JP2000226216A - Transparent conductive thin film and its production - Google Patents

Transparent conductive thin film and its production

Info

Publication number
JP2000226216A
JP2000226216A JP11026139A JP2613999A JP2000226216A JP 2000226216 A JP2000226216 A JP 2000226216A JP 11026139 A JP11026139 A JP 11026139A JP 2613999 A JP2613999 A JP 2613999A JP 2000226216 A JP2000226216 A JP 2000226216A
Authority
JP
Japan
Prior art keywords
thin film
transparent conductive
conductive thin
lanio
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11026139A
Other languages
Japanese (ja)
Other versions
JP3079262B2 (en
Inventor
Yukio Jo
超男 徐
Tadahiko Watanabe
忠彦 渡辺
Gei Ryu
芸 劉
Morihito Akiyama
守人 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11026139A priority Critical patent/JP3079262B2/en
Publication of JP2000226216A publication Critical patent/JP2000226216A/en
Application granted granted Critical
Publication of JP3079262B2 publication Critical patent/JP3079262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a transparent conductive thin film having good electrical conductivity over a wide temperature range from normal temperature to high temperature and uniform light transmittance to the light over a wide wavelength range and useful for various uses as a functional thin film, and provide its production process. SOLUTION: This transparent conductive thin film is made of a metal oxide of perovskite structure having a composition of LaNiO3. It can be produced by coating a substrate with a coating liquid consisting of an aqueous solution produced by dissolving a lanthanum salt, a nickel salt and a watersoluble organic binder in water and baking the film in an oxygen atmosphere at 500-800 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な透明導電性
薄膜及びその製造方法に関する。さらに詳しくは、本発
明は、常温から高温までの広い温度範囲において、良好
な導電性を有するとともに、広い波長領域の光に対して
均等な透光性を有し、機能性薄膜として種々の用途に有
用な透明導電性薄膜、及びこのものを効率よく製造する
方法に関するものである。
The present invention relates to a novel transparent conductive thin film and a method for producing the same. More specifically, the present invention has good conductivity in a wide temperature range from room temperature to high temperature, has uniform light transmittance to light in a wide wavelength range, and has various uses as a functional thin film. The present invention relates to a transparent conductive thin film useful for the above, and a method for efficiently producing the same.

【0002】[0002]

【従来の技術】従来、透明導電性薄膜として、ITO
(Indium and tin oxides、In
とSnOとの混合体)薄膜が実用化され、電子
デバイスや光学デバイスの電極として用いられている。
しかしながら、この薄膜は、耐熱性に劣り、500℃以
上の温度では機能しない上、光の透過性についても選択
的透過現象がみられ、340〜800nmの波長領域で
は、特に光の吸収により500nm付近の透光性が低い
などの欠点を有している。これまで、高温領域におい
て、良好な導電性と透光性を有する薄膜は知られていな
いのが実状である。
2. Description of the Related Art Conventionally, ITO has been used as a transparent conductive thin film.
(Indium and tin oxides, In
Mixtures of 2 O 3 and SnO 2 ) thin films have been put to practical use and used as electrodes for electronic devices and optical devices.
However, this thin film is inferior in heat resistance, does not function at a temperature of 500 ° C. or more, and has a selective transmission phenomenon with respect to light transmittance. In a wavelength region of 340 to 800 nm, especially around 500 nm due to light absorption. Has a drawback such as low light transmittance. Until now, there is no known thin film having good conductivity and light-transmitting properties in a high-temperature region.

【0003】[0003]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、常温から高温までの広い温度範囲におい
て、良好な導電性を有するとともに、広い波長領域の光
に対して均一の透光性を有し、機能性薄膜として種々の
用途に有用な新規な透明導電性薄膜を提供することを目
的としてなされたものである。
Under such circumstances, the present invention has good conductivity in a wide temperature range from room temperature to high temperature and has a uniform property with respect to light in a wide wavelength range. The object of the present invention is to provide a novel transparent conductive thin film which has a light transmitting property and is useful as a functional thin film for various uses.

