JP2000226721A - High-strength polyethylene yarn - Google Patents

High-strength polyethylene yarn

Info

Publication number
JP2000226721A
JP2000226721A JP11028817A JP2881799A JP2000226721A JP 2000226721 A JP2000226721 A JP 2000226721A JP 11028817 A JP11028817 A JP 11028817A JP 2881799 A JP2881799 A JP 2881799A JP 2000226721 A JP2000226721 A JP 2000226721A
Authority
JP
Japan
Prior art keywords
fiber
strength
denier
strength polyethylene
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11028817A
Other languages
Japanese (ja)
Inventor
Yasuo Ota
康雄 大田
Godo Sakamoto
悟堂 阪本
Koji Kawaida
光二 川井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11028817A priority Critical patent/JP2000226721A/en
Priority to PCT/JP2000/000637 priority patent/WO2000046436A1/en
Publication of JP2000226721A publication Critical patent/JP2000226721A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an extrafine high-strength polyethylene yarn having high strength/high modulus of elasticity and excellent heat resistance in spite of being extrafine yarn having <=0.6 denier. SOLUTION: This high-strength polyethylene yarn is a molecule orientated yarn consisting essentially of a high-molecular weight polyethylene which has >=5 intrinsic viscosity [η] and has a repeating unit composed of ethylene, has <=0.6 denier average fineness of its single yarn, at least two endothermic peaks at >=140 deg.C in melting obtained by differential scanning calorimeter(DSC) and >150 deg.C temperature of endothermic peaks existing at the highest temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種スポーツ衣料
や防弾・防護衣料などの高性能テキスタイル、さらに言
えば各種フィルターや電池セパレーターあるいはその補
強材料等に用いることができる各種不織布など産業上広
く応用可能な新規な高強度ポリエチレン繊維に関する。
The present invention is widely used in industrial applications such as high performance textiles such as various sports garments and bulletproof / protective garments, and various nonwoven fabrics which can be used for various filters, battery separators or reinforcing materials thereof. A possible new high strength polyethylene fiber.

【0002】[0002]

【従来の技術】高強度ポリエチレン繊維に関しては例え
ば、特公昭60―47922号公報に開示されるごと
く、超高分子量のポリエチレンを原料にし、いわゆる
“ゲル紡糸法”により従来にない高強度・高弾性率繊維
が得られることが知られており、既に産業上広く利用さ
れている。これらの高強度ポリエチレン繊維は高強度・
高弾性率である利点と反面して、繊維の弾性率の高さが
災いして各種用途で不具合を生じる場合が出てきてい
る。例えば、高強度ポリエチレン繊維を通常の布帛とし
て使用する場合、風合いが非常に堅く、着ここちという
観点からは極めて不向きである。又、高強度ポリエチレ
ン繊維を防弾チョッキに用いる場合、近年の非常に高い
対象脅威の向上に対しては、その織物の積層枚数を増加
させる必要があり、結果として布帛の厚みが増し運動性
を低下させるという問題点から、低目付で非常に強い繊
維が望まれていた。さらに、近年各種電池用セパレータ
用に各種オレフィン系の繊維・フィルムが使用されつつ
あるが、その不織布あるいはその補強材として高強度ポ
リエチレン繊維を用いる場合に、電池をよりコンパクト
したいという要求に対して、高強度を維持したままで薄
目付の不織布を製造可能とするような高強度ポリエチレ
ン繊維が求められていた。
2. Description of the Related Art As disclosed in Japanese Patent Publication No. 60-47922, for example, a high-strength polyethylene fiber is made from ultra-high molecular weight polyethylene as a raw material, and a so-called "gel spinning method" is used to obtain an unprecedented high-strength and high-elasticity. It is known that high modulus fibers can be obtained, and is already widely used in industry. These high strength polyethylene fibers have high strength
Contrary to the advantage of a high elastic modulus, there are cases in which the high elastic modulus of the fiber causes troubles in various applications due to disaster. For example, when a high-strength polyethylene fiber is used as an ordinary fabric, the texture is very hard, and it is extremely unsuitable from the viewpoint of comfortable wearing. Also, when high-strength polyethylene fibers are used for bulletproof vests, it is necessary to increase the number of layers of the woven fabric in order to improve a very high target threat in recent years, and as a result, the thickness of the fabric increases and the mobility decreases. Therefore, a very strong fiber having a low basis weight has been desired. Further, in recent years, various olefin-based fibers and films have been used for various battery separators, but in the case where high-strength polyethylene fibers are used as the nonwoven fabric or the reinforcing material, in response to a demand for a more compact battery, There has been a demand for a high-strength polyethylene fiber capable of producing a thin nonwoven fabric while maintaining high strength.

