JP2000227551A - Lens optical system - Google Patents

Lens optical system

Info

Publication number
JP2000227551A
JP2000227551A JP11030097A JP3009799A JP2000227551A JP 2000227551 A JP2000227551 A JP 2000227551A JP 11030097 A JP11030097 A JP 11030097A JP 3009799 A JP3009799 A JP 3009799A JP 2000227551 A JP2000227551 A JP 2000227551A
Authority
JP
Japan
Prior art keywords
lens
diffraction grating
group
optical system
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11030097A
Other languages
Japanese (ja)
Other versions
JP4273556B2 (en
Inventor
Shigeto Omori
滋人 大森
Yuichiro Otoshi
祐一郎 大利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP03009799A priority Critical patent/JP4273556B2/en
Priority to US09/451,080 priority patent/US7295387B1/en
Publication of JP2000227551A publication Critical patent/JP2000227551A/en
Priority to US10/096,370 priority patent/US6704149B2/en
Application granted granted Critical
Publication of JP4273556B2 publication Critical patent/JP4273556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lens optical system made compact in the aspect of aberration by effectively using a diffraction grating. SOLUTION: This lens optical system is provided with a 1st group Gr1 having positive power, a 2nd group Gr2 having negative power, a 3rd group Gr3 having positive power and a 4th group Gr4 having positive power in turn from an object side. By changing an interval between the 1st and the 2nd groups Gr1 and Gr2 and an interval between the 3rd and the 4th groups Gr3 and Gr4, a zooming action is executed. The group Gr3 is provided with a joined lens and the joined lens is provided with the diffraction grating at a boundary surface (r14#). The curvature of the boundary surface (r14#) is different from those of the incident surface and the emitting surface (r13 and r15*) of the joined lens.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレンズ光学系に関す
るものであり、更に詳しくは回折格子を有するレンズを
用いたレンズ光学系に関するものである。
The present invention relates to a lens optical system, and more particularly, to a lens optical system using a lens having a diffraction grating.

【0002】[0002]

【従来の技術】光学機器(例えば、デジタルカメラ,ビ
デオカメラ,銀塩カメラ)に用いられるレンズ光学系(例
えば、ズームレンズ等の撮像光学系,ファインダー光学
系等の観察光学系)をコンパクト化するには、回折格子
を用いることが収差補正上有効である。具体的には、光
学要素の表面や媒質境界面に形成された回折格子で回折
光学面が構成され、その回折作用によってレンズ作用を
実現する回折光学素子(すなわち回折レンズ)を用いれば
よい。回折レンズを有するズームレンズは、特開平10-1
48757号公報や特開平10-161022号公報で提案されてい
る。前者は正・負・正・正の4成分タイプのズームレン
ズであり、第2群又は第3群に回折レンズを有してい
る。一方、後者は負・正の2成分タイプのズームレンズ
であり、第2群に回折レンズを有している。しかし、い
ずれの場合も回折格子がコンパクト化に対して十分効果
的に寄与しているとはいえない。
2. Description of the Related Art A lens optical system (for example, an imaging optical system such as a zoom lens, and an observation optical system such as a finder optical system) used for an optical device (for example, a digital camera, a video camera, a silver halide camera) is made compact. It is effective to use a diffraction grating for aberration correction. Specifically, a diffractive optical surface that is constituted by a diffraction grating formed on a surface of an optical element or a boundary surface of a medium, and realizes a lens function by its diffractive effect may be used. A zoom lens having a diffractive lens is disclosed in
It is proposed in JP-A-48757 and JP-A-10-161022. The former is a positive / negative / positive / positive four-component type zoom lens, and has a diffractive lens in the second or third group. On the other hand, the latter is a negative / positive two-component type zoom lens, and has a diffractive lens in the second group. However, in any case, it cannot be said that the diffraction grating contributes sufficiently effectively to downsizing.

【0003】ところで、用いる回折格子の形状がブレー
ズ形状である場合、特定波長(つまり回折格子の設計波
長)の回折効率は100%となるが、それとは異なる波長の
回折効率は100%に達しない。設計波長の光では回折格
子の高さに対して位相の整合が起こるが、設計波長以外
の波長の光では位相が不整合となるためである。設計波
長以外の波長の光でも光の位相が整合するようにするた
めに、2つの互いに異なる光学材料の境界面に回折格子
を設けた例が、特開平9-127321号公報や米国特許第5,73
4,502号明細書で提案されている。この回折格子を用い
れば、設計波長以外でも回折効率が100%となるため、
広い波長域で回折効率を高くすることが可能となる。
When the diffraction grating used has a blazed shape, the diffraction efficiency at a specific wavelength (that is, the design wavelength of the diffraction grating) is 100%, but the diffraction efficiency at a different wavelength does not reach 100%. . This is because phase matching occurs with respect to the height of the diffraction grating for light having a design wavelength, but phase mismatch occurs for light having a wavelength other than the design wavelength. Examples in which a diffraction grating is provided at the interface between two different optical materials in order to match the phase of light even at a wavelength other than the design wavelength are disclosed in Japanese Patent Application Laid-Open No. Hei 9-123321 and US Pat. , 73
4,502. If this diffraction grating is used, the diffraction efficiency becomes 100% even at wavelengths other than the design wavelength,
The diffraction efficiency can be increased in a wide wavelength range.

【0004】[0004]

【発明が解決しようとする課題】しかし、ブレーズ形状
に斜入射する光線は、厳密には設計波長であってもブレ
ーズ形状の壁の部分による回折への影響を受けるため、
回折効率が100%に達しないことになる。特に、2材料
の境界面に回折格子を有するために回折格子高さが大き
い場合や、回折格子間隔が小さいために相対的にブレー
ズ形状の壁の高さ(すなわち回折格子高さ)が大きい場合
には、ブレーズ形状の壁の部分の影響が大きいため、回
折効率は大きく低下することになる。また、レンズ系に
回折格子を用いた場合、画角の関係により光線がブレー
ズ形状に斜入射することは避けられないため、これによ
る回折効率の低下が問題となる。
However, the light beam obliquely incident on the blazed shape is affected by the diffraction by the blazed wall portion even at the strictly designed wavelength.
The diffraction efficiency will not reach 100%. In particular, when the diffraction grating height is large due to having a diffraction grating at the interface between the two materials, or when the height of the blazed wall is relatively large (that is, the diffraction grating height) because the diffraction grating interval is small. In this case, the effect of the blazed wall portion is large, so that the diffraction efficiency is greatly reduced. Further, when a diffraction grating is used for the lens system, it is inevitable that light rays are obliquely incident in a blazed shape due to the angle of view, which causes a problem of reduction in diffraction efficiency.

【0005】本発明は上記のような状況に鑑みてなされ
たものであって、第1の目的は、回折格子を効果的に用
いることにより収差的な面からコンパクト化が達成され
たレンズ光学系を提供することにある。そして、第2の
目的は、斜入射光線の回折効率が低下しないように回折
格子が用いられたレンズ光学系を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a first object is to provide a lens optical system which has been made compact in terms of aberration by effectively using a diffraction grating. Is to provide. A second object is to provide a lens optical system using a diffraction grating so that the diffraction efficiency of obliquely incident light does not decrease.

【0006】[0006]

【課題を解決するための手段】上記第1の目的を達成す
るために、第1の発明のレンズ光学系は、物体側より順
に、正のパワーを有する第1群と、負のパワーを有する
第2群と、正のパワーを有する第3群と、正又は負のパ
ワーを有する第4群と、を備え、前記第1群と前記第2
群との間隔と、前記第3群と前記第4群との間隔と、を
変化させることによりズーミングを行うレンズ光学系で
あって、前記第3群が接合レンズを有しており、その接
合レンズが境界面に回折格子を有し、前記境界面の曲率
が前記接合レンズの入射面及び射出面の曲率とは異なる
ことを特徴とする。
In order to achieve the first object, a lens optical system according to a first aspect of the present invention includes, in order from an object side, a first unit having a positive power and a first unit having a negative power. A second group, a third group having a positive power, and a fourth group having a positive or negative power, wherein the first group and the second group
A lens optical system that performs zooming by changing an interval between groups and an interval between the third group and the fourth group, wherein the third group has a cemented lens, and The lens has a diffraction grating at a boundary surface, and a curvature of the boundary surface is different from a curvature of an entrance surface and an exit surface of the cemented lens.

【0007】上記第1の目的を達成するために、第2の
発明のレンズ光学系は、上記第1の発明の構成におい
て、前記回折格子について以下の条件式を満たすことを
特徴とする。 0.02<φDOE/φgr3<0.1 ただし、 φDOE:回折格子によるレンズパワー、 φgr3:第3群のパワー、 である。
In order to achieve the first object, a lens optical system according to a second aspect of the present invention is characterized in that, in the configuration of the first aspect, the diffraction grating satisfies the following conditional expression. 0.02 <φDOE / φgr3 <0.1 where φDOE: lens power by the diffraction grating, φgr3: power of the third lens unit.

【0008】上記第1の目的を達成するために、第3の
発明のレンズ光学系は、上記第1又は第2の発明の構成
において、前記回折格子について以下の条件式を満たす
ことを特徴とする。 0.05<tW/fW<0.4 ただし、 tW:広角端での回折格子と絞りとの空気換算軸上面間
隔、 fW:広角端でのズーム全系の焦点距離、 である。
To achieve the first object, a lens optical system according to a third aspect of the present invention is characterized in that, in the configuration of the first or second aspect, the diffraction grating satisfies the following conditional expression. I do. 0.05 <tW / fW <0.4, where tW is the distance between the upper surface of the diffraction grating and the aperture at the wide-angle end on the air-equivalent axis, and fW is the focal length of the entire zoom system at the wide-angle end.

【0009】上記第1の目的を達成するために、第4の
発明のレンズ光学系は、上記第1又は第2の発明の構成
において、以下の条件式を満たすことを特徴とする。 |Y'max/PZ|<0.4 ただし、 Y'max:最大像高、 PZ:像面から射出瞳位置までの距離、 である。
In order to achieve the first object, a lens optical system according to a fourth aspect of the present invention is characterized in that, in the configuration of the first or second aspect, the following conditional expression is satisfied. | Y'max / PZ | <0.4 where Y'max: maximum image height, PZ: distance from the image plane to the exit pupil position.

【0010】上記第2の目的を達成するために、第5の
発明のレンズ光学系は、2つの互いに異なる光学材料が
密着する境界面に、回折格子によるレンズを有するレン
ズ光学系であって、前記回折格子が任意の光軸垂直方向
高さHでのブレーズ形状を表す以下の条件式を満足する
ことを特徴とする。 |(h/d)tanθ|≦0.045 ただし、 h :回折格子高さ、 d :回折格子間隔、 θ:入射角度、 であり、 Ci :位相係数、 λ0:設計波長、 とするとき、回折格子間隔dは位相関数Φ(H)の式:
In order to achieve the second object, a lens optical system according to a fifth aspect of the present invention is a lens optical system having a diffraction grating lens on a boundary surface where two different optical materials are in close contact with each other, The diffraction grating satisfies the following conditional expression representing a blaze shape at an arbitrary height H in a direction perpendicular to the optical axis. | (H / d) tanθ | ≦ 0.045, where h is the height of the diffraction grating, d is the interval between the diffraction gratings, θ is the incident angle, and Ci is the phase coefficient, λ0 is the design wavelength, and d is the equation of the phase function Φ (H):

【数2】 から光軸垂直方向高さHについての式: d(H)=-2π/(dΦ/dH) で表される。(Equation 2) The equation for the height H in the direction perpendicular to the optical axis is represented by: d (H) = − 2π / (dΦ / dH).