【0004】[0004]

【課題を解決するための手段】本発明者らは、透明導電
性薄膜について鋭意研究を重ねた結果、ペロブスカイト
型構造を有するLaNiO薄膜は、良好な導電性を有
し、膜厚を変えることにより、広い波長領域にわたって
透光率を調整することができること、そして、この透明
導電性薄膜は、ランタン塩とニッケル塩と有機バインダ
ーを溶解させてなる水性塗布液を基材上に塗布し、酸素
雰囲気下、特定の温度で焼成することにより製造しうる
ことを見出し、この知見に基づいて本発明を完成するに
至った。
Means for Solving the Problems As a result of intensive studies on the transparent conductive thin film, the present inventors have found that a LaNiO 3 thin film having a perovskite structure has good conductivity and that the thickness thereof can be changed. Thus, the light transmittance can be adjusted over a wide wavelength range, and this transparent conductive thin film is formed by applying an aqueous coating solution obtained by dissolving a lanthanum salt, a nickel salt, and an organic binder onto a base material, They have found that they can be manufactured by firing at a specific temperature in an atmosphere, and have completed the present invention based on this finding.

【0005】すなわち、本発明は、LaNiOの組成
を有するペロブスカイト型構造の金属酸化物からなる透
明導電性薄膜を提供するものである。前記透明導電性薄
膜は、本発明に従えば、ランタン塩とニッケル塩と水溶
性有機バインダーを溶解させた水溶液からなる塗布液を
調製したのち、基材上に該塗布液を塗布し、次いで酸素
雰囲気中において、500〜800℃の温度で焼成する
ことにより、製造することができる。
That is, the present invention provides a transparent conductive thin film made of a metal oxide having a perovskite structure having a composition of LaNiO 3 . According to the present invention, the transparent conductive thin film is prepared by preparing a coating solution composed of an aqueous solution in which a lanthanum salt, a nickel salt and a water-soluble organic binder are dissolved, and then coating the coating solution on a substrate, and then applying oxygen. It can be manufactured by baking at a temperature of 500 to 800 ° C. in an atmosphere.

【0006】[0006]

【発明の実施の形態】本発明の透明導電性薄膜は、La
NiOで表わされ、かつペロブスカイト型構造を有す
る金属酸化物からなるものであるが、このペロブスカイ
ト型構造とは、CaTiO(灰チタン石)で代表され
るABOの組成をもつ化合物にみられる、立方晶系若
しくはそれが少し歪んだ正方晶系、斜方晶系、単斜晶
系、六方晶系の結晶構造を意味する。本発明の透明導電
性薄膜は、従来のITO薄膜と異なり、室温(20℃)
から800℃の高温に至るまで優れた導電性を有し、上
記温度範囲において、通常体積抵抗率が2×10−5Ω
・m以下、又は表面抵抗が300Ω/□以下である。さ
らに、本発明の透明導電性薄膜においては、膜厚によ
り、導電性及び透光性を調整することができ、また、透
光性については、300〜800nmの波長域におい
て、実質上同一の透光率を有し、かつ膜厚を変えること
により、該透光率を1〜95%の範囲で調整することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION The transparent conductive thin film of the present invention is La
It is composed of a metal oxide represented by NiO 3 and having a perovskite structure. This perovskite structure refers to a compound having the composition of ABO 3 represented by CaTiO 3 (perovskite). Cubic, or a slightly distorted tetragonal, orthorhombic, monoclinic, or hexagonal crystal structure. The transparent conductive thin film of the present invention differs from the conventional ITO thin film at room temperature (20 ° C.).
From 800 ° C. to a high temperature of 800 ° C., and usually has a volume resistivity of 2 × 10 −5 Ω in the above temperature range.
・ M or less, or the surface resistance is 300Ω / □ or less. Further, in the transparent conductive thin film of the present invention, the conductivity and the light transmission can be adjusted by the film thickness, and the light transmission is substantially the same in the wavelength range of 300 to 800 nm. By having a light transmittance and changing the film thickness, the light transmittance can be adjusted in the range of 1 to 95%.