【0003】[0003]

【発明が解決しようとする課題】これら、広範な要求に
対応するもっとも有効な手段は繊維の強度を維持したま
ま単繊維の繊度を低減することである。しかしながら前
述のゲル紡糸法によって得られる糸は平均の単繊維の繊
度が1デニール乃至10デニールが通常であり、例えば
本発明のような0.6デニール以下はもとより0.8デ
ニールというレベルにおいての低繊度の糸は、仮に極く
瞬間的にそれを得ることができても、工業的に実施し得
る十分の生産性でそれらを得ることは事実上不可能であ
り、仮に可能となっても繊維の物性が著しく低下し、実
用に供せられるものでは無かった。
The most effective means for responding to these wide-ranging demands is to reduce the fineness of a single fiber while maintaining the strength of the fiber. However, the yarn obtained by the above-described gel spinning method usually has an average single fiber fineness of 1 denier to 10 denier, and for example, low density of 0.8 denier as well as 0.6 denier or less as in the present invention. Even if yarns of fineness can be obtained very instantaneously, it is practically impossible to obtain them with sufficient productivity that can be carried out industrially. Physical properties were remarkably deteriorated and were not practically usable.

【0004】この原因について発明者らは、以下のよう
に推定している。すなわち、極限粘度が非常に高い原料
を用いて繊維を製造するゲル紡糸法においては、高強度
繊維を得るためには分子鎖を極限まで延伸する必要があ
るが、その際分子鎖を引き伸ばすためには、紡糸や延伸
工程での非常に高い引張り応力が必要であり、その応力
に紡糸で吐出された溶液や途中の中間延伸糸が破断せず
に耐えうる必要がある。低デニール化することはすなわ
ち溶液や繊維の断面積が低下し、延伸に十分な高張力に
耐えられなくなり、結果として溶液・糸状が破断する。
本発明者らは鋭意検討し、このような従来のゲル紡糸法
のような手法では得ることが困難であった非常に低デニ
ールでかつ高強度ポリエチレン繊維を得ることに成功し
本発明に到達した。
[0004] The inventors presume the cause as follows. In other words, in the gel spinning method for producing fibers using a raw material having an extremely high intrinsic viscosity, it is necessary to stretch the molecular chains to the limit in order to obtain high-strength fibers. Requires a very high tensile stress in the spinning and drawing steps, and the solution discharged by spinning and the intermediate drawn yarn in the middle must withstand the stress without breaking. Decreasing the denier means that the cross-sectional area of the solution or the fiber is reduced, and it is not possible to withstand a high tension sufficient for drawing, and as a result, the solution / filament breaks.
The present inventors have studied diligently and succeeded in obtaining a very low-denier and high-strength polyethylene fiber, which was difficult to obtain by such a method as the conventional gel spinning method, and reached the present invention. .

【0005】[0005]

【課題を解決するための手段】すなわち本発明は、極限
粘度[η]が5以上、好ましくは8以上でさらに好ましく
は10以上ありかつ、主にその繰り返し単位がエチレン
からなる高分子量ポリエチレンを原料にした分子が配向
した繊維であり、その単繊維の平均の繊度が0.6デニ
ール以下であり、その示差走査熱量計(DSC)で求め
た融解時の吸熱ピークが140℃以上に、少なくとも2
以上ありかつ、その最高温度にあるピークの温度が15
0℃を超えることを特徴とする高強度ポリエチレン繊維
を提供する。また、本特許はその繊維に含まれるエチレ
ン以外の共重合成分が0.2mol%以下である実質ホモ
ポリマーであることを特徴とする高強度ポリエチレン繊
維も提供する。以下本発明を解説する
That is, the present invention provides a high-molecular-weight polyethylene having an intrinsic viscosity [η] of 5 or more, preferably 8 or more, more preferably 10 or more, and whose repeating unit is mainly composed of ethylene. The average fiber size of the single fiber is 0.6 denier or less, and the endothermic peak at the time of melting determined by a differential scanning calorimeter (DSC) is 140 ° C. or more,
And the peak temperature at the highest temperature is 15
A high-strength polyethylene fiber characterized by exceeding 0 ° C. is provided. The present invention also provides a high-strength polyethylene fiber characterized in that the fiber is a substantially homopolymer containing 0.2 mol% or less of a copolymer component other than ethylene contained in the fiber. The present invention will be described below.

【0006】本発明における高強度ポリエチレン繊維の
単繊維の平均デニールは0.6デニール以下であること
が肝要で、0.05〜0.3デニールであることが好ま
しい。0.6デニールを超えると繊維の細デニール化に
対しての効果が、既存の例えば単繊維デニールが1デニ
ールのものと優位差が小さくなる。例えば、布帛にした
場合の剛直さに関して、0.6デニール付近を境にして
布帛の柔軟度に関しての官能的評価で臨界点があること
が実験的に判明している。又、0.6デニールを超える
と不織布の厚み低減においても効果が十分で無くなる。
In the present invention, it is important that the average denier of the single fiber of the high-strength polyethylene fiber is 0.6 denier or less, and it is preferably 0.05 to 0.3 denier. If it exceeds 0.6 denier, the effect of reducing the fiber denier becomes smaller than that of the existing single fiber denier of 1 denier. For example, it has been experimentally found that there is a critical point in the sensory evaluation of the degree of flexibility of the fabric with respect to the rigidity of the fabric at around 0.6 denier. On the other hand, if it exceeds 0.6 denier, the effect of reducing the thickness of the nonwoven fabric is not sufficient.