【0011】上記第2の目的を達成するために、第6の
発明のレンズ光学系は、2つの互いに異なる光学材料が
密着する境界面に、回折格子によるレンズを有するレン
ズ光学系であって、前記回折格子が以下の条件式を満足
することを特徴とする。 0.01≦|{(h・φDOE・DDOE)/(2・λ0)}・tan(ωmax)|≦
0.06 ただし、 h :回折格子高さ、 λ0:設計波長、 φDOE:回折格子によるレンズパワー、 DDOE:回折格子によるレンズの有効径、 ωmax:レンズ光学系の半画角の最大値、 である。
In order to achieve the second object, a lens optical system according to a sixth aspect of the present invention is a lens optical system having a diffraction grating lens on a boundary surface where two different optical materials are in close contact with each other, The diffraction grating satisfies the following conditional expression. 0.01 ≦ | {(h • φDOE • DDOE) / (2 • λ0)} • tan (ωmax) | ≦
0.06 where h: height of the diffraction grating, λ0: design wavelength, φDOE: lens power by the diffraction grating, DDOE: effective diameter of the lens by the diffraction grating, ωmax: maximum value of the half angle of view of the lens optical system.

【0012】上記第2の目的を達成するために、第7の
発明のレンズ光学系は、2つの互いに異なる光学材料が
密着する境界面に、回折格子によるレンズを有するレン
ズ光学系であって、前記回折格子が以下の条件式を満足
することを特徴とする。 0.005≦|(h/dmin)・tan(ωmax)|≦0.07 ただし、 h :回折格子高さ、 dmin :回折格子によるレンズの有効径範囲内の最小回
折格子間隔、 ωmax:レンズ光学系の半画角の最大値、 である。
In order to achieve the second object, a lens optical system according to a seventh aspect of the present invention is a lens optical system having a diffraction grating lens on a boundary surface where two different optical materials are in close contact with each other, The diffraction grating satisfies the following conditional expression. 0.005 ≦ | (h / dmin) · tan (ωmax) | ≦ 0.07, where h is the height of the diffraction grating, dmin is the minimum diffraction grating interval within the effective diameter range of the lens by the diffraction grating, and ωmax is the half-length of the lens optical system. The maximum value of the angle is

【0013】[0013]

【発明の実施の形態】以下、本発明を実施したレンズ光
学系を、図面を参照しつつ説明する。図1,図3,図
5,図7は、第1〜第4の実施の形態のズームレンズに
それぞれ対応するレンズ構成図であり、その広角端
[W],ミドル(中間焦点距離状態)[M]及び望遠端[T]で
のレンズ配置を示している。各レンズ構成図中、di(i=
1,2,3,...)が付された空気間隔は、物体側から数えてi
番目の軸上面間隔のうち、ズーミングにおいて変化する
可変間隔を示している。またレンズ構成図中、ri(i=1,
2,3,...)が付された面は物体側から数えてi番目の面{た
だし最終面は像面(I)}であり、riに*印が付された面は
非球面、riに#印が付された面は回折格子が形成された
回折レンズ面である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a lens optical system embodying the present invention will be described with reference to the drawings. FIGS. 1, 3, 5, and 7 are lens configuration diagrams corresponding to the zoom lenses according to the first to fourth embodiments, respectively.
[W], middle (intermediate focal length state) [M], and lens arrangement at the telephoto end [T] are shown. Di (i =
(1,2,3, ...) is the air gap counted from the object side.
A variable interval that changes during zooming among the third axial upper surface intervals is shown. Also, ri (i = 1,
The surfaces marked with (2,3, ...) are the i-th surface counted from the object side (however, the final surface is the image surface (I)), and the surface marked with * is an aspheric surface. The surface marked with # in ri is the surface of the diffraction lens on which the diffraction grating is formed.

【0014】第1,第2の実施の形態は、物体側より順
に、正のパワーを有する第1群(Gr1)と、負のパワーを
有する第2群(Gr2)と、正のパワーを有する第3群(Gr3)
と、正のパワーを有する第4群(Gr4)と、を備えた4成
分タイプのズームレンズである。第3の実施の形態は、
物体側より順に、正のパワーを有する第1群(Gr1)と、
負のパワーを有する第2群(Gr2)と、正のパワーを有す
る第3群(Gr3)と、正のパワーを有する第4群(Gr4)と、
負のパワーを有する第5群(Gr5)と、を備えた5成分タ
イプのズームレンズである。第4の実施の形態は、物体
側より順に、正のパワーを有する第1群(Gr1)と、負の
パワーを有する第2群(Gr2)と、正のパワーを有する第
3群(Gr3)と、負のパワーを有する第4群(Gr4)と、正の
パワーを有する第5群(Gr5)と、を備えた5成分タイプ
のズームレンズである。
In the first and second embodiments, in order from the object side, a first lens unit (Gr1) having a positive power, a second lens unit (Gr2) having a negative power, and a positive lens unit having a positive power 3rd group (Gr3)
And a fourth group (Gr4) having a positive power. In the third embodiment,
A first group (Gr1) having a positive power, in order from the object side,
A second group having negative power (Gr2), a third group having positive power (Gr3), and a fourth group having positive power (Gr4);
And a fifth unit (Gr5) having negative power. In the fourth embodiment, in order from the object side, a first unit (Gr1) having positive power, a second unit (Gr2) having negative power, and a third unit (Gr3) having positive power And a fourth group (Gr4) having a negative power and a fifth group (Gr5) having a positive power.

【0015】いずれの実施の形態も、第3群(Gr3)に回
折格子を有する正・負・正・(正又は負)の4成分を備え
たズームタイプであって、第1群(Gr1)と第2群(Gr2)と
の間隔,第3群(Gr3)と第4群(Gr4)との間隔等を変化さ
せることによりズーミングを行う構成になっている。ま
た、第2群(Gr2)と第3群(Gr3)との間には第3群(Gr3)
と共にズーム移動する絞り(S)が配置されており、最も
像面(I)側にはローパスフィルター(LPF)が配置されてい
る。
Each of the embodiments is a zoom type having four components of positive, negative, positive and (positive or negative) having a diffraction grating in the third lens unit (Gr3), and includes a first lens unit (Gr1). The zooming is performed by changing the distance between the first lens unit and the second lens unit (Gr2), the distance between the third lens unit (Gr3) and the fourth lens unit (Gr4), and the like. The third group (Gr3) is located between the second group (Gr2) and the third group (Gr3).
An aperture (S) that zooms together is arranged, and a low-pass filter (LPF) is arranged closest to the image plane (I).

【0016】第1の実施の形態(図1)において、各群は
物体側から順に以下のように構成されている。第1群(G
r1)は、像側に凹の負メニスカスレンズと両凸の正レン
ズとから成る接合レンズと、物体側に凸の正メニスカス
レンズと、で構成されている。第2群(Gr2)は、像側に
凹の負メニスカスレンズと、両凹の負レンズと両凸の正
レンズとから成る接合レンズと、で構成されている。第
3群(Gr3)は、物体側に凸の正メニスカスレンズと像側
に凹の負メニスカスレンズとから成る接合レンズで構成
されており、第14面(r14)に回折格子を有している。
第4群(Gr4)は、両凸の正レンズと、両凹の負レンズ
と、で構成されている。
In the first embodiment (FIG. 1), each group is configured as follows in order from the object side. Group 1 (G
r1) is composed of a cemented lens composed of a negative meniscus lens concave on the image side and a biconvex positive lens, and a positive meniscus lens convex on the object side. The second group (Gr2) includes a negative meniscus lens concave on the image side, and a cemented lens including a biconcave negative lens and a biconvex positive lens. The third lens unit (Gr3) includes a cemented lens including a positive meniscus lens convex on the object side and a negative meniscus lens concave on the image side, and has a diffraction grating on the fourteenth surface (r14). .
The fourth unit (Gr4) includes a biconvex positive lens and a biconcave negative lens.

【0017】第2の実施の形態(図3)において、各群は
物体側から順に以下のように構成されている。第1群(G
r1)は、像側に凹の負メニスカスレンズと、両凸の正レ
ンズと、で構成されている。第2群(Gr2)は、像側に凹
の負メニスカスレンズと、両凹の負レンズと物体側に凸
の正メニスカスレンズとから成る接合レンズと、で構成
されており、第8面(r8)に回折格子を有している。第3
群(Gr3)は、2枚の物体側に凸の正メニスカスレンズか
ら成る接合レンズで構成されており、第12面(r12)に
回折格子を有している。第4群(Gr4)は、両凸の正レン
ズと、像側に凹の負メニスカスレンズと、で構成されて
いる。
In the second embodiment (FIG. 3), each group is configured as follows in order from the object side. Group 1 (G
r1) includes a negative meniscus lens concave on the image side and a biconvex positive lens. The second group (Gr2) includes a negative meniscus lens concave on the image side, and a cemented lens including a biconcave negative lens and a positive meniscus lens convex on the object side, and has an eighth surface (r8 ) Has a diffraction grating. Third
The group (Gr3) is composed of a cemented lens composed of two positive meniscus lenses convex on the object side, and has a diffraction grating on the twelfth surface (r12). The fourth unit (Gr4) includes a biconvex positive lens and a negative meniscus lens concave on the image side.

【0018】第3の実施の形態(図5)において、各群は
物体側から順に以下のように構成されている。第1群(G
r1)は、像側に凹の負メニスカスレンズと両凸の正レン
ズとから成る接合レンズと、物体側に凸の正メニスカス
レンズと、で構成されている。第2群(Gr2)は、像側に
凹の負メニスカスレンズと、両凹の負レンズと物体側に
凸の正メニスカスレンズとから成る接合レンズと、で構
成されている。第3群(Gr3)は、物体側に凸の正メニス
カスレンズと像側に凹の負メニスカスレンズとから成る
接合レンズで構成されており、第14面(r14)に回折格
子を有している。第4群(Gr4)は、両凸の正レンズと、
両凹の負レンズと、で構成されている。第5群(Gr5)
は、物体側に凹の負メニスカスレンズで構成されてい
る。
In the third embodiment (FIG. 5), each group is configured as follows from the object side. Group 1 (G
r1) is composed of a cemented lens composed of a negative meniscus lens concave on the image side and a biconvex positive lens, and a positive meniscus lens convex on the object side. The second group (Gr2) includes a negative meniscus lens concave on the image side, and a cemented lens composed of a biconcave negative lens and a positive meniscus lens convex on the object side. The third lens unit (Gr3) includes a cemented lens including a positive meniscus lens convex on the object side and a negative meniscus lens concave on the image side, and has a diffraction grating on the fourteenth surface (r14). . The fourth unit (Gr4) includes a biconvex positive lens,
And a biconcave negative lens. 5th group (Gr5)
Is composed of a negative meniscus lens concave on the object side.

【0019】第4の実施の形態(図7)において、各群は
物体側から順に以下のように構成されている。第1群(G
r1)は、像側に凹の負メニスカスレンズと両凸の正レン
ズとから成る接合レンズと、物体側に凸の正メニスカス
レンズと、で構成されている。第2群(Gr2)は、像側に
凹の負メニスカスレンズと、両凹の負レンズと物体側に
凸の正メニスカスレンズとから成る接合レンズと、で構
成されている。第3群(Gr3)は、両凸の正レンズと両凹
の負レンズとから成る接合レンズで構成されており、第
14面(r14)に回折格子を有している。第4群(Gr4)は、
像側に凹の負メニスカスレンズで構成されている。第5
群(Gr5)は、両凸の正レンズと、両凹の負レンズと、で
構成されている。
In the fourth embodiment (FIG. 7), each group is configured as follows from the object side. Group 1 (G
r1) is composed of a cemented lens composed of a negative meniscus lens concave on the image side and a biconvex positive lens, and a positive meniscus lens convex on the object side. The second group (Gr2) includes a negative meniscus lens concave on the image side, and a cemented lens composed of a biconcave negative lens and a positive meniscus lens convex on the object side. The third group (Gr3) includes a cemented lens composed of a biconvex positive lens and a biconcave negative lens, and has a diffraction grating on the fourteenth surface (r14). The fourth group (Gr4)
It is composed of a negative meniscus lens concave on the image side. Fifth
The group (Gr5) includes a biconvex positive lens and a biconcave negative lens.