【0007】本発明方法により、前記の透明導電性薄膜
を製造するには、まずLaNiO膜形成用の塗布液を
調製する必要がある。この塗布液は、例えば水溶性のラ
ンタン塩とニッケル塩と有機バインダーを水媒体に溶解
させることにより調製される。この際用いる水溶性のラ
ンタン塩及びニッケル塩としては、水溶性のものであれ
ばよく特に制限はないが、酢酸塩及び硝酸塩が好適であ
る。また、このランタン塩とニッケル塩は、実質上化学
量論的量用いるのが好ましい。一方、有機バインダーと
しては、水溶性であって、塗膜形成能を有するものであ
ればよく、特に制限されず、例えばポリビニルアルコー
ル、ポリビニルピロリドン、カルボキシメチルセルロー
スなどを用いることができる。
In order to produce the above-mentioned transparent conductive thin film by the method of the present invention, it is necessary to first prepare a coating liquid for forming a LaNiO 3 film. This coating solution is prepared, for example, by dissolving a water-soluble lanthanum salt, a nickel salt, and an organic binder in an aqueous medium. The water-soluble lanthanum salt and nickel salt used at this time are not particularly limited as long as they are water-soluble, but acetates and nitrates are preferred. Preferably, the lanthanum salt and the nickel salt are used in substantially stoichiometric amounts. On the other hand, the organic binder is not particularly limited as long as it is water-soluble and has a coating film forming ability, and for example, polyvinyl alcohol, polyvinylpyrrolidone, carboxymethylcellulose and the like can be used.

【0008】この塗布液中のランタン塩とニッケル塩の
含有量は、所望のLaNiO膜の厚さに応じて適宜調
整されるが、一般には、LaNiO換算で0.05〜
5.0モル%、好ましくは0.1〜1.0モル%濃度に
なるように調整するのが有利である。この濃度が0.0
5モル%未満ではペロブスカイト型構造になりにくく、
所望の導電性を有する薄膜が得られにくいし、5.0モ
ル%を超えるとコーティングした塗膜が剥れやすくな
り、基材に対して十分な機械的付着強度を有する薄膜が
得られにくい。
[0008] The content of lanthanum and nickel salts of the coating solution is suitably adjusted depending on the thickness of the desired LaNiO 3 film, typically, 0.05 in LaNiO 3 terms
It is advantageous to adjust the concentration to 5.0 mol%, preferably 0.1 to 1.0 mol%. This concentration is 0.0
If it is less than 5 mol%, it is difficult to form a perovskite structure,
It is difficult to obtain a thin film having the desired conductivity, and if it exceeds 5.0 mol%, the coated film tends to peel off, and it is difficult to obtain a thin film having sufficient mechanical adhesion strength to the substrate.

【0009】次いで、このようにして調製した塗布液を
適当な基材上に、スピンコーティング法やディップコー
ティング法などの公知の方法によりコーティングし、塗
膜を形成させる。基材としては、塗布液に浸されず、か
つ焼成温度に耐えるものであればよく、特に制限され
ず、様々なものを用いることができる。このような基材
としては、例えばガラス、石英、Si単結晶、Al
単結晶、SiCセラミックス、Alセラミック
ス、Siセラミックス、ステンレス鋼などからな
る基材を挙げることができる。また、コーティングは、
所望する膜厚によっては、複数回繰り返し行ってもよ
い。
Next, the coating solution thus prepared is coated on a suitable substrate by a known method such as a spin coating method or a dip coating method to form a coating film. The substrate is not particularly limited as long as it is not immersed in the coating liquid and withstands the firing temperature, and various substrates can be used. As such a substrate, for example, glass, quartz, Si single crystal, Al 2 O
Substrates made of three single crystals, SiC ceramics, Al 2 O 3 ceramics, Si 3 N 4 ceramics, stainless steel, and the like can be given. Also, the coating
Depending on the desired film thickness, it may be repeated a plurality of times.

【0010】次に、このようにして基材上に設けられた
塗膜を、酸素雰囲気中において、500〜800℃の範
囲の温度において焼成する。この焼成温度が500℃未
満ではペロブスカイト型構造が形成されず、所望の導電
性を有する薄膜が得られないし、800℃を超えると基
材との反応が起こり、薄膜の導電性が低下する。また、
酸素雰囲気としては、酸素を含むガスであればよく特に
制限はないが、通常、空気が用いられる。焼成時間は、
焼成温度により左右され、一概に定めることはできない
が、一般的には10〜60分間程度で十分である。この
ようにして、ペロブスカイト型構造を有するLaNiO
からなる透明導電性薄膜が効率よく得られる。
Next, the coating film thus formed on the substrate is fired in an oxygen atmosphere at a temperature in the range of 500 to 800 ° C. If the firing temperature is lower than 500 ° C., a perovskite structure is not formed, and a thin film having a desired conductivity cannot be obtained. If the firing temperature exceeds 800 ° C., a reaction with the base material occurs, and the conductivity of the thin film decreases. Also,
The oxygen atmosphere is not particularly limited as long as it is a gas containing oxygen, but air is usually used. The firing time is
Although it depends on the firing temperature and cannot be unconditionally determined, generally about 10 to 60 minutes is sufficient. Thus, LaNiO having a perovskite structure is obtained.
3 can be efficiently obtained.