【0007】このように本発明の繊維は平均デニールの
極めて小さいものであるが、従来の知見によるとその繊
維物性は著しく低いものとなる。しかし例えば後述の製
造方法を採用することにより、細デニールのものである
にもかかわらず、強度及び弾性率が従来ものと同等程度
の繊維を得ることを可能とした。本発明の繊維の強度は
20g/d以上、弾性率は800g/d以上である。
As described above, the fiber of the present invention has an extremely low average denier, but according to the conventional knowledge, the fiber properties are extremely low. However, for example, by adopting a manufacturing method described later, it is possible to obtain a fiber having a strength and an elastic modulus equivalent to those of a conventional fiber, despite being a fine denier. The fiber of the present invention has a strength of 20 g / d or more and an elastic modulus of 800 g / d or more.

【0008】本発明における単繊維の平均デニールの極
めて小さい繊維は、繊度のみならず、構造的にも従来の
高強度ポリエチレン繊維と比較すると極めて特異な特性
が示される。本発明の繊維の第一の特徴はその示差走査
熱量計(DSC)で求めた融解時の吸熱ピークが少なく
とも2以上ありかつ、その最高温度にあるピークの温度
が150℃を超えることである。例えば特開昭63−2
75708号公報にはエチレン以外のαオレフィンを共
重合するというような特殊な原料を用いて高強度ポリエ
チレン繊維を得て、その繊維をアルミパーン等に巻き付
けて、繊維が緊張状態になるようにDSC測定した場合
にピークが高温に出現し、複数の吸熱ピークが観察され
るという技術開示があるが、通常そのような繊維を緊張
拘束下でDSC測定すると融点の上昇や場合によっては
結晶転移等による複数のピークが発生することは良く知
られており、公知の知見である。本発明は実質エチレン
単位のみのホモポリマーからなる高強度ポリエチレン繊
維であり、かつ後に述べる本特許のDSCの測定手法に
おいて、繊維を一旦5mm程度に切断し無拘束の状態で
測定している。この様な場合においても、かかる高温に
複数の融解ピークを有する高強度ポリエチレン繊維は、
従来知られていない。このように無拘束の状態でも高温
域に複数の融解ピークが存在する理由として、通常のポ
リエチレン結晶とは異なる、いわゆる伸びきり鎖結晶構
造が存在している事をこのような高融点ピークは示唆し
ていると推定している。このような伸びきり鎖結晶が多
く存在する構造が後で記述する、紡糸の工程での張力を
うまく支え、非常に細い繊度でも繊維が破断することな
く、十分に分子が延伸されるに十分な応力を伝播するこ
とができたことと対応していると推定している。
[0008] The fibers having an extremely small average denier of the single fibers according to the present invention show not only fineness but also structurally very unique characteristics as compared with conventional high-strength polyethylene fibers. The first characteristic of the fiber of the present invention is that the fiber has at least two endothermic peaks upon melting determined by a differential scanning calorimeter (DSC), and the temperature of the peak at the highest temperature exceeds 150 ° C. For example, JP-A-63-2
Japanese Patent No. 75708 discloses that a high strength polyethylene fiber is obtained by using a special raw material such as copolymerization of α-olefin other than ethylene, and the fiber is wrapped around an aluminum pan or the like. There is a technical disclosure that a peak appears at a high temperature when measured, and a plurality of endothermic peaks are observed, but when such a fiber is subjected to DSC measurement under tension restraint, an increase in melting point or, in some cases, crystal transition or the like is caused. The occurrence of a plurality of peaks is well known and is a known finding. The present invention is a high-strength polyethylene fiber composed of a homopolymer having substantially only ethylene units. In the DSC measurement method of the present invention described later, the fiber is once cut to about 5 mm and measured in an unrestricted state. Even in such a case, a high-strength polyethylene fiber having a plurality of melting peaks at such a high temperature,
Not previously known. Such a high melting point peak suggests that there is a so-called extended chain crystal structure, which is different from ordinary polyethylene crystals, as a reason why there are multiple melting peaks in the high temperature region even in the unconstrained state. It is estimated that you are. Such a structure in which many extended chain crystals are present will support the tension in the spinning process, which will be described later, and will not break the fiber even with a very fine fineness, and will be sufficient to stretch the molecule sufficiently. It is estimated that this corresponds to the ability to transmit the stress.

【0009】本繊維を製造する方法は、上述のごとく慎
重でかつ新規な製造法を採用する必要であり、例えば以
下のような方法が推奨されるが、それに限定されるもの
では無い。すなわち本繊維の製造に当たっては、その原
料となる高分子量のポリエチレンの極限粘度[η]は5以
上であることが必要であり、好ましくは8以上、さらに
好ましくは10以上である。極限粘度が5未満である本
来所望とする例えば20g/dを超えるような高強度繊維
が得られないばかりか、0.6デニール以下の繊維を得
ることが困難となる。
As described above, the method for producing the present fiber requires a careful and novel production method. For example, the following method is recommended, but is not limited thereto. That is, in producing the present fiber, the intrinsic viscosity [η] of the high-molecular-weight polyethylene used as the raw material must be 5 or more, preferably 8 or more, and more preferably 10 or more. Not only is it not possible to obtain a high-strength fiber having an intrinsic viscosity of less than 5 but more than 20 g / d, which is originally desired, and it is difficult to obtain a fiber having a denier of 0.6 or less.