【0020】正・負・正・(正又は負)を備えたズームタ
イプのレンズ光学系をコンパクト化するためには、上記
各実施の形態のように第3群(Gr3)に回折格子を用いる
ことが収差補正上有効であり、また、第3群(Gr3)が接
合レンズを有し、その接合レンズが境界面(つまり、2
つの互いに異なる光学材料が密着する境界面)に回折格
子を有し、その境界面の曲率が接合レンズの入射面及び
射出面の曲率とは異なることが望ましい。これらの特徴
については後で詳しく説明する。
In order to make a zoom type lens optical system having positive, negative, positive and (positive or negative) compact, a diffraction grating is used for the third lens unit (Gr3) as in the above embodiments. This is effective for aberration correction, and the third lens unit (Gr3) has a cemented lens, and the cemented lens has a boundary surface (that is,
It is desirable that a diffraction grating is provided at a boundary surface where two different optical materials are in close contact with each other, and the curvature of the boundary surface is different from the curvatures of the entrance surface and the exit surface of the cemented lens. These features will be described later in detail.

【0021】次に、各実施の形態のように第3群(Gr3)
に回折格子を有する正・負・正・(正又は負)の4成分を
備えたズームタイプであって、第3群(Gr3)が接合レン
ズを有しており、その接合レンズが境界面に上記回折格
子を有し、その接合レンズの境界面の曲率が接合レンズ
の入射面及び射出面の曲率とは異なるレンズ光学系が満
足することの望ましい条件式を説明する。なお、以下に
示す全ての条件式を同時に満たす必要はなく、個々の条
件式をそれぞれ単独に満足すれば対応する作用・効果を
達成することが可能である。もちろん、複数の条件式を
満足する方が、光学性能,コンパクト化等の観点からよ
り望ましいことはいうまでもない。
Next, as in each embodiment, the third lens unit (Gr3)
Is a zoom type with four components of positive, negative, positive and (positive or negative) having a diffraction grating, and the third group (Gr3) has a cemented lens, and the cemented lens is A description will be given of a desirable conditional expression that a lens optical system having the diffraction grating and having a curvature of a boundary surface of the cemented lens different from a curvature of an entrance surface and an exit surface of the cemented lens is satisfied. It is not necessary to satisfy all of the following conditional expressions at the same time, and if each conditional expression is satisfied independently, it is possible to achieve the corresponding operation and effect. Of course, it is needless to say that satisfying a plurality of conditional expressions is more desirable from the viewpoint of optical performance, compactness, and the like.

【0022】前記回折格子について以下の条件式(1)を
満たすことが望ましい。 0.02<φDOE/φgr3<0.1 …(1) ただし、 φDOE:回折格子によるレンズパワー、 φgr3:第3群(Gr3)のパワー、 である。
It is desirable that the diffraction grating satisfies the following conditional expression (1). 0.02 <φDOE / φgr3 <0.1 (1) where φDOE: lens power by the diffraction grating, φgr3: power of the third lens unit (Gr3).

【0023】条件式(1)は、第3群(Gr3)のパワーφgr3
(φDOEを含む。)に対する回折格子によるレンズパワー
φDOEの比の望ましい条件範囲を規定している。この条
件式(1)を満たすことにより、コンパクトなレンズ光学
系を達成することができる。条件式(1)の下限を下回っ
た場合、回折レンズの色収差補正効果が得られなくなる
ため、レンズ光学系の大きさが大きくなる。条件式(1)
の上限を上回った場合、回折レンズの非点収差が増大す
るため、それを補正するためにレンズ光学系の大きさが
大きくなる。
Conditional expression (1) shows that the power φgr3 of the third lens unit (Gr3)
A desirable condition range of the ratio of the lens power φDOE by the diffraction grating to (including φDOE) is defined. By satisfying conditional expression (1), a compact lens optical system can be achieved. If the lower limit of conditional expression (1) is not reached, the effect of correcting the chromatic aberration of the diffractive lens cannot be obtained, so that the size of the lens optical system increases. Conditional expression (1)
Exceeds the upper limit, the astigmatism of the diffractive lens increases, and the size of the lens optical system increases to correct the astigmatism.

【0024】前記回折格子について以下の条件式(2)を
満たすことが望ましい。この条件式(2)を満たすことに
より、色収差の良好なレンズ光学系を達成することがで
きる。条件式(2)の下限を下回った場合、レンズ保持が
できなくなる。条件式(2)の上限を上回った場合、広角
端[W]での軸上色収差補正が不十分となる。 0.05<tW/fW<0.4 …(2) ただし、 tW:広角端[W]での回折格子と絞り(S)との空気換算軸
上面間隔、 fW:広角端[W]でのズーム全系の焦点距離、 である。
It is desirable that the diffraction grating satisfies the following conditional expression (2). By satisfying conditional expression (2), it is possible to achieve a lens optical system having good chromatic aberration. If the lower limit of conditional expression (2) is exceeded, the lens cannot be held. If the upper limit of conditional expression (2) is exceeded, axial chromatic aberration correction at the wide-angle end [W] will be insufficient. 0.05 <tW / fW <0.4 (2) where tW is the distance between the diffraction grating and the diaphragm (S) at the wide-angle end [W] on the air-equivalent axis, and fW is the zooming system at the wide-angle end [W]. The focal length,

【0025】以下の条件式(3)を満たすことが望まし
い。この条件式(3)を満たすことにより、撮像素子を用
いた場合に画面周辺の照度低下が良好な範囲となる。 |Y'max/PZ|<0.4 …(3) ただし、 Y'max:最大像高、 PZ:像面(I)から射出瞳位置までの距離、 である。
It is desirable to satisfy the following conditional expression (3). By satisfying the conditional expression (3), when the image pickup device is used, the illuminance around the screen falls within a favorable range. | Y'max / PZ | <0.4 (3) where Y'max is the maximum image height, and PZ is the distance from the image plane (I) to the exit pupil position.

【0026】以下に説明する条件式は、上記各実施の形
態のように、2つの互いに異なる光学材料が密着する境
界面に、回折格子によるレンズを有するレンズ光学系が
満足することの望ましい条件式である。前述した条件式
(1)〜(3)と同様、以下に示す全ての条件式を同時に満た
す必要はなく、個々の条件式をそれぞれ単独に満足すれ
ば対応する作用・効果を達成することが可能であり、ま
た、複数の条件式を満足する方が光学性能,回折効率等
の観点からより一層望ましい。
The conditional expression described below is a desirable conditional expression that a lens optical system having a lens using a diffraction grating at the boundary surface where two different optical materials are in close contact with each other as in the above embodiments. It is. Conditional expression mentioned above
As in (1) to (3), it is not necessary to satisfy all of the following conditional expressions at the same time.If each individual conditional expression is satisfied independently, it is possible to achieve the corresponding action and effect, and It is more desirable to satisfy a plurality of conditional expressions from the viewpoint of optical performance, diffraction efficiency, and the like.

【0027】前記回折格子が、任意の光軸垂直方向高さ
Hでのブレーズ形状を表す以下の条件式(4)を満足するこ
とが望ましい。回折格子が条件式(4)を満たせば、斜入
射光線の回折効率の低下は問題とならない程度となる。
条件式(4)の上限を上回った場合、回折レンズの回折効
率が不十分なものとなる。
The diffraction grating has an arbitrary height in the direction perpendicular to the optical axis.
It is desirable to satisfy the following conditional expression (4) representing the blaze shape at H. If the diffraction grating satisfies the conditional expression (4), the reduction in the diffraction efficiency of the obliquely incident light will not be a problem.
If the upper limit of conditional expression (4) is exceeded, the diffraction efficiency of the diffractive lens will be insufficient.

【0028】|(h/d)tanθ|≦0.045 …(4) ただし、 h :回折格子高さ、 d :回折格子間隔、 θ:入射角度、 であり、 Ci :位相係数、 λ0:設計波長、 とするとき、回折格子間隔dは位相関数Φ(H)の式:| (H / d) tan θ | ≦ 0.045 (4) where h: diffraction grating height, d: diffraction grating interval, θ: incident angle, Ci: phase coefficient, λ0: design wavelength, Where the diffraction grating interval d is the equation of the phase function Φ (H):

【数3】 から光軸垂直方向高さHについての式: d(H)=-2π/(dΦ/dH) で表される。(Equation 3) The equation for the height H in the direction perpendicular to the optical axis is represented by: d (H) = − 2π / (dΦ / dH).

【0029】前記回折格子が以下の条件式(5)を満足す
ることが望ましい。回折格子が条件式(5)をみたせば、
斜入射光線の回折効率の低下は問題とならない程度とな
る。条件式(5)の下限を下回った場合、回折レンズによ
る色収差補正効果が不十分なものとなる。条件式(5)の
上限を上回った場合、回折レンズの回折効率が不十分な
ものとなる。
It is desirable that the diffraction grating satisfies the following conditional expression (5). If the diffraction grating satisfies conditional expression (5),
The reduction in the diffraction efficiency of obliquely incident light rays is of such a degree that no problem occurs. If the lower limit of conditional expression (5) is exceeded, the chromatic aberration correction effect of the diffractive lens will be insufficient. If the upper limit of conditional expression (5) is exceeded, the diffraction efficiency of the diffractive lens will be insufficient.

【0030】 0.01≦|{(h・φDOE・DDOE)/(2・λ0)}・tan(ωmax)|≦0.06 …(5) ただし、 h :回折格子高さ、 λ0:設計波長、 φDOE:回折格子によるレンズパワー、 DDOE:回折格子によるレンズの有効径、 ωmax:レンズ光学系の半画角の最大値、 である。0.01 ≦ | {(h · φDOE · DDOE) / (2 · λ0)} · tan (ωmax) | ≦ 0.06 (5) where h: height of diffraction grating, λ0: design wavelength, φDOE: diffraction The lens power by the grating, DDOE: the effective diameter of the lens by the diffraction grating, ωmax: the maximum value of the half angle of view of the lens optical system.

【0031】前記回折格子が以下の条件式(6)を満足す
ることが望ましい。一般的な撮影レンズの場合には、回
折格子が条件式(6)を満たせば、斜入射光線の回折効率
の低下は問題とならない程度となる。条件式(6)の下限
を下回った場合、回折レンズによる色収差補正効果が不
十分なものとなる。条件式(6)の上限を上回った場合、
回折レンズの回折効率が不十分なものとなる。
It is desirable that the diffraction grating satisfies the following conditional expression (6). In the case of a general photographing lens, if the diffraction grating satisfies the conditional expression (6), the reduction in the diffraction efficiency of obliquely incident light rays will not be a problem. If the lower limit of conditional expression (6) is exceeded, the chromatic aberration correction effect of the diffractive lens will be insufficient. If the upper limit of conditional expression (6) is exceeded,
The diffraction efficiency of the diffraction lens becomes insufficient.