【0011】[0011]

【発明の効果】本発明によれば、ペロブスカイト型構造
を有するLaNiOからなる透明導電性薄膜を効率よ
く製造することができる。この本発明の透明導電性薄膜
は、室温から800℃程度の高温に至るまで、良好な導
電性を有するとともに、300〜800nmの広い波長
領域の光に対して、実質上同一の透光率を示し、かつ膜
厚により、該透光率を1〜95%の範囲で連続的に調整
しうるという利点がある。したがって、本発明の透明導
電性薄膜は、機能性薄膜として、例えば太陽電池や高温
電子デバイス、高温光学デバイスなどの電極として有用
である上、可視光領域の均一光フィルターとしての応用
などが期待できる。
According to the present invention, a transparent conductive thin film made of LaNiO 3 having a perovskite structure can be efficiently produced. The transparent conductive thin film of the present invention has good conductivity from room temperature to a high temperature of about 800 ° C., and has substantially the same light transmittance for light in a wide wavelength range of 300 to 800 nm. There is an advantage that the light transmittance can be continuously adjusted within the range of 1 to 95% depending on the film thickness. Therefore, the transparent conductive thin film of the present invention is useful as a functional thin film, for example, as an electrode of a solar cell, a high-temperature electronic device, a high-temperature optical device, and can be expected to be applied as a uniform light filter in a visible light region. .

【0012】[0012]

【実施例】次に、本発明を実施例によりさらに詳細に説
明するが、本発明は、これらの例によってなんら限定さ
れるものではない。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0013】実施例1 酢酸ランタン及び硝酸ニッケルを、それぞれ純水に溶解
させてなる2種の水溶液を均質に混合したのち、これに
有機バインダーとしてポリビニルアルコールを、酢酸ラ
ンタンと硝酸ニッケルの合計重量に対し、0.01倍量
添加し、さらに、水溶液のLaNiO換算濃度が0.
1モル%になるように調整することにより、塗布液を調
製した。次に、石英基板上に、上記塗布液を回転数20
00rpmにて、1回のコーティングで焼成後の膜厚が
15nmになるようにスピンコーティングしたのち、空
気中にて500℃で1時間焼成し、膜厚15nmのペロ
ブスカイト型構造のLaNiO膜を形成した。さら
に、上記と同様のスピンコーティングを繰り返し行い、
各種膜厚のペロブスカイト型構造のLaNiO膜を形
成した。
Example 1 Two kinds of aqueous solutions each prepared by dissolving lanthanum acetate and nickel nitrate in pure water were mixed homogeneously, and then polyvinyl alcohol was added as an organic binder to the total weight of lanthanum acetate and nickel nitrate. On the other hand, a 0.01-fold amount was added, and the LaNiO 3 conversion concentration of the aqueous solution was 0.1.
The coating liquid was prepared by adjusting to 1 mol%. Next, the above-mentioned coating solution was applied on a quartz substrate at a rotation speed of 20
After spin-coating at 00 rpm with a single coating so that the film thickness after firing becomes 15 nm, it is fired in air at 500 ° C. for 1 hour to form a LaNiO 3 film having a perovskite structure with a film thickness of 15 nm. did. Furthermore, the same spin coating as above is repeated,
LaNiO 3 films having a perovskite structure having various thicknesses were formed.

【0014】膜厚15〜300nmのLaNiO膜に
ついて、各温度における体積抵抗率と表面抵抗を測定す
ると共に、各膜厚のLaNiO膜について、各波長に
おける透光率を測定した。図1に、膜厚200nmのL
aNiO膜における温度と表面抵抗との関係をグラフ
として示す。表面抵抗は、室温(20℃)から800℃
まで300Ω/□以下であり、また体積抵抗率は2×1
−5Ω・m以下であった。図2に、各膜厚のLaNi
膜における波長と透光率との関係をグラフとして示
す。340〜800nmの広い波長領域の光に対し、均
一な透光率を有することが分かる。図3に、LaNiO
膜における波長600nmの光に対する透光率との関
係を実線でグラフとして示す。LaNiO膜の膜厚を
調整することにより、透光率を10〜90%程度の範囲
で連続的に調整しうることが分かる。
With respect to the LaNiO 3 film having a thickness of 15 to 300 nm, the volume resistivity and the surface resistance at each temperature were measured, and the transmittance of the LaNiO 3 film having each thickness was measured at each wavelength. FIG. 1 shows a 200 nm thick L
The graph shows the relationship between the temperature and the surface resistance of the aNiO 3 film. Surface resistance from room temperature (20 ° C) to 800 ° C
Up to 300Ω / □ and the volume resistivity is 2 × 1
0 −5 Ω · m or less. FIG. 2 shows LaNi of each film thickness.
The graph shows the relationship between the wavelength and the light transmittance of the O 3 film. It can be seen that it has a uniform light transmittance for light in a wide wavelength range of 340 to 800 nm. FIG. 3 shows the LaNiO
The relationship between the transmittance of the three films and the light having a wavelength of 600 nm is shown by a solid line as a graph. It can be seen that the light transmittance can be continuously adjusted in the range of about 10 to 90% by adjusting the thickness of the LaNiO 3 film.

【0015】実施例2 実施例1において、石英基板の代わりにガラス基板、S
i単結晶基板、Al単結晶基板、SiCセラミッ
クス基板、Alセラミックス基板、Si
ラミックス基板及びステンレス鋼基板をそれぞれ用いた
以外は、実施例1と同様な操作を行った。Si単結晶基
板、Al単結晶基板、SiCセラミックス基板、
Al セラミックス基板、Siセラミックス
基板及びステンレス鋼基板の場合は、図1と同様な結果
が得られた。また、ガラス基板については、軟化点が低
いため、700℃までは同様な結果が得られたが、70
0℃を超えるとガラスとの反応により導電率が高くなっ
た。図3に、ガラス基板上に設けられたLaNiO
における膜厚と波長600nmの光に対する透光率との
関係を破線でグラフとして示す。ガラス基板について
も、石英基板と同様な結果が得られた。
Example 2 In Example 1, a glass substrate was used instead of the quartz substrate.
i single crystal substrate, Al2O3Single crystal substrate, SiC ceramic
Substrate, Al2O3Ceramic substrate, Si 3N4C
Lamix substrate and stainless steel substrate were used respectively.
Except for the above, the same operation as in Example 1 was performed. Si single crystal base
Plate, Al2O3Single crystal substrate, SiC ceramic substrate,
Al2O 3Ceramic substrate, Si3N4Ceramics
In the case of a substrate and a stainless steel substrate, the results are the same as in Fig. 1.
was gotten. For glass substrates, the softening point is low.
Therefore, similar results were obtained up to 700 ° C.
If the temperature exceeds 0 ° C, the conductivity with the glass increases due to the reaction with the glass.
Was. FIG. 3 shows LaNiO provided on a glass substrate.3film
Between the film thickness and the transmittance for light having a wavelength of 600 nm
The relationship is shown as a graph with a broken line. About glass substrate
Also, the same result as that of the quartz substrate was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 石英基板上に形成した本発明のLaNiO
膜における温度と表面抵抗との関係を示すグラフ。
FIG. 1 shows a LaNiO 3 of the present invention formed on a quartz substrate.
4 is a graph showing the relationship between temperature and surface resistance of a film.

【図2】 石英基板上に形成した本発明のLaNiO
膜の各膜厚における波長との透光率との関係を示すグラ
フ。
FIG. 2 LaNiO 3 of the present invention formed on a quartz substrate
7 is a graph showing the relationship between wavelength and light transmittance at each film thickness of the film.

【図3】 石英基板上及びガラス基板上にそれぞれ形成
した本発明のLaNiO膜における膜厚と透光率との
関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the film thickness and the light transmittance of the LaNiO 3 film of the present invention formed on a quartz substrate and a glass substrate, respectively.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年4月6日(2000.4.6)[Submission Date] April 6, 2000 (200.4.6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0004】[0004]

【課題を解決するための手段】本発明者らは、透明導電
性薄膜について鋭意研究を重ねた結果、ペロブスカイト
型構造を有するLaNiO薄膜は、良好な導電性を有
し、膜厚を変えることにより、広い波長領域にわたって
透光率を調整することができること、そして、この透明
導電性薄膜は、ランタン塩とニッケル塩と有機バインダ
ーを溶解させてなる水性塗布液を基材上に塗布し、酸素
雰囲気下、特定の温度で焼成し、この際膜厚が所定の範
囲になるように調整することにより製造しうることを見
出し、この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies on the transparent conductive thin film, the present inventors have found that a LaNiO 3 thin film having a perovskite structure has good conductivity and that the thickness thereof can be changed. Thus, the light transmittance can be adjusted over a wide wavelength range, and this transparent conductive thin film is formed by applying an aqueous coating solution obtained by dissolving a lanthanum salt, a nickel salt, and an organic binder onto a base material, It has been found that it can be manufactured by baking at a specific temperature in an atmosphere and adjusting the film thickness at this time to be within a predetermined range, and based on this finding, the present invention has been completed.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】すなわち、本発明は、LaNiOの組成
を有するペロブスカイト型構造の金属酸化物からなり、
20〜800℃の温度における体積抵抗率が2×10
−5Ω・m以下、又は表面抵抗が300Ω/□以下であ
ることを特徴とする透明導電性薄膜を提供するものであ
る。前記透明導電性薄膜は、本発明に従えば、ランタン
塩とニッケル塩と水溶性有機バインダーを溶解させた水
溶液からなる塗布液を調製したのち、基材上に該塗布液
を塗布し、次いで酸素雰囲気中において、500〜80
0℃の温度で焼成し、20〜800℃の温度における体
積抵抗率が2×10−5Ω・m以下、又は表面抵抗が3
00Ω/□以下になるように調整された膜厚のLaNi
の組成を有するペロブスカイト型構造の金属酸化物
からなる薄膜を形成させることにより、製造することが
できる。
That is, the present invention comprises a metal oxide having a perovskite structure having a composition of LaNiO 3 ,
Volume resistivity at a temperature of 20 to 800 ° C. is 2 × 10
The present invention provides a transparent conductive thin film characterized by having a surface resistance of −5 Ω · m or less or a surface resistance of 300 Ω / □ or less. According to the present invention, the transparent conductive thin film is prepared by preparing a coating solution composed of an aqueous solution in which a lanthanum salt, a nickel salt and a water-soluble organic binder are dissolved, and then coating the coating solution on a substrate, and then applying oxygen. 500-80 in the atmosphere
It is fired at a temperature of 0 ° C. and has a volume resistivity of 2 × 10 −5 Ω · m or less or a surface resistance of 3 at a temperature of 20 to 800 ° C.
LaNi with a film thickness adjusted to be less than 00Ω / □
It can be manufactured by forming a thin film made of a metal oxide having a perovskite structure having a composition of O 3 .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【発明の実施の形態】本発明の透明導電性薄膜は、La
NiOで表わされ、かつペロブスカイト型構造を有す
る金属酸化物からなるものであるが、このペロブスカイ
ト型構造とは、CaTiO(灰チタン石)で代表され
るABOの組成をもつ化合物にみられる、立方晶系若
しくはそれが少し歪んだ正方晶系、斜方晶系、単斜晶
系、六方晶系の結晶構造を意味する。本発明の透明導電
性薄膜は、従来のITO薄膜と異なり、室温(20℃)
から800℃の高温に至る温度範囲において、体積抵抗
率が2×10−5Ω・m以下、又は表面抵抗が300Ω
/□以下という優れた導電性を示す。そして、本発明の
透明導電性薄膜においては、膜厚により、導電性及び透
光性を調整することができ、かつ、透光性については、
300〜800nmの波長域において、実質上同一の透
光率とすることができる。また、膜厚を変えることによ
り、該透光率を1〜95%の範囲で調整することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The transparent conductive thin film of the present invention is La
It is composed of a metal oxide represented by NiO 3 and having a perovskite structure. This perovskite structure refers to a compound having the composition of ABO 3 represented by CaTiO 3 (perovskite). Cubic, or a slightly distorted tetragonal, orthorhombic, monoclinic, or hexagonal crystal structure. The transparent conductive thin film of the present invention differs from the conventional ITO thin film at room temperature (20 ° C.).
In the temperature range from to a high temperature of 800 ° C., the volume resistivity is 2 × 10 −5 Ω · m or less, or the surface resistance is 300 Ω.
/ Excellent conductivity of not more than / □. And, in the transparent conductive thin film of the present invention, the conductivity and the light transmission can be adjusted by the film thickness, and the light transmission is
In the wavelength range of 300 to 800 nm, substantially the same light transmittance can be obtained. The light transmittance can be adjusted in the range of 1 to 95% by changing the film thickness.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/288 H01L 21/288 Z // B32B 9/00 B32B 9/00 A (72)発明者 劉 芸 佐賀県鳥栖市宿町字野々下807番地1 九 州工業技術研究所内 (72)発明者 秋山 守人 佐賀県鳥栖市宿町字野々下807番地1 九 州工業技術研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/288 H01L 21/288 Z // B32B 9/00 B32B 9/00 A (72) Inventor Liu Gei 807-1, Nonoshita, Sukumachi, Tosu-shi, Saga Prefecture Inside the Kyushu Institute of Technology (72) Inventor Morito Akiyama 807-1, Nonoshita, Sukumachi, Tosu-shi, Saga Prefecture Inside the Kyushu Institute of Technology

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 LaNiOの組成を有するペロブスカ
イト型構造の金属酸化物からなる透明導電性薄膜。
1. A transparent conductive thin film made of a metal oxide having a perovskite structure having a composition of LaNiO 3 .
【請求項2】 所定の導電性及び透光性を示すように調
整された膜厚を有する請求項1記載の透明導電性薄膜。
2. The transparent conductive thin film according to claim 1, having a film thickness adjusted so as to exhibit predetermined conductivity and translucency.
【請求項3】 20〜800℃の温度において、体積抵
抗率が2×10−5Ω・m以下、又は表面抵抗が300
Ω/□以下である請求項1又は2記載の透明導電性薄
膜。
3. At a temperature of 20 to 800 ° C., the volume resistivity is 2 × 10 −5 Ω · m or less, or the surface resistance is 300
3. The transparent conductive thin film according to claim 1, which has a resistivity of Ω / □ or less.
【請求項4】 300〜800nmの波長域において、
該透光率を1〜95%の範囲に調整された実質上同一の
透光率を有する請求項1、2又は3記載の透明導電性薄
膜。
4. In a wavelength range of 300 to 800 nm,
4. The transparent conductive thin film according to claim 1, wherein the light transmittance is adjusted to fall within a range of 1 to 95% and have substantially the same light transmittance.
【請求項5】 ランタン塩とニッケル塩と水溶性有機バ
インダーを溶解させた水溶液からなる塗布液を調製した
のち、基材上に該塗布液を塗布し、次いで酸素雰囲気中
において、500〜800℃の温度で焼成することを特
徴とするLaNiOの組成を有するペロブスカイト型
構造の金属酸化物からなる透明導電性薄膜の製造方法。
5. After preparing a coating solution comprising an aqueous solution in which a lanthanum salt, a nickel salt and a water-soluble organic binder are dissolved, the coating solution is applied on a substrate, and then at 500 to 800 ° C. in an oxygen atmosphere. A method for producing a transparent conductive thin film comprising a metal oxide having a perovskite structure having a composition of LaNiO 3 , wherein the transparent conductive thin film has a composition of LaNiO 3 .
【請求項6】 塗布液が、LaNiO換算濃度0.0
5〜5.0モル%のものである請求項5記載の透明導電
性薄膜の製造方法。
6. A coating solution having a LaNiO 3 conversion concentration of 0.0
The method for producing a transparent conductive thin film according to claim 5, wherein the amount is 5 to 5.0 mol%.
JP11026139A 1999-02-03 1999-02-03 Transparent conductive thin film and method for producing the same Expired - Lifetime JP3079262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11026139A JP3079262B2 (en) 1999-02-03 1999-02-03 Transparent conductive thin film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11026139A JP3079262B2 (en) 1999-02-03 1999-02-03 Transparent conductive thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000226216A true JP2000226216A (en) 2000-08-15
JP3079262B2 JP3079262B2 (en) 2000-08-21

Family

ID=12185227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11026139A Expired - Lifetime JP3079262B2 (en) 1999-02-03 1999-02-03 Transparent conductive thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3079262B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277412A (en) * 2004-03-23 2005-10-06 Fujitsu Ltd METHOD OF FORMING LaNiO3 CONDUCTIVE LAYER, FERROELECTRIC DEVICE WITH LaNiO3 LAYER, AND PRECURSOR FORMING SOLUTION
US7790486B2 (en) * 2003-09-19 2010-09-07 Samsung Electro-Mechanics Co., Ltd. Light emitting device and method of manufacturing the same
CN115084318A (en) * 2022-07-18 2022-09-20 西南科技大学 Inorganic perovskite type LaNiO 3 Preparation and application of visible photoconductive film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024502B2 (en) 2013-02-13 2016-11-16 三菱マテリアル株式会社 Composition for forming LaNiO3 thin film and method for forming LaNiO3 thin film using this composition
JP5754539B2 (en) 2013-10-15 2015-07-29 三菱マテリアル株式会社 Composition for forming LaNiO3 thin film and method for forming LaNiO3 thin film using this composition
KR102099970B1 (en) 2013-11-01 2020-04-10 삼성전자주식회사 Transparent conductive thin film
CN109269662B (en) * 2018-09-19 2020-12-01 北京科技大学 Rare earth nickel-based perovskite oxide thermistor material applied to infrared detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790486B2 (en) * 2003-09-19 2010-09-07 Samsung Electro-Mechanics Co., Ltd. Light emitting device and method of manufacturing the same
US8435813B2 (en) 2003-09-19 2013-05-07 Samsung Electronics Co., Ltd. Light emitting device and method of manufacturing the same
JP2005277412A (en) * 2004-03-23 2005-10-06 Fujitsu Ltd METHOD OF FORMING LaNiO3 CONDUCTIVE LAYER, FERROELECTRIC DEVICE WITH LaNiO3 LAYER, AND PRECURSOR FORMING SOLUTION
CN115084318A (en) * 2022-07-18 2022-09-20 西南科技大学 Inorganic perovskite type LaNiO 3 Preparation and application of visible photoconductive film
CN115084318B (en) * 2022-07-18 2023-06-09 西南科技大学 Inorganic perovskite type LaNiO 3 Preparation and application of visible photoconductive film

Also Published As

Publication number Publication date
JP3079262B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
JP5469107B2 (en) Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles
JP3079262B2 (en) Transparent conductive thin film and method for producing the same
JP6094422B2 (en) Temperature sensor
JP3127245B1 (en) Multilayer electronic material, method of manufacturing the same, sensor and storage device using the same
CN110395714B (en) Antimony doped SnO 2 Preparation method of @ carbon nanotube composite electrothermal film
JP5401142B2 (en) Method for producing transparent conductive substrate, precursor solution used therefor, and method for handling the same
JP3834339B2 (en) Transparent conductive film and method for producing the same
JP4480809B2 (en) Indium oxide thin film and manufacturing method thereof
JP2002075062A (en) Transparent conductive film
JP4237861B2 (en) Highly monocrystalline zinc oxide thin film and manufacturing method
TWI314760B (en) Method for manufacturing transparent conductive thin films
JP2002117912A (en) Semiconductor electrode, manufacturing method for semiconductor electrode and solar cell
JPH0586605B2 (en)
KR100568458B1 (en) Humidity sensor using nanostructured-multilayered Al-doped ZnO:TiO2 thin films
Ohya et al. Electrical properties of p–n contact with oxide semiconductor thin films fabricated by liquid phase method
JPS61285609A (en) Lead titanate ferrodielectric thin film and manufacture thereof
JPH0784274A (en) Formation of ito thin film having preferential orientation
CN102465272A (en) Multielement composite transparent conductive film and preparation method and application thereof
CN116425514A (en) Multi-element oxide doped indium oxide-based target material and preparation method and application thereof
CN108727068B (en) Preparation method of thin NTC thermistor
JPS6196610A (en) Transparent conductive film and formation thereof
JP6094421B2 (en) Temperature sensor
JP2887308B2 (en) Manufacturing method of stabilized zirconia thin film
JP6077318B2 (en) Electroless plating bath, method for producing molybdenum trioxide film, and method for producing chemical sensor
JP2527419B2 (en) Thick film pyroelectric element and manufacturing method thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term