【0010】極限粘度が5未満となると紡糸の段階での
分子鎖同士のすり抜けが起こり、紡糸で張力をうまく分
子鎖間に伝達できずに高強度繊維を得ることができな
い。又、本発明においてはポリマーの主成分はエチレン
成分が99.5mol%以上、好ましくは99.8mo
l%以上の実質的にポリエチレンのホモポリマーである
ことが重要である。重合の副反応や重合速度を向上せし
める等の目的で少量添加されるあるいは形成される分岐
や末端以外にはエチレンを100mol%の原料とする
ことが推奨される。αオレフィン等の共重合成分が増え
るほど、原因は不明であるが紡糸での溶液の強度(破断
に至る紡糸応力)が低下し同じ極限粘度でも低い応力で
紡糸での破断が起こる。
If the intrinsic viscosity is less than 5, the molecular chains slip through each other at the spinning stage, and the tension cannot be transmitted between the molecular chains by spinning, so that a high-strength fiber cannot be obtained. In the present invention, the main component of the polymer is an ethylene component of 99.5 mol% or more, preferably 99.8 mol%.
It is important that the polyethylene is a homopolymer of substantially 1% or more. It is recommended that ethylene be used as a 100 mol% raw material except for the branches or terminals formed by adding a small amount or for forming a side reaction for the purpose of improving the polymerization rate or the like. As the copolymerization component such as α-olefin increases, although the cause is not clear, the strength of the solution during spinning (spinning stress leading to breakage) decreases, and even at the same intrinsic viscosity, breakage occurs by spinning at a low stress.

【0011】本発明の推奨する製造方法においては、こ
のような高分子量のポリエチレンをデカリン・テトラリ
ン等の揮発性の溶剤やパラフィン、固体パラフィン等の
不揮発性の溶剤を用いて均一な溶解を行い紡糸用のドー
プを得ることができる。この際、濃度は50%以下、好
ましくは30%以下が好ましい。さらに言及すれば溶液
は揮発性の溶媒であることが重要である。常温固体また
は非揮発性の溶剤では実質3デニール付近が限界であ
り、到底0.6デニール以下のような低繊度の単繊維を
得ることが出来ない。この理由は、揮発溶媒を用いるこ
とで、紡糸の段階において、表面の溶媒がより積極的に
蒸発する。このことで、繊維表面に濃度の高くかつ分子
鎖がより配向した、いわゆるスキン層を形成すると推定
される。従来の紡糸技術の常識においてはこのようなス
キン・コア構造は繊維の強度を低下させる要因となり、
できるだけスキン・コア構造のような断面方向に不均一
な構造は避けるべく紡糸条件を選択することが、ゲル紡
糸に限らずポリビニルアルコールやポリアクリルニトリ
ルなどの乾式紡糸あるいは湿式紡糸における当該技術者
の常識であった。
In the production method recommended by the present invention, such high molecular weight polyethylene is uniformly dissolved using a volatile solvent such as decalin / tetralin or a non-volatile solvent such as paraffin or solid paraffin. Dope can be obtained. At this time, the concentration is preferably 50% or less, more preferably 30% or less. It is important to mention that the solution is a volatile solvent. A room temperature solid or a non-volatile solvent has a limit of substantially around 3 denier, and a single fiber having a low fineness of 0.6 denier or less cannot be obtained. The reason is that by using a volatile solvent, the solvent on the surface evaporates more positively in the spinning stage. This is presumed to form a so-called skin layer having a high concentration and a more oriented molecular chain on the fiber surface. In the common sense of the conventional spinning technology, such a skin-core structure causes a decrease in fiber strength,
It is a common knowledge of those skilled in the art of dry spinning or wet spinning of not only gel spinning but also polyvinyl alcohol and polyacrylonitrile, as well as gel spinning, to avoid uneven structures in the cross-sectional direction such as skin core structure as much as possible. Met.

【0012】本発明者らはこの常識に反して、紡糸の段
階でむしろ積極的にスキンコア構造を形成せしめ、発生
したスキン層を紡糸応力の伝播に用いることで、繊維糸
条が非常に細いにもかかわらず、高強度繊維を得るため
に必要な紡糸・延伸での十分な延伸張力に耐え得る事を
見出し、本発明に到達した。
Contrary to this common knowledge, the present inventors have rather positively formed a skin core structure at the spinning stage, and used the generated skin layer to propagate the spinning stress, thereby making the fiber yarn very thin. Nevertheless, they have found that they can withstand sufficient drawing tension in spinning and drawing necessary to obtain high-strength fibers, and have reached the present invention.