【0032】 0.005≦|(h/dmin)・tan(ωmax)|≦0.07 …(6) ただし、 h :回折格子高さ、 dmin :回折格子によるレンズの有効径範囲内の最小回
折格子間隔、 ωmax:レンズ光学系の半画角の最大値、 である。
0.005 ≦ | (h / dmin) · tan (ωmax) | ≦ 0.07 (6) where h: height of the diffraction grating, dmin: minimum diffraction grating interval within the effective diameter range of the lens by the diffraction grating, ωmax : The maximum value of the half angle of view of the lens optical system.

【0033】次に、各実施の形態に用いられている回折
格子に光線が斜入射する場合の回折効率を、上記条件式
(4)〜(6)との関連において説明する。図12は、ブレー
ズ形状の回折格子に光線が斜入射したときの状態を示す
拡大図である。図12(A)は回折格子高さhが低い場合
であり、空気と接するレンズ表面に回折格子を有する場
合に相当する。図12(B)は回折格子高さhが高い場合
であり、2材料の境界面に回折格子を有する場合に相当
する。なお図12中、点線AX'はレンズ光学系の光軸(図
14中のAX)に対して平行な直線であり、塗りつぶし領
域D0は回折格子高さhによる非回折部分である。
Next, the diffraction efficiency when a light beam is obliquely incident on the diffraction grating used in each embodiment is calculated by the above-mentioned conditional expression.
This will be described in connection with (4) to (6). FIG. 12 is an enlarged view showing a state where light rays are obliquely incident on the blazed diffraction grating. FIG. 12A shows a case where the diffraction grating height h is low, which corresponds to a case where a diffraction grating is provided on the lens surface in contact with air. FIG. 12B shows a case where the diffraction grating height h is high, which corresponds to a case where a diffraction grating is provided at the boundary between two materials. In FIG. 12, a dotted line AX ′ is a straight line parallel to the optical axis (AX in FIG. 14) of the lens optical system, and a solid region D0 is a non-diffracted portion due to the diffraction grating height h.

【0034】図12から、回折格子高さhが大きくなる
と、非回折部分D0が増加することが分かる。また、回折
格子間隔dが小さくなることで相対的に回折格子高さhが
大きくなることによっても、非回折部分D0が増加するこ
とが予測される。さらに、入射角度θが大きくなる場合
も、非回折部分D0が大きくなることが予測される。ま
た、図12の関係から、非回折部分D0の大きさは、(h/
d)tanθに比例することが分かる。
FIG. 12 shows that the non-diffracted portion D0 increases as the diffraction grating height h increases. Also, it is expected that the non-diffracted portion D0 will increase due to the relatively large diffraction grating height h due to the small diffraction grating interval d. Further, when the incident angle θ increases, the non-diffracted portion D0 is expected to increase. Further, from the relationship of FIG. 12, the size of the non-diffracted portion D0 is (h /
d) It is understood that it is proportional to tan θ.

【0035】図13のグラフに、格子ピッチ(d/λ0)と
回折効率との関係を示す。このグラフの曲線は、回折格
子高さh=17μmのブレーズ形状の回折格子に、入射角
度θ=10°で設計波長λ0=587nmの光線が入射したとき
の、回折格子間隔dに対する回折効率の変化(計算結果)
を示している。実用上の回折効率は0.9以上必要である
ことが実験から分かっているので、図13のグラフでは
矢印α1で示す領域が実用上必要な回折効率となる。し
たがって、その実用上必要な回折効率から図13中の矢
印α2で示す回折格子間隔dの条件範囲が決まる。得られ
た(h/d)tanθから、ブレーズ形状の回折格子高さh及び
回折格子間隔d、並びに回折格子に入射する光線の入射
角度θが条件式(4)の領域内にあれば、実用上必要な回
折効率が得られることが分かる。 |(h/d)tanθ|≦0.045 …(4)
FIG. 13 is a graph showing the relationship between the grating pitch (d / λ0) and the diffraction efficiency. The curve in this graph shows the change in diffraction efficiency with respect to the grating spacing d when a light beam with a design wavelength λ0 = 587 nm is incident at an incident angle θ = 10 ° on a blazed grating having a grating height h = 17 μm. (Calculation result)
Is shown. Since it is known from experiments that the practical diffraction efficiency is required to be 0.9 or more, the region indicated by the arrow α1 in the graph of FIG. 13 is the practically necessary diffraction efficiency. Therefore, the condition range of the diffraction grating interval d indicated by the arrow α2 in FIG. 13 is determined from the diffraction efficiency required for practical use. From the obtained (h / d) tan θ, if the height h and the interval d of the diffraction grating of the blazed shape and the incident angle θ of the light beam incident on the diffraction grating are within the range of the conditional expression (4), practical use is possible. It can be seen that the required diffraction efficiency is obtained. │ (h / d) tanθ│ ≦ 0.045… (4)

【0036】ついで、回折格子間隔dを説明する。回折
格子がレンズの作用をする場合、Ci:位相係数,λ0:
設計波長とするとき、回折格子の位相関数Φ(H)は、光
軸からの高さHに対して、以下の式:
Next, the diffraction grating interval d will be described. When the diffraction grating acts as a lens, Ci: phase coefficient, λ0:
When the design wavelength is used, the phase function Φ (H) of the diffraction grating is expressed by the following equation with respect to the height H from the optical axis:

【数4】 で表される。(Equation 4) It is represented by

【0037】特に、回折格子によるレンズのパワーφDO
Eは、式: φDOE=-2・C1 で表される。また回折格子間隔dは、位相関数Φ(H)の光
軸垂直方向高さHについての一階微分より、式: d(H)=-2π/(dΦ/dH) で表される。
In particular, the power φDO of the lens by the diffraction grating
E is represented by the formula: φDOE = -2 · C1. The diffraction grating interval d is expressed by the following equation: d (H) = − 2π / (dΦ / dH) from the first derivative of the height H of the phase function Φ (H) in the direction perpendicular to the optical axis.

【0038】通常の回折レンズは、レンズパワーを決め
るi=1の位相係数C1が十分大きいため、有効径以下の光
軸垂直方向高さHについては、回折格子間隔d(H)が単調
に減少する。したがって、i>1の位相係数Ciは小さいた
め無視して、回折格子によるレンズの有効径をDDOEと
すると、回折格子間隔d(H)の最小値dminは以下の式(7)
で表される。この式(7)から、回折レンズのパワーφDOE
が大きいほど、また、有効径DDOEが大きいほど、回折
格子間隔d(H)が小さくなることが分かる。 dmin=d(DDOE/2)=-(2・λ0)/(2・C1・DDOE)=(2・λ0)/(φDOE・DDOE) …(7)
In a normal diffraction lens, since the phase coefficient C1 of i = 1 that determines the lens power is sufficiently large, the diffraction grating interval d (H) monotonically decreases with respect to the height H in the optical axis vertical direction below the effective diameter. I do. Therefore, when the phase coefficient Ci of i> 1 is small and ignored, and the effective diameter of the lens formed by the diffraction grating is DDOE, the minimum value dmin of the diffraction grating interval d (H) is expressed by the following equation (7).
It is represented by From this equation (7), the power φDOE of the diffractive lens is obtained.
It can be seen that the diffraction grating interval d (H) becomes smaller as is larger and as the effective diameter DDOE is larger. dmin = d (DDOE / 2) =-(2.lambda.0) / (2.C1.DDOE) = (2.lambda.0) / (. phi.DOE.DDOE) (7)

【0039】次に、入射角度θを説明する。レンズ光学
系の場合、図14に示すように画角に応じて入射角度θ
が決まる(図14中、AXはレンズ光学系の光軸であ
る。)。したがって、最大画角のときが最大の入射角度
である。厳密には、レンズ面に対する入射角度θはレン
ズ光学系のレンズ配置により変化するが、条件式(4)中
の入射角度θに代えて半画角ωの最大値ωmaxを代入し
ても、入射角度θによる回折効率の程度を把握すること
は可能である。したがって、前記式(7)を条件式(4)に用
い、これらの変更に合わせて右辺の常数値を見直すと、
以下の条件式(8)が得られる。 |{(h・φDOE・DDOE)/(2・λ0)}・tan(ωmax)|≦0.06 …(8)
Next, the incident angle θ will be described. In the case of a lens optical system, as shown in FIG.
(In FIG. 14, AX is the optical axis of the lens optical system). Therefore, the maximum angle of view is the maximum incident angle. Strictly speaking, the incident angle θ with respect to the lens surface changes depending on the lens arrangement of the lens optical system, but even if the maximum value ωmax of the half angle of view ω is substituted for the incident angle θ in the conditional expression (4), It is possible to grasp the degree of the diffraction efficiency depending on the angle θ. Therefore, using the equation (7) for the conditional equation (4), and reviewing the constant values on the right side in accordance with these changes,
The following conditional expression (8) is obtained. | {(H • φDOE • DDOE) / (2 • λ0)} • tan (ωmax) | ≦ 0.06… (8)

【0040】[0040]

【実施例】以下、本発明を実施したレンズ光学系の構成
等を、コンストラクションデータ,収差図等を挙げて、
更に具体的に説明する。なお、以下に挙げる実施例1〜
4は、前述した第1〜第4の実施の形態にそれぞれ対応
しており、第1〜第4の実施の形態を表すレンズ構成図
(図1,図3,図5,図7)は、対応する実施例1〜4の
レンズ構成をそれぞれ示している。また、実施例1に対
する比較例(回折格子を有しない。)を併せて示すととも
に、そのレンズ構成を図9に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The construction of a lens optical system embodying the present invention will be described below with reference to construction data, aberration diagrams, and the like.
This will be described more specifically. In addition, the following Examples 1 to
Reference numeral 4 denotes a lens configuration diagram corresponding to the above-described first to fourth embodiments, respectively, and showing the first to fourth embodiments.
(FIG. 1, FIG. 3, FIG. 5, FIG. 7) show the corresponding lens configurations of Examples 1 to 4, respectively. Further, a comparative example (having no diffraction grating) with respect to Example 1 is also shown, and the lens configuration is shown in FIG.

【0041】実施例1〜4及び比較例のコンストラクシ
ョンデータにおいて、ri(i=1,2,3,...)は物体側から数
えてi番目の面の曲率半径、di(i=1,2,3,...)は物体側か
ら数えてi番目の軸上面間隔を示しており、Ni(i=1,2,
3,...),νi(i=1,2,3,...)は物体側から数えてi番目の光
学要素のd線に対する屈折率(nd),アッベ数(νd)を示
している。また、コンストラクションデータ中、ズーミ
ングにおいて変化する軸上面間隔(可変間隔)は、広角端
(短焦点距離端)[W]〜ミドル(中間焦点距離状態)[M]〜
望遠端(長焦点距離端)[T]での各群間の軸上空気間隔で
ある。各焦点距離状態[W],[M],[T]に対応する全系の
焦点距離f,半画角ω(°)及びFナンバーFNO、並びに条
件式(1)〜(3)の対応値を併せて示す。さらに、条件式
(4)の対応値を表1に示し、条件式(5),(6)の対応値を表
2に示す。なお、条件式(4)の対応値に幅があるのは、
回折格子間隔dの値が光軸からの高さHにより変化するた
めである。
In the construction data of Examples 1 to 4 and Comparative Example, ri (i = 1, 2, 3,...) Is the radius of curvature of the i-th surface counted from the object side, and di (i = 1, 2). (2,3, ...) indicates the i-th axial top surface distance counted from the object side, and Ni (i = 1,2,
3, ...), νi (i = 1,2,3, ...) indicate the refractive index (nd) and Abbe number (νd) of the i-th optical element counted from the object side for d-line. I have. In the construction data, the distance between the upper surfaces of the axes (variable distance) that changes during zooming is the wide-angle end.
(Short focal length end) [W]-Middle (intermediate focal length state) [M]-
This is the on-axis air gap between each group at the telephoto end (long focal length end) [T]. Focal length f, half angle of view ω (°) and F-number FNO of the entire system corresponding to each focal length state [W], [M], [T], and corresponding values of conditional expressions (1) to (3) Are also shown. Furthermore, the conditional expression
Table 1 shows corresponding values of (4), and Table 2 shows corresponding values of conditional expressions (5) and (6). Note that there is a range in the corresponding value of the conditional expression (4),
This is because the value of the diffraction grating interval d changes with the height H from the optical axis.

