚及び長さにより調整する。こ
のクランプした基体2を旋削加工するとき、切削条件と
して例えば回転数4000〜5000rpm、切削送り
量Sを0.1〜0.2mm、基体2の表面21を得るた
めの仕上げ代を20〜60μmとし、刃先コーナ半径r
=1〜30mmの範囲のRバイト7を使用し、噴射量
0.2〜0.5cc/secで切削油を噴射しながら、
外径が30〜100mm、長さが360mm、厚さ0.
5〜1.5mmの基体2をそれぞれ加工した結果、切削
面に刃先72によるスクラッチや微細な突起形成や切粉
の溶着は生じなく、安定した切削面を得ることができ
た。
As shown in FIG. 10, the cylindrical anti-vibration member 13 is formed by inserting the center hole 136 of the metal core 131 into the shaft of the tail-side taper fitting jig 14 of the precision lathe and tightening the tightening plate 15.
And fixed to the tapered fitting jig 14. The base 2 is attached to the vibration isolating member 13, centered by an open collet chuck 16 of a precision lathe, and the tail shaft 17 is advanced to clamp the base 2. The pressing load for pressing the tail shaft 17 when clamping the base 2 is 10 to 50K.
g, which is adjusted according to the diameter, plate thickness, and length of the base 2. When the clamped substrate 2 is turned, the cutting conditions are, for example, a rotation speed of 4000 to 5000 rpm, a cutting feed amount S of 0.1 to 0.2 mm, and a finishing allowance for obtaining the surface 21 of the substrate 2 at 20 to 60 μm. , Cutting edge radius r
Using an R bite 7 in the range of 1 to 30 mm, while injecting cutting oil at an injection amount of 0.2 to 0.5 cc / sec,
The outer diameter is 30 to 100 mm, the length is 360 mm, and the thickness is 0.3 mm.
As a result of processing each of the bases 2 having a size of 5 to 1.5 mm, a stable cut surface could be obtained without scratching, formation of minute projections, or welding of cutting chips on the cut surface.

【0029】上記のようにして基体2の表面21を旋削
加工したのち、基体2をpH10〜11のアルカリ性洗
浄液で液温40〜50℃、処理時間3〜5分で洗浄して
切削油を除去してからpH12〜13のアルカリ性洗浄
液で液温40〜50℃、処理時間3〜5分で再度洗浄し
てから水洗いする。このようにpH12〜13のアルカ
リ性洗浄液で処理することにより、基体2の表面21が
0.1μm以下の微小量だけエッチングされて、表面2
1全体の光沢を失い白濁化する。このように白濁化した
表面21を有する基体2を使用して感光体1を製作し、
製作した感光体1にレーザ光を照射して光書込みを行っ
た結果、感光体1表面に光の干渉が生じることをより確
実に防ぐことができた。ここでpH10〜11のアルカ
リ性洗浄液の組成は珪酸ナトリウム20〜40%と燐酸
ナトリウム50〜70%及び界面活性剤5〜10%でア
ルカリ洗剤濃度2〜5%とし、pH12〜13のアルカ
リ性洗浄液の組成は珪酸ナトリウム20〜40%と燐酸
ナトリウム50〜70%及び界面活性剤5〜10%でア
ルカリ洗剤濃度3〜10%とすると、基体2の表面21
に付着している切削油を確実に除去して、基体2の表面
21を均一に白濁化することができる。
After turning the surface 21 of the substrate 2 as described above, the substrate 2 is washed with an alkaline cleaning liquid having a pH of 10 to 11 at a liquid temperature of 40 to 50 ° C. for a processing time of 3 to 5 minutes to remove cutting oil. Then, it is washed again with an alkaline washing solution having a pH of 12 to 13 at a liquid temperature of 40 to 50 ° C. for a treatment time of 3 to 5 minutes, and then washed with water. By performing the treatment with the alkaline cleaning solution having a pH of 12 to 13 as described above, the surface 21 of the substrate 2 is etched by a minute amount of 0.1 μm or less, and the surface 2 is etched.
1 Loss of gloss and cloudiness. The photoreceptor 1 is manufactured using the substrate 2 having the surface 21 that has become cloudy in this way,
As a result of performing optical writing by irradiating the manufactured photoconductor 1 with a laser beam, it was possible to more reliably prevent light interference on the surface of the photoconductor 1. Here, the composition of the alkaline cleaning solution having a pH of 10 to 11 is 20 to 40% of sodium silicate, 50 to 70% of sodium phosphate and 5 to 10% of a surfactant, and the concentration of the alkaline detergent is 2 to 5%. Is 20 to 40% of sodium silicate, 50 to 70% of sodium phosphate, 5 to 10% of surfactant, and 3 to 10% of alkaline detergent.
The cutting oil adhering to the substrate 2 can be reliably removed, and the surface 21 of the base 2 can be uniformly clouded.

【0030】[0030]

【発明の効果】この発明は以上説明したように、基体の
表面を旋削する切削工具の刃先コーナ半径をr、送り量
をSとすると、基体の表面を幾何学的面粗さRmax=
2 /8rで現せる規則的な面粗さ波形で形成し、該規
則的な面粗さ波形の各波形中に高さが0.1μm〜1.
5μmの微細な凹凸を設けたから、基体の表面に到達し
た余剰のレーザ光を、基体の表面の規則的な面粗さ波形
毎に、高さが0.1μm〜1.5μmの微細な凹凸によ
り下引層内に拡散して下引層で散乱させ、基体の表面に
到達した余剰のレーザ光による多重反射を防止し、下引
層を薄膜化しても感光体表面に光の干渉が生じることを
防ぐことができ、良質な画像を安定して形成することが
できる。
As described above, according to the present invention, if the radius of the cutting edge of a cutting tool for turning the surface of the base is r and the feed amount is S, the surface of the base is geometrical surface roughness Rmax =
It is formed with a regular surface roughness waveform represented by S 2 / 8r, and the height of each regular surface roughness waveform is 0.1 μm to 1 μm.
Since the fine irregularities of 5 μm are provided, the excess laser light reaching the surface of the substrate is subjected to fine irregularities having a height of 0.1 μm to 1.5 μm for each regular surface roughness waveform of the surface of the substrate. Diffuse in the undercoat layer and scattered by the undercoat layer, preventing multiple reflections due to excess laser light reaching the surface of the substrate, and causing light interference on the photoreceptor surface even if the undercoat layer is thinned Can be prevented, and a high-quality image can be stably formed.

【0031】この基体の表面を刃先コーナ半径r=1〜
∞の大きさの切削工具で旋削して送り量S毎に高さが
0.1μm〜1.5μmの微細な凹凸を周期的に基体の
表面に形成することにより、基体の表面に到達した余剰
のレーザ光を確実に拡散することができる。
The surface of the substrate is formed by cutting the edge radius r = 1 to 1
By turning with a cutting tool of size ∞ and periodically forming fine irregularities having a height of 0.1 μm to 1.5 μm on the surface of the base for each feed amount S, the excess reaching the surface of the base Can be surely diffused.

【0032】また、基体の表面を旋削する切削工具の刃
先材質を焼結ダイヤモンドとし、刃先の逃げ面を砥粒平
均粒径が10〜40μmのダイヤモンド砥石で粗さ0.
1〜1.5μmに仕上げたり、刃先の逃げ面を放電加工
で粗さ0.1〜1.5μmに仕上げることにより、基体
の表面の規則的な面粗さ波形の各波形中に高さが0.1
μm〜1.5μmの微細な凹凸を精度良く転写すること
ができる。
The cutting tool for turning the surface of the substrate is made of sintered diamond, and the flank of the cutting edge is made of a diamond grindstone having an average grain size of 10 to 40 μm.
By finishing the flank surface of the cutting edge to a roughness of 0.1 to 1.5 μm by electric discharge machining, the height of each of the regular surface roughness waveforms of the substrate is increased. 0.1
Fine irregularities of μm to 1.5 μm can be accurately transferred.

【0033】さらに、切削工具の刃先すくい面を砥粒平
均粒径が5〜12μmのダイヤモンド砥石で研削加工し
て仕上げ、切削工具のすくい角を−5〜−15度、逃げ
角を5〜15度の範囲にすることにより、基体の表面を
旋削加工するときの切削抵抗を低減するとともに切り屑
の排出を容易にし、基体の表面に微細粒子が付着したり
ササクレ状の欠陥等が生じることを防ぐことができる。
Further, the rake face of the cutting tool is finished by grinding with a diamond grindstone having an average grain diameter of 5 to 12 μm, and the rake angle of the cutting tool is -5 to -15 degrees and the clearance angle is 5 to 15 degrees. By setting the range, the cutting resistance when turning the surface of the base is reduced, and the discharge of the chips is facilitated. Can be prevented.

【0034】また、基体内に円筒状の防振材を圧入して
基体の表面を旋削することにより、基体の剛性を高め、
かつ振動を吸収して、基体の表面に切削工具の逃げ面を
精度良く転写することができる。
Further, the rigidity of the base is increased by press-fitting a cylindrical vibration isolator into the base and turning the surface of the base.
In addition, the flank of the cutting tool can be accurately transferred to the surface of the base by absorbing vibration.

【0035】さらに、基体の表面を旋削加工後に、基体
をpH10〜11のアルカリ性洗浄液により液温40〜
50℃で3〜5分間洗浄してからpH12〜13のアル
カリ性洗浄液により液温40〜50℃で3〜5分間再度
洗浄処理してから水洗いすることにより、基体の表面に
付着している切削油を確実に除去して、基体の表面を均
一に白濁化することができ、基体の表面に入射したレー
ザ光の拡散効率をより高めて安定した画像を形成するこ
とができる。
Further, after turning the surface of the substrate, the substrate is washed with an alkaline cleaning solution having a pH of 10 to 11 to a temperature of 40 to 40.
Cutting oil adhering to the surface of the substrate by washing at 50 ° C. for 3 to 5 minutes, washing again with an alkaline washing solution of pH 12 to 13 at a liquid temperature of 40 to 50 ° C. for 3 to 5 minutes, and then washing with water. Can be reliably removed, and the surface of the substrate can be uniformly clouded, and the diffusion efficiency of laser light incident on the surface of the substrate can be further increased to form a stable image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の感光体の部分断面図であ
る。
FIG. 1 is a partial cross-sectional view of a photosensitive member according to an embodiment of the present invention.

【図2】上記実施例の基体表面の粗さ断面曲線図であ
る。
FIG. 2 is a diagram showing a roughness cross-sectional curve of a substrate surface of the embodiment.

【図3】感光体と半導体レーザ装置を示す斜視図であ
る。
FIG. 3 is a perspective view showing a photoconductor and a semiconductor laser device.

【図4】基体の表面の表面粗さを示す波形図である。FIG. 4 is a waveform diagram showing the surface roughness of the surface of the base.

【図5】基体の表面の他の表面粗さを示す波形図であ
る。
FIG. 5 is a waveform diagram showing another surface roughness of the surface of the base.

【図6】基体の表面を旋削するRバイトを示す斜視図で
ある。
FIG. 6 is a perspective view showing an R tool for turning a surface of a base.

【図7】Rバイトによる切削状態を示す斜視図である。FIG. 7 is a perspective view showing a cutting state using an R bite.

【図8】基体の表面を切削するときの状態を示す旋削加
工図である。
FIG. 8 is a turning diagram showing a state when cutting the surface of the base.

【図9】防振部材の構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a configuration of a vibration isolation member.

【図10】基体を旋削するときにクランプした状態を示
す断面図である。
FIG. 10 is a cross-sectional view showing a clamped state when turning the base.

【符号の説明】[Explanation of symbols]

1 感光体 2 基体 3 下引層 4 電荷発生層 5 電荷移動層 6 感光層 7 Rバイト 9 レーザ光 DESCRIPTION OF SYMBOLS 1 Photoreceptor 2 Substrate 3 Undercoat layer 4 Charge generation layer 5 Charge transfer layer 6 Photosensitive layer 7 R byte 9 Laser beam

フロントページの続き (72)発明者 後藤 浩之 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 笠井 修治 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 望月 俊夫 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 石浦 資昭 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 Fターム(参考) 2H068 AA44 AA52 AA54 AA59 CA32 EA05 EA07 3C043 AA11 CC02 CC13 Continued on the front page (72) Inventor Hiroyuki Goto 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company (72) Inventor Shuji Kasai 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Company (72) Inventor Toshio Mochizuki 1-3-6 Nakamagome, Ota-ku, Tokyo Ricoh Co., Ltd. (72) Inventor Yoshiaki Ishiura 1-3-6 Nakamagome, Ota-ku, Tokyo Ricoh F-term ( Reference) 2H068 AA44 AA52 AA54 AA59 CA32 EA05 EA07 3C043 AA11 CC02 CC13

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 円筒状のアルミニウム又はアルミニウム
合金の基体の表面に光散乱剤が分散された下引層が形成
され、下引層の表面に電荷発生層と電荷移動層が形成さ
れている有機感光体であって、 基体の表面を規則的な面粗さ波形で形成し、該規則的な
面粗さ波形の各波形中に高さが0.1μm〜1.5μm
の微細な凹凸を有することを特徴とする有機感光体。
1. An organic material comprising a cylindrical aluminum or aluminum alloy substrate, an undercoat layer in which a light-scattering agent is dispersed, and a charge generation layer and a charge transfer layer formed on the surface of the undercoat layer. A photosensitive member, wherein the surface of the substrate is formed with a regular surface roughness waveform, and the height of each of the regular surface roughness waveforms is 0.1 μm to 1.5 μm.
An organic photoreceptor having fine irregularities.
【請求項2】 円筒状のアルミニウム又はアルミニウム
合金の基体の表面に光散乱剤が分散された下引層が形成
され、下引層の表面に電荷発生層と電荷移動層が形成さ
れている有機感光体の製造方法であって、 基体の表面を旋削する切削工具の刃先コーナ半径をr、
送り量をSとすると、基体の表面を幾何学的面粗さRm
ax=S2 /8rで現せる規則的な面粗さ波形で形成
し、該規則的な面粗さ波形の各波形中に高さが0.1μ
m〜1.5μmの微細な凹凸を形成することを特徴とす
る有機感光体の製造方法。
2. An organic material comprising a cylindrical aluminum or aluminum alloy substrate, an undercoat layer in which a light scattering agent is dispersed, and a charge generation layer and a charge transfer layer formed on the surface of the undercoat layer. A method of manufacturing a photoreceptor, wherein a cutting edge radius of a cutting tool for turning a surface of a base is r,
Assuming that the feed amount is S, the surface of the substrate is changed to a geometric surface roughness Rm.
ax = S 2 / 8r, a regular surface roughness waveform is formed, and the height of each regular surface roughness waveform is 0.1 μm.
A method for producing an organic photoreceptor, comprising forming fine irregularities of m to 1.5 μm.
【請求項3】 上記基体の表面を、刃先コーナ半径r=
1〜∞の大きさの切削工具で旋削する請求項2記載の有
機感光体の製造方法。
3. The surface of the above-mentioned base is formed by cutting the edge corner radius r =
3. The method according to claim 2, wherein the turning is performed with a cutting tool having a size of 1 to ∞.
【請求項4】 上記基体の表面を旋削する切削工具の刃
先材質を焼結ダイヤモンドとし、刃先の逃げ面を砥粒平
均粒径が10〜40μmのダイヤモンド砥石で粗さ0.
1〜1.5μmに仕上げ、基体の表面の規則的な面粗さ
波形の各波形中に高さが0.1μm〜1.5μmの微細
な凹凸を転写する請求項2又は3記載の有機感光体の製
造方法。
4. The cutting tool for turning the surface of the substrate is made of sintered diamond, and the flank of the cutting edge is made of a diamond grindstone having an average grain size of 10 to 40 μm.
The organic photosensitive material according to claim 2 or 3, wherein the substrate is finished to a thickness of 1 to 1.5 µm, and fine irregularities having a height of 0.1 µm to 1.5 µm are transferred into each of the regular surface roughness waveforms of the surface of the substrate. How to make the body.
【請求項5】 上記基体の表面を旋削する切削工具の刃
先材質を焼結ダイヤモンドとし、刃先の逃げ面を放電加
工で粗さ0.1〜1.5μmに仕上げ、基体の表面の規
則的な面粗さ波形の各波形中に高さが0.1μm〜1.
5μmの微細な凹凸を転写する請求項2又は3記載の有
機感光体の製造方法。
5. The cutting tool for turning the surface of the base is made of sintered diamond, and the flank of the cutting edge is finished to a roughness of 0.1 to 1.5 μm by electric discharge machining to form a regular surface of the base. The height in each of the surface roughness waveforms is 0.1 μm to 1.
4. The method for producing an organic photoreceptor according to claim 2, wherein fine irregularities of 5 [mu] m are transferred.
【請求項6】 上記切削工具の刃先すくい面を砥粒平均
粒径が5〜12μmのダイヤモンド砥石で研削加工して
仕上げた請求項4又は5記載の有機感光体の製造方法。
6. The method according to claim 4, wherein the rake face of the cutting tool is finished by grinding with a diamond grindstone having an average grain diameter of 5 to 12 μm.
【請求項7】 上記切削工具のすくい角を−5〜−15
度、逃げ角を5〜15度の範囲とした請求項6記載の有
機感光体の製造方法。
7. The rake angle of the cutting tool is -5 to -15.
7. The method for producing an organic photoreceptor according to claim 6, wherein the clearance and the clearance angle are in the range of 5 to 15 degrees.
【請求項8】 上記基体内に円筒状の防振材を圧入して
基体の表面を旋削する請求項2又は3記載の有機感光体
の製造方法。
8. The method according to claim 2, wherein the surface of the substrate is turned by press-fitting a cylindrical vibration isolator into the substrate.
【請求項9】 上記基体の表面を旋削加工後に、基体を
pH10〜11のアルカリ性洗浄液により液温40〜5
0℃で3〜5分間洗浄してからpH12〜13のアルカ
リ性洗浄液により液温40〜50℃で3〜5分間再度洗
浄処理する請求項9記載の有機感光体の製造方法。
9. After turning the surface of the substrate, the substrate is washed with an alkaline cleaning liquid having a pH of 10-11 at a temperature of 40-5.
The method for producing an organic photoreceptor according to claim 9, wherein the organic photoreceptor is washed at 0 ° C for 3 to 5 minutes and then washed again with an alkaline washing solution having a pH of 12 to 13 at a liquid temperature of 40 to 50 ° C for 3 to 5 minutes.
JP3035799A 1999-02-08 1999-02-08 Organic photoreceptor and its production Pending JP2000227671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3035799A JP2000227671A (en) 1999-02-08 1999-02-08 Organic photoreceptor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3035799A JP2000227671A (en) 1999-02-08 1999-02-08 Organic photoreceptor and its production

Publications (1)

Publication Number Publication Date
JP2000227671A true JP2000227671A (en) 2000-08-15

Family

ID=12301619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3035799A Pending JP2000227671A (en) 1999-02-08 1999-02-08 Organic photoreceptor and its production

Country Status (1)

Country Link
JP (1) JP2000227671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262964A (en) * 2002-03-08 2003-09-19 Furukawa Electric Co Ltd:The Method for manufacturing aluminum photoreceptor drum base body
US8909100B2 (en) 2011-12-28 2014-12-09 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, process cartridge and electrophotographic photoreceptor manufacturing method
JP2015230440A (en) * 2014-06-06 2015-12-21 株式会社リコー Conductive support, photoreceptor, image forming apparatus, and cartridge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262964A (en) * 2002-03-08 2003-09-19 Furukawa Electric Co Ltd:The Method for manufacturing aluminum photoreceptor drum base body
US8909100B2 (en) 2011-12-28 2014-12-09 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, process cartridge and electrophotographic photoreceptor manufacturing method
JP2015230440A (en) * 2014-06-06 2015-12-21 株式会社リコー Conductive support, photoreceptor, image forming apparatus, and cartridge

Similar Documents

Publication Publication Date Title
JP2810999B2 (en) Method for manufacturing substrate for photoreceptor drum
WO2004079455A1 (en) Basic material for electrophotographic photosensitive body, process for producing the same and electrophotographic photosensitive body employing it
JP2000227671A (en) Organic photoreceptor and its production
JPS6031144A (en) Photosensitive body and electrophotographic device using it
JPH11311875A (en) Photoreceptor for image forming device
JP5977606B2 (en) Surface treatment sheet with abrasive particles for treating the surface of a workpiece
JP2008260815A (en) Abrasive grain for polishing material, and polishing material
JP3192511B2 (en) Method for manufacturing substrate for photoreceptor drum
JPH06258855A (en) Preparation of photosensitive image formation member
JP4458518B2 (en) Method for producing cylindrical member, component for electrophotographic image forming apparatus using cylindrical member, and centerless grinding apparatus
JP2009064030A (en) Electrophotographic photoreceptor and image forming apparatus
JP4242890B2 (en) Electrophotographic photosensitive member, method for producing the same, and image forming apparatus
JPH09239649A (en) Cylindrical member grinding device for electrophotography
JP2001075299A (en) Organic photoreceptor and its production method
JP2826825B2 (en) Polishing tool
JP4433597B2 (en) Method for manufacturing substrate for photosensitive drum
JP3039907B2 (en) Developing sleeve having uniform fine uneven surface shape and manufacturing method thereof
JPS58139153A (en) Electrophotographic receptor
JP2004287419A (en) Electrophotographic photoreceptor substrate, its manufacturing method, electrophotographic photoreceptor using the substrate, as well as electrophtographic photoreceptor cartridge using the photoreceptor and image forming apparatus
JPH071397B2 (en) Surface processing method for electrophotographic photoreceptor substrate
JP2000127006A (en) Manufacture of cylinder member, and developing device and image forming device equipped with the same
JP7375385B2 (en) Photoconductor drum, image forming device, and photoconductor drum regeneration method
JP2507058B2 (en) Optical disc master and manufacturing method thereof
JP2000293030A (en) Developer carrier and developing device
JP2004037663A (en) Developing roller and developing device having the same