【0013】すなわち、本発明の繊維のDSC測定にお
ける複数の吸熱ピークおよびその高温での値は、これら
主にスキン層に存在する伸びきり鎖に対応していると考
えるが定かでは無い。しかしながら、本発明の繊維のよ
うな特異な構造ないし、得られた熱的特性は、単に本発
明の繊維の単繊維の繊度が低いというだけでなく、耐熱
性に優れることや表面の特殊な剛直さにより衝撃伝播速
度が向上することが期待され、それを積層することで軽
量でかつさらに衝撃吸収性の向上した防弾チョッキを実
現できるなど新しい特性を有する繊維として産業上での
さまざまな分野での応用が期待できる。特に、耐薬品性
が要求される電池のセパレーターやその補強材分野で
は、その繊維表面の結晶性に良さがより、それらの化学
耐久性がより良好な結果を与えることになるとともに、
繊維が非常に細くなったことで製品全体をコンパクト化
できるメリットがある事は言うまでも無い。
That is, although the plurality of endothermic peaks and their values at high temperatures in the DSC measurement of the fiber of the present invention are thought to correspond to these extended chains mainly present in the skin layer, it is uncertain. However, the unique structure such as the fiber of the present invention or the obtained thermal property is not only that the fineness of the single fiber of the fiber of the present invention is low, but also that it has excellent heat resistance and special rigidity of the surface. It is expected that the impact propagation speed will be improved by this, and by laminating it, it is possible to realize a bulletproof vest with light weight and improved shock absorption as a fiber with new characteristics such as application in various industrial fields Can be expected. In particular, in the field of battery separators and their reinforcing materials where chemical resistance is required, the better the crystallinity of the fiber surface, the better their chemical durability will give better results,
It goes without saying that the very thin fibers have the advantage of making the whole product compact.

【0014】従って、本繊維を製造する際には、先ず、
繊維を均一に押し出すノズルの設計が重要である。ノズ
ル口の直径は0.5mm以下、さらに好ましくは0.3
mm以下が推奨される。本特許において、最も重要な因
子はノズル下で出てきた吐出溶液に対して強制的に高温
の不活性ガスを供給し、糸条の表面の溶剤を積極的に蒸
発させることである。これにより、表面に薄いスキン層
を形成させ、紡糸での抗張力に耐えるとともに、延伸で
スムーズな分子配向を付与することができる。この際の
温度は60℃以上、好ましくは80℃以上、さらに好ま
しくは100℃以上であることが推奨される。この際、
ガスは窒素等の不活性ガスを用いることが推奨される。
Therefore, when producing the present fiber, first,
It is important to design a nozzle that extrudes the fibers uniformly. The diameter of the nozzle port is 0.5 mm or less, more preferably 0.3 mm or less.
mm or less is recommended. In this patent, the most important factor is to forcibly supply a high-temperature inert gas to the discharged solution coming out under the nozzle and to actively evaporate the solvent on the surface of the yarn. This allows a thin skin layer to be formed on the surface, withstands the tensile strength of spinning, and provides smooth molecular orientation by stretching. It is recommended that the temperature at this time be 60 ° C. or higher, preferably 80 ° C. or higher, and more preferably 100 ° C. or higher. On this occasion,
It is recommended to use an inert gas such as nitrogen as the gas.

【0015】この様にして得られた繊維は、再度加熱さ
れ残った溶剤を蒸発させながら数倍に延伸を行い、場合
によって多段階延伸を行っても良い。紡糸で一旦形成さ
れたスキン・コア構造に由来する耐熱性が後段の延伸で
は消失することなく、前述の極めて優れた特性を有する
新規な繊維を得る事ができる。
The fiber thus obtained may be stretched several times while evaporating the remaining solvent after being heated again, and may be stretched in multiple stages in some cases. The heat resistance derived from the skin-core structure once formed by spinning does not disappear in the subsequent drawing, and a novel fiber having the above-mentioned extremely excellent properties can be obtained.

【0016】以下に本発明における特性値に関する測定
法および測定条件を説明する。
The measurement method and measurement conditions relating to characteristic values in the present invention will be described below.

【0017】(強度・弾性率)本発明における強度,弾
性率は、オリエンティック社製「テンシロン」を用い、
試料長200mm(チャック間長さ)、伸長速度100
%/分の条件で歪ー応力曲線を雰囲気温度20℃、相対
湿度65%条件下で測定し、曲線の破断点での応力を強
度(g/d)、曲線の原点付近の最大勾配を与える接線
より弾性率(g/d)を計算して求めた。なお、各値は
10回の測定値の平均値を使用した。
(Strength and Elastic Modulus) The strength and elastic modulus in the present invention were measured using "Tensilon" manufactured by Orientic.
Sample length 200 mm (length between chucks), extension speed 100
The strain-stress curve is measured under the conditions of an ambient temperature of 20 ° C. and a relative humidity of 65% under the conditions of% / min, and the stress at the break point of the curve is given by the strength (g / d) and the maximum gradient near the origin of the curve The elastic modulus (g / d) was calculated from the tangent line. In addition, each value used the average value of 10 measured values.

【0018】(極限粘度)135℃のデカリンにてウベ
ローデ型毛細粘度管により、種々の希薄溶液の比粘度を
測定し、その粘度の濃度にたいするプロットの最小2乗
近似で得られる直線の原点への外挿点より極限粘度を決
定した。測定に際し、サンプルを約5mm長の長さにサ
ンプルを分割または切断し、ポリマーに対して1wt%
の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬
製)を添加し、135℃で4時間攪拌溶解して測定溶液
を調整した。
(Intrinsic Viscosity) The specific viscosities of various diluted solutions were measured with decalin at 135 ° C. using an Ubbelohde type capillary viscometer, and the straight line obtained by the least-square approximation of a plot of the concentration of the viscosity was determined. The intrinsic viscosity was determined from the extrapolated point. When measuring, the sample is divided or cut into a length of about 5 mm, and 1 wt% based on the polymer.
(Trade name "Yoshinox BHT" manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added and dissolved by stirring at 135 ° C. for 4 hours to prepare a measurement solution.

【0019】(示差走査熱量計測定)示差走査熱量計測
定はパーキンエルマー社製「DSC7」を用いた。予め5
mm以下に裁断したサンプル(繊維)をアルミパンに約5
mg充填封入し、同様の空のアルミパンをリファレンス
にして5℃/分の昇温速度で不活性ガス下、室温から2
00℃まで上昇させ、その吸熱ピークを求めた。得られ
た曲線より、融解ピークの数とその最も高温にあるピー
クの温度を求めた。
(Differential Scanning Calorimeter Measurement) For differential scanning calorimeter measurement, "DSC7" manufactured by PerkinElmer Co. was used. 5 in advance
The sample (fiber) cut to less than 5 mm
mg and sealed, and the same empty aluminum pan was used as a reference at a rate of 5 ° C./min.
The temperature was raised to 00 ° C., and the endothermic peak was determined. From the obtained curve, the number of melting peaks and the temperature of the highest peak were determined.

【0020】[0020]

【実施例】以下、実施例をもって本発明を説明する。 (実施例1)極限粘度が20.1の超高分子量ポリマー
の主成分ポリマー(C)を10wt%およびデカヒドロ
ナフタレン90wt%のスラリー状の混合物を分散しな
がら230℃の温度に設定したスクリュー型の混練り機
で溶解し、170℃に設定した直径0.2mmを200
0ホール有する口金に軽量ポンプにて単孔吐出量0.0
8g/分供給した。ノズル直下に設置したスリット状の
気体供給オリフィスにて1.2m/分の高速度で100
℃に調整した窒素ガスを整流に気をつけ、できるだけ糸
条に均等に当たるようにして繊維の表面のデカリンを積
極的に蒸発させ、その直後30℃に設定された空気流に
て実質的に冷却し、ノズル下流に設置されたネルソン状
のローラーにて50m/分の速度で引き取られた、この
際に糸状に含有される溶剤は元の重量の約半分まで低下
していた。引き続き、得られた繊維を100℃の加熱オ
ーブン下で3倍に延伸した、引き続きこの繊維を149
℃に設置した加熱オーブン中にて4.6倍で延伸した。
途中破断することなく均一な繊維が得る事ができた、単
繊維の平均繊度は0.11、従ってトータルの繊維の繊
度220デニールであった。得られた繊維の物性値を表
1に示す。非常に高い強度とDSCによる高い融解温度
を有していることが判明した。
The present invention will be described below with reference to examples. (Example 1) A screw type set to a temperature of 230 ° C while dispersing a slurry-like mixture of 10 wt% of a main component polymer (C) of an ultrahigh molecular weight polymer having an intrinsic viscosity of 20.1 and 90 wt% of decahydronaphthalene. Melted with a kneading machine, and 0.2 mm in diameter set at 170 ° C.
A single hole discharge rate of 0.0 with a lightweight pump in a base with 0 holes
8 g / min was fed. 100m at a high speed of 1.2m / min with a slit-shaped gas supply orifice installed just below the nozzle.
Careful to the rectification of the nitrogen gas adjusted to ℃, the decalin on the fiber surface was positively evaporated by hitting the yarn as evenly as possible, and then immediately cooled by the air flow set at 30 ℃ The solvent was taken up at a speed of 50 m / min by a Nelson-shaped roller provided downstream of the nozzle. At this time, the amount of the solvent contained in the thread was reduced to about half of the original weight. Subsequently, the obtained fiber was drawn three times in a heating oven at 100 ° C.
The film was stretched 4.6 times in a heating oven set at a temperature of ° C.
Uniform fibers could be obtained without breakage in the middle. The average fineness of the single fibers was 0.11, and thus the total fineness of the fibers was 220 denier. Table 1 shows the physical property values of the obtained fibers. It was found to have very high strength and high melting temperature by DSC.

【0021】(実施例2)実施例1における主成分ポリ
マーとして極限粘度が10のポリマーを用い、溶液の粘
度を30%にした他は、同様の操作で紡糸を実施した。
1段延伸は3倍の延伸が可能であったg、2段目の延伸
では2.5倍が限度であった。表2にその結果を示す。
延伸糸の単繊維度は0.57デニール、全体の繊維度は
1150デニールであった。繊維度は多く、強度も若干
低下した。尚、DSCの測定結果を図1に示す。
(Example 2) Spinning was carried out in the same manner as in Example 1, except that a polymer having an intrinsic viscosity of 10 was used as the main component polymer and the viscosity of the solution was 30%.
In the first-stage stretching, three-fold stretching was possible, and in the second-stage stretching, the limit was 2.5 times. Table 2 shows the results.
The drawn yarn had a single fiber degree of 0.57 denier and an overall fiber degree of 1150 denier. The fiber degree was high and the strength was slightly reduced. In addition, the measurement result of DSC is shown in FIG.

【0022】(比較例1)実施例1の実験において、ノ
ズル直下での気体スリットでの熱風の付与を止め、直ち
に30℃の窒素ガスにて冷却を実施した。紡糸は20m/
分が最大であり、その後の延伸も1段延伸が2.0倍、
2段延伸が2.2倍が最大であった。得られた物性を表
1に示すが、単繊維度は0.82デニールと所望の0.
6デニール以下の極細繊維を得ることが出来なかった。
(Comparative Example 1) In the experiment of Example 1, the application of hot air at the gas slit immediately below the nozzle was stopped, and cooling was immediately performed with nitrogen gas at 30 ° C. Spinning is 20m /
Min is the maximum, and the subsequent stretching is also 2.0 times in one-step stretching,
The maximum of the two-stage stretching was 2.2 times. The physical properties thus obtained are shown in Table 1, and the degree of single fiber is 0.82 denier, which is the desired 0.1%.
Ultrafine fibers of 6 denier or less could not be obtained.

【0023】(比較例2)実施例1のポリマーを極限粘
度20.1でかつプロピレンモノマーを1mol%共重
合させた超高分子量ポリエチレンを用いて同様の操作を
実施した。同条件では紡糸での糸切れが多発し、満足な
紡出糸を得ることができなかた。
(Comparative Example 2) The same operation was carried out using an ultrahigh molecular weight polyethylene obtained by copolymerizing the polymer of Example 1 with an intrinsic viscosity of 20.1 and copolymerizing 1 mol% of a propylene monomer. Under the same conditions, yarn breakage during spinning frequently occurred, and satisfactory spun yarn could not be obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】0.6デニール以下の極細でありながら
高強度・高弾性率を有しかつ、耐熱性にも優れる新規な
極細の高強度ポリエチレン繊維を提供することを可能と
した。
According to the present invention, it is possible to provide a novel ultra-fine high-strength polyethylene fiber which has a high strength and a high elastic modulus while being ultra-fine at 0.6 denier or less and has excellent heat resistance.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】極限粘度[η]が5以上のその繰り返し単位
がエチレンからなる高分子量ポリエチレンを主体にした
分子配向繊維であり、その単繊維の平均繊度が0.6デ
ニール以下であり、その示差走査熱量計(DSC)で求
めた融解時の吸熱ピークが140℃以上に少なくとも2
以上存在し、且つ最高温度に存在する吸熱ピークの温度
が150℃を超えることを特徴とする高強度ポリエチレ
ン繊維。
1. A molecular oriented fiber having a limiting viscosity [η] of 5 or more whose main repeating unit is a high molecular weight polyethylene composed of ethylene, wherein the average fineness of a single fiber is 0.6 denier or less. An endothermic peak upon melting determined by a differential scanning calorimeter (DSC) is at least 2 at 140 ° C or higher.
A high-strength polyethylene fiber which is present and has a temperature of an endothermic peak at the highest temperature exceeding 150 ° C.
【請求項2】分子配向繊維の強度が20g/d以上、弾
性率が800g/d以上であることを特徴とする請求項
1記載の高強度ポリエチレン繊維。
2. The high-strength polyethylene fiber according to claim 1, wherein the molecular oriented fiber has a strength of 20 g / d or more and an elastic modulus of 800 g / d or more.
【請求項3】分子配向繊維がエチレン成分が99.5m
ol%以上の高分子量ポリエチレンである実質ホモポリ
マーからなることを特徴とする請求項1記載の高強度ポ
リエチレン繊維。
3. The molecularly oriented fiber has an ethylene component of 99.5 m.
2. The high-strength polyethylene fiber according to claim 1, wherein the high-strength polyethylene fiber is made of a substantially homopolymer that is at least ol% of high molecular weight polyethylene.
【請求項4】分子配向繊維の極限粘度[η]が10以上で
あることを特徴とする請求項1記載の高強度ポリエチレ
ン繊維。
4. The high-strength polyethylene fiber according to claim 1, wherein the intrinsic viscosity [η] of the molecularly oriented fiber is 10 or more.
【請求項5】分子配向繊維の単繊維の平均繊度が0.3
デニール以下であることを特徴とする請求項1記載の高
強度ポリエチレン繊維。
5. An average fineness of a single fiber of the molecular orientation fiber is 0.3.
The high-strength polyethylene fiber according to claim 1, wherein the fiber is denier or less.
JP11028817A 1999-02-05 1999-02-05 High-strength polyethylene yarn Withdrawn JP2000226721A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11028817A JP2000226721A (en) 1999-02-05 1999-02-05 High-strength polyethylene yarn
PCT/JP2000/000637 WO2000046436A1 (en) 1999-02-05 2000-02-04 High strength polyethylene fiber and non-woven fabric for electric cell separator, and impact-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11028817A JP2000226721A (en) 1999-02-05 1999-02-05 High-strength polyethylene yarn

Publications (1)

Publication Number Publication Date
JP2000226721A true JP2000226721A (en) 2000-08-15

Family

ID=12258968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11028817A Withdrawn JP2000226721A (en) 1999-02-05 1999-02-05 High-strength polyethylene yarn

Country Status (2)

Country Link
JP (1) JP2000226721A (en)
WO (1) WO2000046436A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298817A (en) * 2001-03-29 2002-10-11 Sanyo Electric Co Ltd Alkaline storage battery and manufacturing method therefor
WO2009077168A2 (en) * 2007-12-17 2009-06-25 Dsm Ip Assets B.V. Process for spinning uhmwpe, uhmwpe multifilament yarns produced thereof and products comprising said yarns

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE365819T1 (en) 2000-12-11 2007-07-15 Toyo Boseki HIGH STRENGTH POLYETHYLENE FIBER
US8349421B2 (en) 2008-05-15 2013-01-08 Xerox Corporation Precision resistive elements and related manufacturing process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102412A (en) * 1984-10-23 1986-05-21 Kuraray Co Ltd Production of spun undrawn yarn for polyethylene having high strength
JPH01162816A (en) * 1987-12-17 1989-06-27 Toray Ind Inc Novel polyethylene fiber
JPH01272842A (en) * 1988-04-21 1989-10-31 Mitsui Petrochem Ind Ltd Production of high-tenacity polyethylene multi-filament yarn

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298817A (en) * 2001-03-29 2002-10-11 Sanyo Electric Co Ltd Alkaline storage battery and manufacturing method therefor
WO2009077168A2 (en) * 2007-12-17 2009-06-25 Dsm Ip Assets B.V. Process for spinning uhmwpe, uhmwpe multifilament yarns produced thereof and products comprising said yarns
WO2009077168A3 (en) * 2007-12-17 2009-09-11 Dsm Ip Assets B.V. Process for spinning uhmwpe, uhmwpe multifilament yarns produced thereof and products comprising said yarns
JP2011506787A (en) * 2007-12-17 2011-03-03 ディーエスエム アイピー アセッツ ビー.ブイ. UHMWPE spinning method, UHMWPE multifilament yarn produced thereby and use thereof
EA018379B1 (en) * 2007-12-17 2013-07-30 ДСМ АйПи АССЕТС Б.В. Process for spinning ultra high molecular weight polyethylene (uhmwpe) multifilament yarns and multifilament yarn produced thereby
US9194059B2 (en) 2007-12-17 2015-11-24 Dsm Ip Assets B.V. Process for spinning UHMWPE, UHMWPE multifilament yarns produced thereof and their use

Also Published As

Publication number Publication date
WO2000046436A1 (en) 2000-08-10

Similar Documents

Publication Publication Date Title
JP4168981B2 (en) Protective gloves containing high-strength polyethylene fibers
KR100951222B1 (en) High-strength polyethylene fiber
TWI752440B (en) Cut resistant polyethylene yarn, method for manufacturing the same, and protective article produced using the same
JP4816798B2 (en) High-performance polyethylene fiber with excellent moldability
JPWO2009028590A1 (en) High-productivity high-strength polyethylene fiber, precursor thereof, and method for producing the precursor
JP2001303358A (en) High-performance fishline excellent in abrasion resistance
JP3734077B2 (en) High strength polyethylene fiber
JP3666635B2 (en) High-strength polyethylene fiber with excellent uniformity
JP2000226721A (en) High-strength polyethylene yarn
JP4337233B2 (en) High-strength polyethylene fiber and method for producing the same
EP0958414B1 (en) Bicomponent fibers in a sheath-core structure comprising fluoropolymers and methods of making and using same
JP3738873B2 (en) High strength polyethylene fiber
JP2003055833A (en) High-strength polyolefin fiber and method for producing the same
JP3257678B2 (en) PPD-T fiber showing high elongation
EP0753608B1 (en) Spun yarn of polybenzazole fiber
JPH08209444A (en) Highly strong and highly shrinkable polyamide fiber
JP3997613B2 (en) High-strength polypropylene fiber and method for producing the same
US20230322979A1 (en) Polyethylene yarn having improved post-processability, and fabric comprising same
JP7196298B2 (en) Polyethylene multifilament entangled yarn and method for producing the same
KR102480920B1 (en) Polyethylene yarn with improved size stability and functional fabric containing the same
JP7289931B2 (en) Polyethylene yarn, method for producing the same, and cold-sensitive fabric containing the same
JP3849851B2 (en) High strength polyethylene fiber nonwoven fabric and battery separator
JP2003113567A (en) Nonwoven fabric and filter
TW201923179A (en) Multifilament, and monofilament constituting multifilament
JPH10110330A (en) Polybenzazole fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070914

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071109