【0042】曲率半径riに*印が付された面は、非球面
で構成された面であることを示し、非球面の面形状を表
わす以下の式(AS)で定義されるものとする。また、曲率
半径riに#印が付された面は、回折格子が形成された回
折レンズ面であることを示し、回折レンズ面のピッチの
位相形状を表す以下の式(DS)で定義されるものとする。
各非球面の非球面データ及び各回折レンズ面の回折面デ
ータを他のデータと併せて示す。
A surface with a * mark on the radius of curvature ri indicates a surface constituted by an aspherical surface, and is defined by the following equation (AS) representing the surface shape of the aspherical surface. Also, the surface marked with a # mark on the radius of curvature ri indicates that the surface is a diffraction lens surface on which a diffraction grating is formed, and is defined by the following formula (DS) that represents the phase shape of the pitch of the diffraction lens surface. Shall be.
The aspheric surface data of each aspheric surface and the diffraction surface data of each diffraction lens surface are shown together with other data.

【0043】 Z(H)=(C0・H2)/{1+√(1-C02・H2)}+(A・H4+B・H6+C・H8+D・H10) …(AS) ただし、式(AS)中、 Z(H) :高さHの位置での光軸方向の変位量(面頂点基
準)、 H :光軸からの高さ(光軸垂直方向高さ)、 C0 :近軸曲率、 A,B,C,D:非球面係数、 である。
Z (H) = (C0 · H 2 ) / {1 + √ (1-C0 2 · H 2 )} + (A · H 4 + B · H 6 + C · H 8 + D · H 10 )… (AS) where, in equation (AS), Z (H) is the displacement in the optical axis direction at the height H (based on the surface vertex), and H is the height from the optical axis (vertical to the optical axis). Height), C0: paraxial curvature, A, B, C, D: aspheric coefficient.

【0044】 Φ(H)=(2π/λ0)・(C1・H2+C2・H4+C3・H6) …(DS) ただし、式(DS)中、 Φ(H) :位相関数、 H :光軸からの高さ(光軸垂直方向高さ)、 λ0 :設計波長、 C1,C2,C3:位相係数、 である。Φ (H) = (2π / λ0) · (C1 · H 2 + C2 · H 4 + C3 · H 6 ) (DS) where Φ (H) is a phase function, H: height from the optical axis (height in the vertical direction of the optical axis), λ0: design wavelength, C1, C2, C3: phase coefficient.

【0045】 [0045]

【0046】[第6面(r6)の非球面データ] A= 1.98×10-4,B= 2.18×10-5,C=-5.66×10-7 [第7面(r7)の非球面データ] A= 9.23×10-5,B= 2.98×10-5,C= 1.83×10-6 [第15面(r15)の非球面データ] A= 1.59×10-4,B= 3.82×10-5,C=-8.18×10-6,D= 6.25
×10-7 [第18面(r18)の非球面データ] A= 1.60×10-3,B=-1.84×10-4,C= 2.09×10-6 [第19面(r19)の非球面データ] A= 4.01×10-3,B=-7.71×10-5,C= 4.53×10-6
[Aspherical surface data of sixth surface (r6)] A = 1.98 × 10 -4 , B = 2.18 × 10 -5 , C = -5.66 × 10 -7 [Aspherical surface data of seventh surface (r7)] ] a = 9.23 × 10 -5, B = 2.98 × 10 -5, C = 1.83 × 10 -6 [ aspheric data of the fifteenth surface (r15)] a = 1.59 × 10 -4, B = 3.82 × 10 - 5 , C = -8.18 × 10 -6 , D = 6.25
× 10 -7 [Aspherical surface data of the 18th surface (r18)] A = 1.60 × 10 -3 , B = -1.84 × 10 -4 , C = 2.09 × 10 -6 [Aspherical surface of the 19th surface (r19)] Data] A = 4.01 × 10 -3 , B = -7.71 × 10 -5 , C = 4.53 × 10 -6

【0047】[第14面(r14)の回折面データ] C1=-9.46×10-4,C2=2.73×10-5 [Diffraction Surface Data of Fourteenth Surface (r14)] C1 = -9.46 × 10 -4 , C2 = 2.73 × 10 -5

【0048】[条件式対応値] 条件式(1):φDOE/φgr3=0.042 条件式(2):tW/fW=0.16 条件式(3)(広角端[W]時):|Y'max/PZ|=0.18 条件式(3)(望遠端[T]時):|Y'max/PZ|=0.19[Values Corresponding to Conditional Expressions] Conditional expression (1): φDOE / φgr3 = 0.042 Conditional expression (2): tW / fW = 0.16 Conditional expression (3) (at wide-angle end [W]): | Y′max / PZ | = 0.18 Conditional expression (3) (at telephoto end [T]): | Y'max / PZ | = 0.19

【0049】 [0049]

【0050】[第3面(r3)の非球面データ] A=-1.25×10-4,B=-1.06×10-6,C=-4.87×10-8 [第6面(r6)の非球面データ] A=-3.28×10-4,B= 6.87×10-5,C=-4.27×10-6 [第7面(r7)の非球面データ] A=-4.26×10-3,B= 2.75×10-4,C=-2.03×10-5 [第11面(r11)の非球面データ] A= 8.72×10-4,B=-1.08×10-4,C= 2.32×10-5 [第13面(r13)の非球面データ] A= 1.24×10-3,B=-7.98×10-5,C= 1.54×10-5,D= 1.02
×10-6 [第14面(r14)の非球面データ] A=-4.03×10-4,B=-3.29×10-5,C=-3.90×10-6 [第16面(r16)の非球面データ] A= 1.96×10-3,B= 2.36×10-5,C=-2.19×10-6 [第17面(r17)の非球面データ] A= 5.41×10-3,B= 2.47×10-4,C= 1.09×10-5
[Aspherical surface data of third surface (r3)] A = -1.25 × 10 -4 , B = -1.06 × 10 -6 , C = -4.87 × 10 -8 [Aspherical surface data of sixth surface (r6)] Spherical data] A = -3.28 × 10 -4 , B = 6.87 × 10 -5 , C = -4.27 × 10 -6 [Aspheric data of the seventh surface (r7)] A = -4.26 × 10 -3 , B = 2.75 × 10 -4, C = -2.03 × 10 -5 [ eleventh surface (r11) aspherical data] a = 8.72 × 10 -4, B = -1.08 × 10 -4, C = 2.32 × 10 - 5 [Aspherical surface data of the thirteenth surface (r13)] A = 1.24 × 10 -3 , B = -7.98 × 10 -5 , C = 1.54 × 10 -5 , D = 1.02
× 10 -6 [Aspherical surface data of 14th surface (r14)] A = -4.03 × 10 -4 , B = -3.29 × 10 -5 , C = -3.90 × 10 -6 [16th surface (r16) Aspherical surface data] A = 1.96 × 10 -3 , B = 2.36 × 10 -5 , C = -2.19 × 10 -6 [Aspherical surface data of 17th surface (r17)] A = 5.41 × 10 -3 , B = 2.47 × 10 -4 , C = 1.09 × 10 -5

【0051】[第8面(r8)の回折面データ] C1= 2.69×10-3,C2=-2.58×10-4,C3=-1.52×10-5 [第12面(r12)の回折面データ] C1=-2.26×10-3,C2=3.48×10-5,C3=5.95×10−6 [Data of Diffraction Surface of Eighth Surface (r8)] C1 = 2.69 × 10 −3 , C2 = −2.58 × 10 −4 , C3 = −1.52 × 10 -5 [Diffraction Surface of Twelfth Surface (r12)] Data] C1 = -2.26 × 10 -3 , C2 = 3.48 × 10 -5 , C3 = 5.95 × 10 -6

【0052】[条件式対応値] 条件式(1):φDOE/φgr3=0.073 条件式(2):tW/fW=0.08 条件式(3)(広角端[W]時):|Y'max/PZ|=0.17 条件式(3)(望遠端[T]時):|Y'max/PZ|=0.19[Values Corresponding to Conditional Expressions] Conditional expression (1): φDOE / φgr3 = 0.073 Conditional expression (2): tW / fW = 0.08 Conditional expression (3) (at wide-angle end [W]): | Y′max / PZ | = 0.17 Conditional expression (3) (at telephoto end [T]): | Y'max / PZ | = 0.19

【0053】 [0053]

【0054】[第6面(r6)の非球面データ] A=-1.03×10-3,B= 1.20×10-4,C=-2.65×10-6 [第7面(r7)の非球面データ] A=-1.02×10-3,B= 7.26×10-5,C= 6.52×10-6 [第15面(r15)の非球面データ] A= 2.18×10-4,B= 3.14×10-5,C=-6.47×10-6,D= 6.70
×10-7 [第18面(r18)の非球面データ] A= 1.97×10-3,B=-2.51×10-4,C= 2.20×10-6 [第19面(r19)の非球面データ] A= 4.27×10-3,B=-1.41×10-4,C= 3.02×10-6
[Aspherical surface data of sixth surface (r6)] A = -1.03 × 10 -3 , B = 1.20 × 10 -4 , C = -2.65 × 10 -6 [Aspherical surface of seventh surface (r7)] Data] A = -1.02 × 10 -3 , B = 7.26 × 10 -5 , C = 6.52 × 10 -6 [Aspherical surface data of 15th surface (r15)] A = 2.18 × 10 -4 , B = 3.14 × 10 -5 , C = -6.47 × 10 -6 , D = 6.70
× 10 -7 [Aspherical surface data of 18th surface (r18)] A = 1.97 × 10 -3 , B = -2.51 × 10 -4 , C = 2.20 × 10 -6 [Aspherical surface of 19th surface (r19)] Data] A = 4.27 × 10 -3 , B = -1.41 × 10 -4 , C = 3.02 × 10 -6

【0055】[第14面(r14)の回折面データ] C1=-1.20×10-3,C2=2.38×10-5 [Diffraction Surface Data of Fourteenth Surface (r14)] C1 = −1.20 × 10 −3 , C2 = 2.38 × 10 −5

【0056】[条件式対応値] 条件式(1):φDOE/φgr3=0.039 条件式(2):tW/fW=0.16 条件式(3)(広角端[W]時):|Y'max/PZ|=0.17 条件式(3)(望遠端[T]時):|Y'max/PZ|=0.19[Values for Conditional Expressions] Conditional expression (1): φDOE / φgr3 = 0.039 Conditional expression (2): tW / fW = 0.16 Conditional expression (3) (at wide-angle end [W]): | Y′max / PZ | = 0.17 Conditional expression (3) (at telephoto end [T]): | Y'max / PZ | = 0.19

【0057】 [0057]

【0058】[第6面(r6)の非球面データ] A=-3.69×10-4,B= 4.50×10-5,C=-9.55×10-7 [第7面(r7)の非球面データ] A=-4.32×10-4,B= 3.68×10-5,C= 1.77×10-6 [第15面(r15)の非球面データ] A= 6.37×10-4,B= 2.58×10-5,C=-1.08×10-5,D= 9.99
×10-7 [第17面(r17)の非球面データ] A=-3.92×10-4,B= 3.83×10-5,C=-1.29×10-6 [第20面(r20)の非球面データ] A= 1.53×10-3,B=-1.49×10-4,C= 2.09×10-6 [第21面(r21)の非球面データ] A= 4.22×10-3,B=-4.32×10-5,C= 7.38×10−6
[Aspherical surface data of sixth surface (r6)] A = -3.69 × 10 -4 , B = 4.50 × 10 -5 , C = -9.55 × 10 -7 [Aspherical surface of seventh surface (r7)] Data] A = -4.32 × 10 -4 , B = 3.68 × 10 -5 , C = 1.77 × 10 -6 [Aspherical surface data of the 15th surface (r15)] A = 6.37 × 10 -4 , B = 2.58 × 10 -5 , C = -1.08 × 10 -5 , D = 9.99
× 10 -7 [Aspherical surface data of 17th surface (r17)] A = -3.92 × 10 -4 , B = 3.83 × 10 -5 , C = -1.29 × 10 -6 [Aspherical data of 20th surface (r20) Spherical data] A = 1.53 × 10 -3 , B = -1.49 × 10 -4 , C = 2.09 × 10 -6 [Aspherical data of the 21st surface (r21)] A = 4.22 × 10 -3 , B =- 4.32 × 10 -5 , C = 7.38 × 10 -6

【0059】[第14面(r14)の回折面データ] C1=-1.15×10-3,C2=4.13×10-5 [Diffraction Surface Data of Fourteenth Surface (r14)] C1 = -1.15 × 10 -3 , C2 = 4.13 × 10 -5

【0060】[条件式対応値] 条件式(1):φDOE/φgr3=0.029 条件式(2):tW/fW=0.18 条件式(3)(広角端[W]時):|Y'max/PZ|=0.17 条件式(3)(望遠端[T]時):|Y'max/PZ|=0.19[Values for Conditional Expressions] Conditional expression (1): φDOE / φgr3 = 0.029 Conditional expression (2): tW / fW = 0.18 Conditional expression (3) (at wide-angle end [W]): | Y'max / PZ | = 0.17 Conditional expression (3) (at telephoto end [T]): | Y'max / PZ | = 0.19

【0061】 [0061]

【0062】[第6面(r6)の非球面データ] A= 7.67×10-4,B=-1.15×10-5,C= 8.18×10-8 [第7面(r7)の非球面データ] A= 8.54×10-4,B= 1.62×10-5,C= 5.77×10-7 [第16面(r16)の非球面データ] A= 9.53×10-5,B= 2.01×10-5,C=-4.61×10-6,D= 3.69
×10-7 [第19面(r19)の非球面データ] A= 1.66×10-3,B=-1.25×10-4,C= 1.37×10-6 [第20面(r20)の非球面データ] A= 4.20×10-3,B=-2.46×10-5,C= 5.03×10-6
[Aspherical surface data of sixth surface (r6)] A = 7.67 × 10 −4 , B = −1.15 × 10 −5 , C = 8.18 × 10 −8 [Aspherical surface data of seventh surface (r7)] ] A = 8.54 × 10 -4 , B = 1.62 × 10 -5 , C = 5.77 × 10 -7 [Aspheric data of the 16th surface (r16)] A = 9.53 × 10 -5 , B = 2.01 × 10 − 5 , C = -4.61 × 10 -6 , D = 3.69
× 10 -7 [Aspherical surface data of the 19th surface (r19)] A = 1.66 × 10 -3 , B = -1.25 × 10 -4 , C = 1.37 × 10 -6 [Aspherical surface of the 20th surface (r20)] Data] A = 4.20 × 10 -3 , B = -2.46 × 10 -5 , C = 5.03 × 10 -6

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】上記比較例は正・負・正・正の4成分ズー
ムレンズであり、第1群(Gr1)が負レンズと正レンズと
正レンズとの3枚、第2群(Gr2)が負レンズと負レンズ
と正レンズとの3枚、第3群(Gr3)が正レンズと負レン
ズと2枚、第4群(Gr4)が正レンズと負レンズとの2
枚、で構成されている。表3に、比較例の広角端[W],
望遠端[T]における、光学系全体の色収差係数と各群(G
r1〜Gr4)の色収差係数を示す(ただし、LC:軸上色収
差係数,TC:倍率色収差係数である。)。
The comparative example is a four-component zoom lens of positive / negative / positive / positive. The first lens unit (Gr1) has three lenses including a negative lens, a positive lens and a positive lens, and the second lens unit (Gr2) has a negative lens. The third lens unit (Gr3) has two lenses, a positive lens and a negative lens, and the fourth lens unit (Gr4) has two lenses, a positive lens and a negative lens.
It is composed of Table 3 shows the wide-angle end [W],
At the telephoto end [T], the chromatic aberration coefficient of the entire optical system and each group (G
r1 to Gr4) (here, LC: axial chromatic aberration coefficient, TC: chromatic aberration of magnification coefficient).

【0066】[0066]

【表3】 [Table 3]

【0067】比較例の光学系全体での色収差係数値か
ら、広角端[W]での軸上色収差係数LCと倍率色収差係
数TCが正に大きいこと、望遠端[T]での倍率色収差係
数TCが負に大きいことが分かる。また、広角端[W]で
の軸上色収差の光学系全体に対する悪さ度合いは、広角
端[W]及び望遠端[T]での倍率色収差の光学系全体に対
する悪さ度合いに比べて大きいことが分かる。したがっ
て、広角端[W]での軸上色収差を補正することが収差的
に効果的である。
From the chromatic aberration coefficient values of the entire optical system of the comparative example, the axial chromatic aberration coefficient LC and the magnification chromatic aberration coefficient TC at the wide-angle end [W] are positively large, and the chromatic aberration coefficient TC at the telephoto end [T]. Is large negatively. Further, it is found that the degree of poor axial chromatic aberration at the wide angle end [W] with respect to the entire optical system is greater than the degree of poor lateral chromatic aberration at the wide angle end [W] and the telephoto end [T] with respect to the entire optical system. . Therefore, correcting axial chromatic aberration at the wide-angle end [W] is aberrationally effective.

【0068】一方、軸上色収差係数LCを大きく発生す
る位置は絞り(S)の近傍であり、広角端[W]で該当する
群位置は第3群(Gr3)である。したがって、第3群(Gr3)
に回折レンズを配置すれば、色収差補正を効果的に行う
ことが可能であると予測できる。前記比較例の第3群(G
r3)に回折レンズを用いたときのレンズ構成は、前記実
施例1に相当する。表4に、実施例1の広角端[W],望
遠端[T]における、光学系全体の色収差係数と各群(Gr1
〜Gr4)の色収差係数を、表3と同様に示す。ただし、第
3群(Gr3)で発生する色収差係数については、第3群(Gr
3)全体での色収差係数と回折レンズが発生する色収差係
数とに分けて示す。表4から、第3群(Gr3)の回折レン
ズが発生する負の軸上色収差係数LCが、広角端[W]で
の光学系全体の軸上色収差係数LCを改善していること
が分かる。
On the other hand, the position where the axial chromatic aberration coefficient LC is large is near the stop (S), and the corresponding group position at the wide angle end [W] is the third group (Gr3). Therefore, the third group (Gr3)
It can be predicted that chromatic aberration correction can be effectively performed if the diffraction lens is disposed in the area. The third group (G
The lens configuration when a diffractive lens is used in r3) corresponds to the first embodiment. Table 4 shows the chromatic aberration coefficient of the entire optical system and each group (Gr1) at the wide-angle end [W] and the telephoto end [T] of the first embodiment.
To Gr4) are shown in the same manner as in Table 3. However, regarding the chromatic aberration coefficient generated in the third group (Gr3), the third group (Gr3)
3) The total chromatic aberration coefficient and the chromatic aberration coefficient generated by the diffractive lens are shown separately. From Table 4, it can be seen that the negative axial chromatic aberration coefficient LC generated by the diffraction lens of the third group (Gr3) improves the axial chromatic aberration coefficient LC of the entire optical system at the wide-angle end [W].

【0069】[0069]

【表4】 [Table 4]

【0070】次に、回折レンズを用いたときの非点収差
とペッツバールの効果を以下に検討する。図11(a)〜
(c)に示す3種類の薄肉レンズの光学系: (a)正・負の接合レンズ,(b)接合面が回折レンズ面
(破線部)から成る正・負の接合レンズ,(c)回折レンズ
面(破線部)を有する正の単レンズ,をモデルとして考え
る。モデル(a)では正・負の接合で色収差補正が行わ
れ、モデル(b)では正・負の接合と回折レンズ面で色収
差補正が行われ、モデル(c)では回折レンズ面のみで色
収差補正が行われる。回折レンズによる色収差補正度合
いには(a)<(b)<(c)の関係があるため、回折レンズ
のレンズパワーにも(a)<(b)<(c)の関係が生じる。
したがって、回折レンズによる色収差補正度合いの最も
大きいモデル(c)の回折レンズのレンズパワーが最も大
きくなる。
Next, the effects of astigmatism and Petzval when a diffractive lens is used will be discussed below. FIG.
Optical systems of three types of thin lenses shown in (c): (a) a positive / negative cemented lens, (b) a cemented surface is a diffractive lens surface
A positive / negative cemented lens composed of (broken line portion) and a positive single lens (c) having a diffractive lens surface (broken line portion) are considered as models. In the model (a), chromatic aberration correction is performed at the positive / negative junction, in the model (b), chromatic aberration correction is performed at the positive / negative junction and the diffraction lens surface, and in the model (c), chromatic aberration correction is performed only at the diffraction lens surface. Is performed. Since the degree of chromatic aberration correction by the diffractive lens has the relationship of (a) <(b) <(c), the lens power of the diffractive lens also has the relationship of (a) <(b) <(c).
Therefore, the lens power of the diffraction lens of the model (c) in which the degree of chromatic aberration correction by the diffraction lens is the largest is the largest.

【0071】前記比較例の第3群(Gr3)は正レンズと負
レンズで構成されており、正レンズの硝種は相対的に低
屈折率・低分散、負レンズの硝種は相対的に高屈折率・
高分散である。そこで、モデル(a),(b)の接合レンズ
も、正レンズの硝種を相対的に低屈折率・低分散とし、
負レンズの硝種を相対的に高屈折率・高分散とする。ま
た、前記実施例1の第3群(Gr3)は、正レンズの硝種が
相対的に高屈折率・低分散、負レンズの硝種が相対的に
低屈折率・高分散である。そこで、モデル(b)の接合レ
ンズとして、相対的に高屈折率・低分散の硝種から成る
正レンズと、相対的に低屈折率・高分散の硝種から成る
負レンズと、についても検討する。表5に、各レンズの
硝種データ(ただし、nd:d線に対する屈折率,νd:
アッベ数である。)を示す。
The third group (Gr3) of the comparative example is composed of a positive lens and a negative lens. The glass type of the positive lens is relatively low in refractive index and low dispersion, and the glass type of the negative lens is relatively high in refractive index. rate·
High dispersion. Therefore, the cemented lenses of the models (a) and (b) also have a relatively low refractive index and low dispersion glass type of the positive lens.
The glass type of the negative lens has a relatively high refractive index and high dispersion. In the third lens unit (Gr3) of the first embodiment, the glass type of the positive lens has a relatively high refractive index and low dispersion, and the glass type of the negative lens has a relatively low refractive index and high dispersion. Therefore, as the cemented lens of the model (b), a positive lens made of a glass type having a relatively high refractive index and low dispersion and a negative lens made of a glass type having a relatively low refractive index and high dispersion are also examined. Table 5 shows the glass type data of each lens (however, nd: refractive index for d-line, νd:
Abbe number. ).

【0072】[0072]

【表5】 [Table 5]

【0073】表6に、各モデル(a)〜(c)の光学系全体
の収差係数を示す(ただし、PT:ペッツバール係数,
AS:非点収差係数である)。比較例において第3群(Gr
3)は絞り(S)より後ろに位置するため、各モデル(a)〜
(c)も同様に絞り(S)より後ろに位置すると仮定して、
収差係数の計算を行った。また、各モデル(a)〜(c)の
収差係数算出に当たっては、光学系全体の球面収差係数
が最小となるベンディングを与えた。表6から、ペッツ
バール係数PTは回折レンズのレンズパワーが大きくな
るほど小さくなることが分かる。また、非点収差係数A
Sは回折レンズのレンズパワーが大きくなるほど大きく
なることが分かる。
Table 6 shows the aberration coefficients of the entire optical system of each of the models (a) to (c) (provided that PT: Petzval coefficient,
AS: astigmatism coefficient). In the comparative example, the third group (Gr
3) is located behind the aperture (S), so each model (a) to
Similarly, assuming that (c) is located after the aperture (S),
Calculation of the aberration coefficient was performed. In calculating the aberration coefficient of each of the models (a) to (c), bending was given to minimize the spherical aberration coefficient of the entire optical system. From Table 6, it can be seen that the Petzval coefficient PT decreases as the lens power of the diffractive lens increases. Also, the astigmatism coefficient A
It can be seen that S increases as the lens power of the diffractive lens increases.

【0074】[0074]

【表6】 [Table 6]

【0075】表7に、比較例と実施例1{第3群(Gr3)に
回折レンズを有する光学系}のペッツバール係数PTと
非点収差係数ASを示す。2つの光学系は、同等のレン
ズ性能が得られる大きさで設計した。表7から分かるよ
うに、比較例は広角端[W]で非点収差係数ASがやや正
に大きい。回折レンズの効果により第3群(Gr3)のペッ
ツバール係数PTが小さくなることで収差上に余裕が発
生し、その結果、大きさの小さいズームタイプが得られ
たと考えられる。
Table 7 shows the Petzval coefficient PT and the astigmatism coefficient AS of the comparative example and Example 1 {the optical system having a diffractive lens in the third group (Gr3)}. The two optical systems were designed to have the same lens performance. As can be seen from Table 7, the comparative example has a slightly positive astigmatism coefficient AS at the wide-angle end [W]. It is considered that the Petzval coefficient PT of the third lens unit (Gr3) is reduced due to the effect of the diffractive lens, so that there is a margin in aberration, and as a result, a zoom type having a small size is obtained.

【0076】[0076]

【表7】 [Table 7]

【0077】以上の検討結果から、回折レンズを用いる
場合、色収差補正効果とペッツバール及び非点収差の影
響とのバランスにより、コンパクト化度合いが決まるこ
とが分かる。そして、本実施例のように正・負・正・
(正又は負)の4成分を備えたズームタイプの第3群(Gr
3)に回折レンズを用いれば、色収差補正効果によりコン
パクトな光学系を得ることができる。
From the above examination results, it can be seen that when a diffractive lens is used, the degree of compactness is determined by the balance between the chromatic aberration correction effect and the effects of Petzval and astigmatism. Then, as in the present embodiment, positive / negative / positive /
Third group (Gr.) Of zoom type with four components (positive or negative)
If a diffractive lens is used in 3), a compact optical system can be obtained due to the chromatic aberration correction effect.

【0078】図2,図4,図6,図8は実施例1〜4の
収差図、図10は比較例の収差図であり、それぞれ広角
端[W],ミドル[M],望遠端[T]での諸収差を示してい
る。各焦点距離状態での収差図は、左から順に、[A]球
面収差,[B]非点収差,[C]歪曲収差を表している。球
面収差図[A]において、縦軸は入射瞳への入射高さHを
その最大高さH0(=1)で規格化した値(すなわち入
射瞳平面を切る相対高さ)H/H0であり、横軸は近軸結像
位置からの光軸方向のズレ量(mm)である。破線はC線
(波長:λC=656.3nm)に対する球面収差量、実線はd線
(波長:λd=587.6nm)に対する球面収差量、一点鎖線はg
線(波長:λg=435.8nm)に対する球面収差量を表してい
る。非点収差図[B]において、縦軸は像高Y'(mm)であ
り、横軸は近軸結像位置からの光軸方向のズレ量(mm)で
ある。また、実線Xはサジタル面での非点収差を表して
おり、実線Yはメリディオナル面での非点収差を表して
いる。歪曲収差図[C]において、縦軸は像高Y'(mm)であ
り、横軸は歪曲収差量(%)である。
FIG. 2, FIG. 4, FIG. 6, and FIG. 8 are aberration diagrams of Examples 1 to 4, and FIG. 10 is an aberration diagram of a comparative example. The wide-angle end [W], the middle [M], and the telephoto end [ T]. The aberration diagrams at each focal length state show [A] spherical aberration, [B] astigmatism, and [C] distortion in order from the left. In the spherical aberration diagram [A], the vertical axis is a value H / H0 in which the height of incidence H on the entrance pupil is normalized by its maximum height H0 (= 1) (that is, the relative height that cuts the entrance pupil plane). The horizontal axis represents the amount of displacement (mm) in the optical axis direction from the paraxial imaging position. Dashed line is C line
(Wavelength: λC = 656.3 nm), spherical aberration amount, solid line is d-line
(Wavelength: λd = 587.6 nm), the amount of spherical aberration, the dashed line is g
A spherical aberration amount with respect to a line (wavelength: λg = 435.8 nm) is shown. In the astigmatism diagram [B], the vertical axis represents the image height Y ′ (mm), and the horizontal axis represents the amount of displacement (mm) in the optical axis direction from the paraxial imaging position. The solid line X represents astigmatism on the sagittal surface, and the solid line Y represents astigmatism on the meridional surface. In the distortion diagram [C], the vertical axis is the image height Y ′ (mm), and the horizontal axis is the distortion amount (%).

【0079】[0079]

【発明の効果】以上説明したように第1〜第4の発明に
よれば、回折格子が効果的に用いられるため、収差的な
面からレンズ光学系のコンパクト化を達成することがで
きる。また、第5〜第7の発明によれば、斜入射光線の
回折効率が低下しないように回折格子が用いられたレン
ズ光学系を実現することができる。
As described above, according to the first to fourth aspects of the present invention, since the diffraction grating is effectively used, the size of the lens optical system can be reduced in terms of aberration. According to the fifth to seventh aspects, a lens optical system using a diffraction grating can be realized so that the diffraction efficiency of obliquely incident light does not decrease.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態(実施例1)のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).

【図2】実施例1の収差図。FIG. 2 is an aberration diagram of the first embodiment.

【図3】第2の実施の形態(実施例2)のレンズ構成図。FIG. 3 is a lens configuration diagram of a second embodiment (Example 2).

【図4】実施例2の収差図。FIG. 4 is an aberration diagram of the second embodiment.

【図5】第3の実施の形態(実施例3)のレンズ構成図。FIG. 5 is a lens configuration diagram of a third embodiment (Example 3).

【図6】実施例3の収差図。FIG. 6 is an aberration diagram of the third embodiment.

【図7】第4の実施の形態(実施例4)のレンズ構成図。FIG. 7 is a lens configuration diagram of a fourth embodiment (Example 4).

【図8】実施例4の収差図。FIG. 8 is an aberration diagram of the fourth embodiment.

【図9】比較例のレンズ構成図。FIG. 9 is a lens configuration diagram of a comparative example.

【図10】比較例の収差図。FIG. 10 is an aberration diagram of a comparative example.

【図11】回折レンズを用いた場合の非点収差とペッツ
バールの効果を説明するための図。
FIG. 11 is a view for explaining the effects of astigmatism and Petzval when a diffractive lens is used.

【図12】光線がブレーズ形状の回折格子に斜入射する
とき回折格子高さの影響を説明するための図。
FIG. 12 is a diagram for explaining the influence of the height of a diffraction grating when a light beam is obliquely incident on the blazed diffraction grating.

【図13】入射角度10°における回折格子間隔と回折
効率との関係を示すグラフ。
FIG. 13 is a graph showing a relationship between a diffraction grating interval and a diffraction efficiency at an incident angle of 10 °.

【図14】レンズ光学系に対する入射角度を説明するた
めの光路図。
FIG. 14 is an optical path diagram for explaining an incident angle with respect to a lens optical system.

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 Gr5 …第5群 S …絞り LPF …ローパスフィルター Gr1… First group Gr2… Second group Gr3… Third group Gr4… Fourth group Gr5… Fifth group S… Aperture LPF… Low pass filter

フロントページの続き Fターム(参考) 2H087 KA03 NA14 PA07 PA08 PA19 PA20 PB09 PB10 PB11 QA02 QA06 QA07 QA17 QA21 QA25 QA37 QA39 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA32 RA43 RA46 SA23 SA27 SA29 SA32 SA33 SA43 SA47 SA49 SA52 SA53 SA55 SA56 SA63 SA64 SA65 SA66 SA72 SA74 SA75 SA76 SB03 SB04 SB14 SB23 SB32 SB33 SB42 SB43Continued on front page F-term (reference) 2H087 KA03 NA14 PA07 PA08 PA19 PA20 PB09 PB10 PB11 QA02 QA06 QA07 QA17 QA21 QA25 QA37 QA39 QA41 QA42 QA45 QA46 RA05 RA12 RA13 RA32 RA43 RA46 SA23 SA27 SA53 SA53 SA53 SA43 SA53 SA53 SA53 SA43 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA43 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA53 SA64 SA65 SA66 SA72 SA74 SA75 SA76 SB03 SB04 SB14 SB23 SB32 SB33 SB42 SB43

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、正のパワーを有する第
1群と、負のパワーを有する第2群と、正のパワーを有
する第3群と、正又は負のパワーを有する第4群と、を
備え、前記第1群と前記第2群との間隔と、前記第3群
と前記第4群との間隔と、を変化させることによりズー
ミングを行うレンズ光学系であって、 前記第3群が接合レンズを有しており、その接合レンズ
が境界面に回折格子を有し、前記境界面の曲率が前記接
合レンズの入射面及び射出面の曲率とは異なることを特
徴とするレンズ光学系。
1. A first group having a positive power, a second group having a negative power, a third group having a positive power, and a fourth group having a positive or negative power, in order from the object side. A lens optical system that performs zooming by changing an interval between the first group and the second group and an interval between the third group and the fourth group, A lens wherein the third group has a cemented lens, the cemented lens having a diffraction grating at a boundary surface, and a curvature of the boundary surface is different from a curvature of an entrance surface and an exit surface of the cemented lens. Optical system.
【請求項2】 前記回折格子について以下の条件式を満
たすことを特徴とする請求項1記載のレンズ光学系; 0.02<φDOE/φgr3<0.1 ただし、 φDOE:回折格子によるレンズパワー、 φgr3:第3群のパワー、 である。
2. The lens optical system according to claim 1, wherein the diffraction grating satisfies the following conditional expression: 0.02 <φDOE / φgr3 <0.1, where φDOE: lens power by the diffraction grating, φgr3: third The power of the group.
【請求項3】 前記回折格子について以下の条件式を満
たすことを特徴とする請求項1又は請求項2記載のレン
ズ光学系; 0.05<tW/fW<0.4 ただし、 tW:広角端での回折格子と絞りとの空気換算軸上面間
隔、 fW:広角端でのズーム全系の焦点距離、 である。
3. The lens optical system according to claim 1, wherein said diffraction grating satisfies the following conditional expression: 0.05 <tW / fW <0.4, where tW: diffraction grating at a wide-angle end. FW: focal length of the entire zoom system at the wide-angle end.
【請求項4】 以下の条件式を満たすことを特徴とする
請求項1又は請求項2記載のレンズ光学系; |Y'max/PZ|<0.4 ただし、 Y'max:最大像高、 PZ:像面から射出瞳位置までの距離、 である。
4. The lens optical system according to claim 1, wherein the following conditional expression is satisfied: | Y′max / PZ | <0.4, where Y′max: maximum image height, PZ: The distance from the image plane to the exit pupil position.
【請求項5】 2つの互いに異なる光学材料が密着する
境界面に、回折格子によるレンズを有するレンズ光学系
であって、前記回折格子が任意の光軸垂直方向高さHで
のブレーズ形状を表す以下の条件式を満足することを特
徴とするレンズ光学系; |(h/d)tanθ|≦0.045 ただし、 h :回折格子高さ、 d :回折格子間隔、 θ:入射角度、 であり、 Ci :位相係数、 λ0:設計波長、 とするとき、回折格子間隔dは位相関数Φ(H)の式: 【数1】 から光軸垂直方向高さHについての式: d(H)=-2π/(dΦ/dH) で表される。
5. A lens optical system having a diffraction grating lens on a boundary surface where two different optical materials are in close contact with each other, wherein the diffraction grating has a blaze shape at an arbitrary height H in a direction perpendicular to the optical axis. | (H / d) tan θ | ≦ 0.045, where h is the height of the diffraction grating, d is the interval between the diffraction gratings, θ is the incident angle, and Ci : Phase coefficient, λ0: design wavelength, where: diffraction grating interval d is the equation of phase function Φ (H): The equation for the height H in the direction perpendicular to the optical axis is represented by: d (H) = − 2π / (dΦ / dH).
【請求項6】 2つの互いに異なる光学材料が密着する
境界面に、回折格子によるレンズを有するレンズ光学系
であって、前記回折格子が以下の条件式を満足すること
を特徴とするレンズ光学系; 0.01≦|{(h・φDOE・DDOE)/(2・λ0)}・tan(ωmax)|≦
0.06 ただし、 h :回折格子高さ、 λ0:設計波長、 φDOE:回折格子によるレンズパワー、 DDOE:回折格子によるレンズの有効径、 ωmax:レンズ光学系の半画角の最大値、 である。
6. A lens optical system having a diffraction grating lens on a boundary surface where two different optical materials are in close contact with each other, wherein the diffraction grating satisfies the following conditional expression. 0.01 ≦ | {(h · φDOE · DDOE) / (2 · λ0)} · tan (ωmax) | ≦
0.06 where h: height of the diffraction grating, λ0: design wavelength, φDOE: lens power by the diffraction grating, DDOE: effective diameter of the lens by the diffraction grating, ωmax: maximum value of the half angle of view of the lens optical system.
【請求項7】 2つの互いに異なる光学材料が密着する
境界面に、回折格子によるレンズを有するレンズ光学系
であって、前記回折格子が以下の条件式を満足すること
を特徴とするレンズ光学系; 0.005≦|(h/dmin)・tan(ωmax)|≦0.07 ただし、 h :回折格子高さ、 dmin :回折格子によるレンズの有効径範囲内の最小回
折格子間隔、 ωmax:レンズ光学系の半画角の最大値、 である。
7. A lens optical system having a diffraction grating lens at a boundary surface where two different optical materials are in close contact with each other, wherein the diffraction grating satisfies the following conditional expression. 0.005 ≦ | (h / dmin) · tan (ωmax) | ≦ 0.07, where h: height of the diffraction grating, dmin: minimum diffraction grating interval within the effective diameter range of the lens by the diffraction grating, ωmax: half of the lens optical system The maximum value of the angle of view.
JP03009799A 1998-04-21 1999-02-08 Lens optical system Expired - Fee Related JP4273556B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03009799A JP4273556B2 (en) 1999-02-08 1999-02-08 Lens optical system
US09/451,080 US7295387B1 (en) 1998-04-21 1999-11-30 Lens optical system
US10/096,370 US6704149B2 (en) 1998-04-21 2002-03-13 Lens optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03009799A JP4273556B2 (en) 1999-02-08 1999-02-08 Lens optical system

Publications (2)

Publication Number Publication Date
JP2000227551A true JP2000227551A (en) 2000-08-15
JP4273556B2 JP4273556B2 (en) 2009-06-03

Family

ID=12294286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03009799A Expired - Fee Related JP4273556B2 (en) 1998-04-21 1999-02-08 Lens optical system

Country Status (1)

Country Link
JP (1) JP4273556B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031755A (en) * 1999-11-29 2002-01-31 Canon Inc Optical system and manuscript reader
JP2002090676A (en) * 2000-09-13 2002-03-27 Canon Inc Scanning optical device and color image-forming apparatus using the same
JP2003255228A (en) * 2001-12-28 2003-09-10 Olympus Optical Co Ltd Wide-angle high-power zoom lens
JP2004213006A (en) * 2002-12-31 2004-07-29 Samsung Electronics Co Ltd Hybrid achromatic optical lens and its manufacturing method
JP2004212640A (en) * 2002-12-27 2004-07-29 Nikon Corp Zoom lens
WO2004107010A1 (en) * 2003-05-30 2004-12-09 Sony Corporation Zoom lens and imaging device
JP2007264395A (en) * 2006-03-29 2007-10-11 Canon Inc Zoom lens and imaging apparatus equipped with the same
JP2008152190A (en) * 2006-12-20 2008-07-03 Canon Inc Zoom lens and imaging apparatus with same
US7492525B2 (en) 2001-10-30 2009-02-17 Ricoh Company, Ltd. Zoom lens, camera apparatus and portable information terminal apparatus
JP2009047785A (en) * 2007-08-15 2009-03-05 Sony Corp Zoom lens and imaging apparatus
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010197767A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2010224515A (en) * 2009-02-26 2010-10-07 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
EP1959286A3 (en) * 2007-02-15 2012-01-25 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
WO2012137421A1 (en) * 2011-04-06 2012-10-11 株式会社ニコン Zoom optical system and imaging device having same
JP2014089385A (en) * 2012-10-31 2014-05-15 Canon Inc Zoom lens and optical device having the same
CN109884774A (en) * 2019-04-22 2019-06-14 中科院南京天文仪器有限公司 A kind of high-resolution large-viewing-field ultra-low distortion optical system
CN110850564A (en) * 2018-08-21 2020-02-28 富士胶片株式会社 Zoom lens and imaging device
CN115166956A (en) * 2022-07-05 2022-10-11 福建优恩立光电科技有限公司 Zooming industrial lens for machine vision imaging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081251A1 (en) 2010-12-16 2012-06-21 富士フイルム株式会社 Projection zoom lens and projection device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031755A (en) * 1999-11-29 2002-01-31 Canon Inc Optical system and manuscript reader
JP2002090676A (en) * 2000-09-13 2002-03-27 Canon Inc Scanning optical device and color image-forming apparatus using the same
US7492525B2 (en) 2001-10-30 2009-02-17 Ricoh Company, Ltd. Zoom lens, camera apparatus and portable information terminal apparatus
JP2003255228A (en) * 2001-12-28 2003-09-10 Olympus Optical Co Ltd Wide-angle high-power zoom lens
JP2004212640A (en) * 2002-12-27 2004-07-29 Nikon Corp Zoom lens
JP2004213006A (en) * 2002-12-31 2004-07-29 Samsung Electronics Co Ltd Hybrid achromatic optical lens and its manufacturing method
CN100422787C (en) * 2003-05-30 2008-10-01 索尼株式会社 Zoom lens and imaging device
US7295380B2 (en) 2003-05-30 2007-11-13 Sony Corporation Zoom lens and imaging device
WO2004107010A1 (en) * 2003-05-30 2004-12-09 Sony Corporation Zoom lens and imaging device
JP2007264395A (en) * 2006-03-29 2007-10-11 Canon Inc Zoom lens and imaging apparatus equipped with the same
JP2008152190A (en) * 2006-12-20 2008-07-03 Canon Inc Zoom lens and imaging apparatus with same
EP1959286A3 (en) * 2007-02-15 2012-01-25 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus having the same
JP2009047785A (en) * 2007-08-15 2009-03-05 Sony Corp Zoom lens and imaging apparatus
JP2010044190A (en) * 2008-08-12 2010-02-25 Nikon Corp Zoom lens, optical equipment having the same, and method of manufacturing the same
JP2010224515A (en) * 2009-02-26 2010-10-07 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
JP2010197767A (en) * 2009-02-26 2010-09-09 Nikon Corp Zooming optical system, optical apparatus and zooming optical system manufacturing method
WO2012137421A1 (en) * 2011-04-06 2012-10-11 株式会社ニコン Zoom optical system and imaging device having same
JPWO2012137421A1 (en) * 2011-04-06 2014-07-28 株式会社ニコン Zoom optical system and imaging apparatus having the same
JP5641461B2 (en) * 2011-04-06 2014-12-17 株式会社ニコン Zoom optical system and imaging apparatus having the same
US9625733B2 (en) 2011-04-06 2017-04-18 Nikon Corporation Zoom optical system comprising diffractive optical element and imaging device having the same
JP2014089385A (en) * 2012-10-31 2014-05-15 Canon Inc Zoom lens and optical device having the same
CN110850564A (en) * 2018-08-21 2020-02-28 富士胶片株式会社 Zoom lens and imaging device
CN109884774A (en) * 2019-04-22 2019-06-14 中科院南京天文仪器有限公司 A kind of high-resolution large-viewing-field ultra-low distortion optical system
CN115166956A (en) * 2022-07-05 2022-10-11 福建优恩立光电科技有限公司 Zooming industrial lens for machine vision imaging
CN115166956B (en) * 2022-07-05 2023-08-01 福建优恩立光电科技有限公司 Zoom industrial lens for machine vision imaging

Also Published As

Publication number Publication date
JP4273556B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP4273556B2 (en) Lens optical system
JP6566646B2 (en) Zoom lens and imaging apparatus having the same
JP4632724B2 (en) Zoom lens
JP5473624B2 (en) Zoom lens and imaging apparatus having the same
JP4678823B2 (en) Zoom lens
JPH09184982A (en) Zoom lens
JPH07151967A (en) Zoom lens of rear focusing system
JP2001124989A (en) Zoom lens
JP2001324677A (en) Zoom lens
JP2008209866A (en) Zoom lens and imaging apparatus having the same
JP5202025B2 (en) Imaging optical system and imaging apparatus having the same
JP2002267930A (en) Zoom lens
JP3505980B2 (en) Imaging device
JP2000121942A (en) Zoom lens
JPH04190211A (en) Zoom lens
JP5013663B2 (en) Front converter lens
JP3858443B2 (en) Lens optical system
JP2002107627A (en) Projection zoom lens
JP2006251529A (en) Zoom lens
JP2000221403A (en) Lens optical system
JP2000221402A (en) Lens optical system
JPH10333037A (en) Zoom lens
JP2000221397A (en) Lens optical system
JP3323839B2 (en) Camera with a small zoom lens
JP3569473B2 (en) Zoom lens system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees