JP2000223793A - Semiconductor optical amplifier and optical gate switch - Google Patents

Semiconductor optical amplifier and optical gate switch

Info

Publication number
JP2000223793A
JP2000223793A JP11020343A JP2034399A JP2000223793A JP 2000223793 A JP2000223793 A JP 2000223793A JP 11020343 A JP11020343 A JP 11020343A JP 2034399 A JP2034399 A JP 2034399A JP 2000223793 A JP2000223793 A JP 2000223793A
Authority
JP
Japan
Prior art keywords
layer
optical amplifier
semiconductor optical
active layer
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11020343A
Other languages
Japanese (ja)
Inventor
Katsuyuki Imoto
克之 井本
Ryoji Suzuki
良治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP11020343A priority Critical patent/JP2000223793A/en
Publication of JP2000223793A publication Critical patent/JP2000223793A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1082Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region with a special facet structure, e.g. structured, non planar, oblique
    • H01S5/1085Oblique facets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2213Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on polyimide or resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5009Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement being polarisation-insensitive

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor optical amplifier whose switching speed is fast and whose polarization dependence is small and to provide an optical gate switch. SOLUTION: On a substrate 20, an active layer 34 whose cross sectional shape is nearly rectangular is covered with an upper-part clad layer 35 whose cross sectional shape is nearly inverted U-shaped. The upper-part clad layer 35 is covered with an oxide layer 26 and a polymer layer 27 which are at a low permittivity and at a low refractive index. As a result, a parasitic capacitance becomes small, and a high-speed switching characteristic is obtained. In addition, since the distribution of the light intensity in the thickness direction and the widthwise direction of the active layer 34 can be made nearly uniformly large, the polarization dependence of a semiconductor optical amplifier can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体光増幅器及
び光ゲートスイッチに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor optical amplifier and an optical gate switch.

【0002】[0002]

【従来の技術】波長多重伝送を用いた高速、大容量、長
距離伝送方式及びそれに用いられる光デバイスの研究開
発が活発に行われている。この種の方式を実現する上で
光増幅器や光スイッチ、波長選択フィルタなどは必須の
光デバイスである。
2. Description of the Related Art Research and development of a high-speed, large-capacity, long-distance transmission system using wavelength division multiplexing transmission and an optical device used therefor have been actively conducted. To realize this type of system, an optical amplifier, an optical switch, a wavelength selection filter, and the like are essential optical devices.

【0003】そこで、これらの光デバイスを実現するた
めの基本的な光素子として半導体光増幅器が見直される
ようになってきた。
Accordingly, semiconductor optical amplifiers have been reviewed as basic optical elements for realizing these optical devices.

【0004】図6は従来の埋め込み型の半導体光増幅器
の外観斜視図である。
FIG. 6 is an external perspective view of a conventional embedded semiconductor optical amplifier.

【0005】この半導体光増幅器は、InP(n+ )基
板1の上にInP(n)の下部クラッド層2が形成さ
れ、この下部クラッド層2の上に略矩形断面形状の活性
層3が形成され、活性層3を覆うようにInP(p)の
上部クラッド層4、InGaAsPコンタクト層5、I
nP(p)埋め込み層6及びInP(n)埋め込み層7
で埋め込まれた積層体構造を有している。
In this semiconductor optical amplifier, a lower cladding layer 2 of InP (n) is formed on an InP (n + ) substrate 1, and an active layer 3 having a substantially rectangular cross section is formed on the lower cladding layer 2. Then, an upper cladding layer 4 of InP (p), an InGaAsP contact layer 5,
nP (p) buried layer 6 and InP (n) buried layer 7
Has a laminated structure embedded therein.

【0006】積層体8の上面には上部電極9が形成さ
れ、積層体8の下面には下部電極10が形成されてい
る。積層体8の両端面には無反射コーティング層11−
1、11−2が形成されている。
An upper electrode 9 is formed on the upper surface of the laminate 8, and a lower electrode 10 is formed on the lower surface of the laminate 8. Antireflection coating layers 11-
1, 11-2 are formed.

【0007】この半導体光増幅器は、積層体8の無反射
コーティング層11−1、11−2に図示しない光ファ
イバを突き合わせて、上部電極9と下部電極10との間
にしきい値電流以下の順方向電流(矢印12方向)を電
流注入端子13から注入し、一方の光ファイバから信号
光を入射させて活性層3内を伝搬させ、他方の光ファイ
バから増幅された信号光を取り出すようになっている。
In this semiconductor optical amplifier, an optical fiber (not shown) is abutted against the anti-reflection coating layers 11-1 and 11-2 of the laminated body 8, and an order of the threshold current or less is applied between the upper electrode 9 and the lower electrode 10. A directional current (in the direction of arrow 12) is injected from the current injection terminal 13, a signal light is made incident from one optical fiber to propagate in the active layer 3, and the amplified signal light is extracted from the other optical fiber. ing.

【0008】図7は図6に示した半導体光増幅器を用い
て構成した1入力2出力のゲート型光スイッチの従来例
を示すブロック図である。
FIG. 7 is a block diagram showing a conventional example of a 1-input 2-output gate type optical switch constituted by using the semiconductor optical amplifier shown in FIG.

【0009】この光スイッチは、光分岐回路16の入力
ポート17に入射した矢印15−1方向の信号光を出力
ポート18−1方向を経て矢印15−2方向に出力させ
るか、あるいは出力ポート18−2を経て矢印15−3
方向に出力させるか切り換えるようになっている。
This optical switch outputs the signal light in the direction of arrow 15-1 incident on the input port 17 of the optical branch circuit 16 in the direction of arrow 15-2 via the output port 18-1 or outputs the signal light in the direction of arrow 15-2. Arrow 15-3 through -2
The output is switched in the direction.

【0010】矢印15−2方向か矢印15−3方向のい
ずれの方向に切り換えて出力させるかの操作は、出力ポ
ート18−1(18−2)の途中に挿入された半導体光
増幅器14−1(14−2)の途中に挿入された半導体
光増幅器14−1(14−2)をオンかオフのいずれか
に制御することで行うことができる。オン、オフの制御
は、半導体光増幅器14−1(14−2)への順方向電
流の注入の有無によって行うことができる。
The operation of switching between the direction of arrow 15-2 and the direction of arrow 15-3 for output is performed by the semiconductor optical amplifier 14-1 inserted in the middle of the output port 18-1 (18-2). This can be performed by controlling the semiconductor optical amplifier 14-1 (14-2) inserted in the middle of (14-2) to either ON or OFF. ON / OFF control can be performed based on whether or not a forward current is injected into the semiconductor optical amplifier 14-1 (14-2).

【0011】ところで、従来の埋め込み型の半導体光増
幅器を用いて構成したゲート型光スイッチのスイッチン
グ速度は1nsec程度であり、さらに高速のスイッチ
ング速度を実現するためには、図8に示すようなリッジ
型構造の半導体光増幅器が臨まれる。
The switching speed of a conventional gate type optical switch using a buried semiconductor optical amplifier is about 1 nsec. To realize a higher switching speed, a ridge as shown in FIG. A semiconductor optical amplifier having a die structure is provided.

【0012】図8(a)は本発明者が先に提案したリッ
ジ型構造の半導体光増幅器の正面図であり、図8(a)
は図8(b)のA−A線断面図である。
FIG. 8A is a front view of a semiconductor optical amplifier having a ridge-type structure proposed by the present inventor, and FIG.
FIG. 9 is a sectional view taken along line AA of FIG.

【0013】この半導体光増幅器は、InP(n+ )基
板20上にスラブ状のInP(n)下部クラッド層2
1、InGaAsP活性層22を順次形成し、InGa
AsP活性層22の上にリッジ状の略矩形断面の上部ク
ラッド層23を設け、その上部クラッド層23の側面及
びInGaAsP活性層22の上面を酸化層26及びポ
リマ層27で覆い、上部クラッド層23の上にInGa
AsPのコンタクト層24及び上部電極25を形成した
ものである。
In this semiconductor optical amplifier, a slab-like InP (n) lower cladding layer 2 is formed on an InP (n + ) substrate 20.
1. InGaAsP active layer 22 is sequentially formed, and InGa
A ridge-shaped upper cladding layer 23 having a substantially rectangular cross section is provided on the AsP active layer 22, and the side surface of the upper cladding layer 23 and the upper surface of the InGaAsP active layer 22 are covered with an oxide layer 26 and a polymer layer 27. InGa
The contact layer 24 and the upper electrode 25 of AsP are formed.

【0014】この半導体光増幅器は、この基板20の下
面に形成された下部電極29と、上部電極25との間に
端子32からしきい値電流以下の順方向電流を矢印33
方向に注入する構成となっている。
In this semiconductor optical amplifier, a forward current less than a threshold current is supplied from a terminal 32 between a lower electrode 29 formed on the lower surface of the substrate 20 and an upper electrode 25 by an arrow 33.
The injection is performed in the direction.

【0015】この構成では上部クラッド層23の真下の
InGaAsP活性層22内へ光を入射させることによ
り、上部クラッド層23の真下のInGaAsP活性層
22内へ光が集中的に閉じ込められて伝搬し、信号光が
増幅される。埋め込み層が酸化層26及びポリマ層27
の低誘電率層で構成されているので、寄生容量を小さく
することができ、高速のスイッチング速度を得ることが
可能である。
In this configuration, light is incident on the InGaAsP active layer 22 directly below the upper cladding layer 23, whereby the light is intensively confined and propagated into the InGaAsP active layer 22 directly below the upper cladding layer 23, The signal light is amplified. The buried layer is an oxide layer 26 and a polymer layer 27
, The parasitic capacitance can be reduced, and a high switching speed can be obtained.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、図6に
示した従来の半導体光増幅器、図8に示した半導体光増
幅器及び図7に示したゲート型光スイッチには以下のよ
うな問題があることがわかった。
However, the conventional semiconductor optical amplifier shown in FIG. 6, the semiconductor optical amplifier shown in FIG. 8, and the gate type optical switch shown in FIG. 7 have the following problems. I understood.

【0017】埋め込み型半導体光増幅器を用いて構成し
たゲート型光スイッチは偏波依存性が極めて少ないが、
スイッチング速度が遅い。逆にリッジ型半導体光増幅器
を用いたゲート型光スイッチはスイッチング速度は速い
が偏波依存性がある。
The gate type optical switch formed by using the buried type semiconductor optical amplifier has very little polarization dependence.
Slow switching speed. Conversely, a gate type optical switch using a ridge type semiconductor optical amplifier has a high switching speed but polarization dependence.

【0018】そこで、本発明の目的は、上記課題を解決
し、スイッチング速度が速く、偏波依存性が少ない半導
体光増幅器及び光ゲートスイッチを提供することにあ
る。
An object of the present invention is to solve the above-mentioned problems and to provide a semiconductor optical amplifier and an optical gate switch having a high switching speed and a small polarization dependency.

【0019】[0019]

【課題を解決するための手段】上記目的を達成するため
に本発明の半導体光増幅器は、下面に下部電極が形成さ
れた化合物半導体基板の上面に、スラブ状の下部クラッ
ド層が形成され、下部クラッド層の上面に略矩形断面形
状の活性層が形成され、活性層を覆うように略逆凹字断
面形状の上部クラッド層が形成され、上部クラッド層の
上にコンタクト層を介して上部電極が形成され、上部ク
ラッド層の側面及び上面に酸化層及びポリマ層が順次形
成された積層体の両端面に無反射コーティング層が形成
され、上部電極と下部電極との間にしきい値電流以下の
電流を流すことにより、積層体の一方の端面から活性層
内に入射された信号光が活性層内を伝搬する際に増幅さ
れ、増幅された信号光が積層体の他方の端面から出射さ
れるものである。
In order to achieve the above object, a semiconductor optical amplifier according to the present invention comprises a slab-shaped lower cladding layer formed on an upper surface of a compound semiconductor substrate having a lower electrode formed on a lower surface. An active layer having a substantially rectangular cross-sectional shape is formed on the upper surface of the clad layer, an upper clad layer having a substantially inverted concave cross-sectional shape is formed so as to cover the active layer, and an upper electrode is formed on the upper clad layer via a contact layer. An anti-reflection coating layer is formed on both end surfaces of a laminate in which an oxide layer and a polymer layer are sequentially formed on the side and top surfaces of the upper clad layer, and a current between the upper electrode and the lower electrode is equal to or less than a threshold current. Flowing, the signal light incident on the active layer from one end face of the laminate is amplified when propagating in the active layer, and the amplified signal light is emitted from the other end face of the laminate. It is.

【0020】上記構成に加え本発明の半導体光増幅器の
下部クラッド層と活性層との間に、下部クラッド層の屈
折率より高く、活性層の屈折率より低い屈折率を有する
バッファ層が形成されているのが好ましい。
In addition to the above configuration, a buffer layer having a refractive index higher than the refractive index of the lower clad layer and lower than the refractive index of the active layer is formed between the lower clad layer and the active layer of the semiconductor optical amplifier of the present invention. Is preferred.

【0021】上記構成に加え本発明の半導体光増幅器の
活性層及び上部クラッド層が積層体の一方の端面から他
方の端面に向かって曲線状あるいは折れ線状に形成され
ているのが好ましい。
In addition to the above structure, it is preferable that the active layer and the upper clad layer of the semiconductor optical amplifier of the present invention are formed in a curved or polygonal line from one end face to the other end face of the laminate.

【0022】上記構成に加え本発明の半導体光増幅器の
活性層及び上部クラッド層が積層体の一方の端面から他
方の端面に向かってS字部あるいは斜め直線部を含んだ
パターン状に形成されているのが好ましい。
In addition to the above structure, the active layer and the upper cladding layer of the semiconductor optical amplifier of the present invention are formed in a pattern including an S-shaped portion or an oblique linear portion from one end face to the other end face of the laminate. Is preferred.

【0023】上記構成に加え本発明の半導体光増幅器の
酸化層にはSiO2 が用いられ、ポリマ層にはポリイミ
ドが用いられているのが好ましい。
In addition to the above structure, it is preferable that SiO 2 is used for the oxide layer of the semiconductor optical amplifier of the present invention, and polyimide is used for the polymer layer.

【0024】上記構成に加え本発明の半導体光増幅器の
活性層及び上部クラッド層の幅は、信号光の入射側及び
出射側で端面に向かってテーパ状に細く形成されている
のが好ましい。
In addition to the above structure, the width of the active layer and the upper cladding layer of the semiconductor optical amplifier of the present invention is preferably tapered toward the end face on the signal light incident side and the signal light emitting side.

【0025】上記構成に加え本発明の半導体光増幅器の
活性層はバルク構造あるいは多重量子井戸構造のいずれ
かであるのが好ましい。
In addition to the above configuration, the active layer of the semiconductor optical amplifier of the present invention preferably has either a bulk structure or a multiple quantum well structure.

【0026】上記構成に加え本発明の半導体光増幅器の
上部電極は信号光の入射側と出射側との間で電極分離溝
で二つに分離されており、各上部電極に電流を独立に注
入することによって信号光の増幅利得が制御されてもよ
い。
In addition to the above configuration, the upper electrode of the semiconductor optical amplifier of the present invention is divided into two by an electrode separation groove between the incident side and the outgoing side of the signal light, and a current is independently injected into each upper electrode. By doing so, the amplification gain of the signal light may be controlled.

【0027】上記構成に加え本発明の半導体光増幅器の
上部電極の出射側には逆方向電圧が印加されると増幅さ
れた信号光の雑音が低減する可飽和吸収部が形成されて
いるのが好ましい。
In addition to the above configuration, a saturable absorber is formed on the emission side of the upper electrode of the semiconductor optical amplifier according to the present invention so that the noise of the amplified signal light is reduced when a reverse voltage is applied. preferable.

【0028】上記構成に加え本発明の半導体光増幅器の
信号光の入射端面及び出射端面が10°以内の角度に斜
めに形成されているのが好ましい。
In addition to the above configuration, it is preferable that the input end face and the output end face of the signal light of the semiconductor optical amplifier of the present invention are formed obliquely at an angle of 10 ° or less.

【0029】本発明の光ゲートスイッチは、上記構成に
加え半導体光増幅器がN入力M出力(N≧1、M≧2)
の光分岐回路の出力ポートに挿入して構成されているも
のである。
According to the optical gate switch of the present invention, in addition to the above configuration, the semiconductor optical amplifier has N inputs and M outputs (N ≧ 1, M ≧ 2).
Of the optical branch circuit of FIG.

【0030】本発明によれば、略矩形断面形状の活性層
が略逆凹字断面形状の上部クラッド層で覆われて略矩形
断面形状となり、上部クラッド層が低誘電率、低屈折率
の酸化層及びポリマ層で覆われているので、寄生容量が
小さくなり、高速のスイッチング特性が得られる。ま
た、活性層の厚さ方向及び幅方向の光強度分布の広がり
を略一様に大きくすることができるので、偏波依存性を
抑えることができる。
According to the present invention, an active layer having a substantially rectangular cross section is covered with an upper cladding layer having a substantially inverted concave cross section to form a substantially rectangular cross section, and the upper cladding layer has a low dielectric constant and a low refractive index. Since it is covered with the layer and the polymer layer, the parasitic capacitance is reduced, and high-speed switching characteristics can be obtained. Further, since the spread of the light intensity distribution in the thickness direction and the width direction of the active layer can be substantially uniformly increased, the polarization dependence can be suppressed.

【0031】[0031]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0032】図1(a)は本発明の半導体光増幅器の一
実施の形態を示す正面図であり、図1(b)は図1
(a)のB−B線断面図、図1(c)は図1(a)のC
−C線断面図である。
FIG. 1A is a front view showing an embodiment of a semiconductor optical amplifier according to the present invention, and FIG.
1A is a cross-sectional view taken along the line BB, and FIG.
FIG. 4 is a sectional view taken along line C of FIG.

【0033】本半導体光増幅器は、波長1.5μm帯の
光増幅器であり、InP(n+ )基板20の上にスラブ
状のInP(n)下部クラッド層21が形成され、下部
クラッド層21の上に略矩形断面形状の活性層(InG
aAsP層)34が形成され、活性層34の上に活性層
34を覆って略矩形断面形状となるように略逆凹字断面
形状の上部クラッド層(InP(p)層)35が形成さ
れ、上部クラッド層35の上にInGaAsPコンタク
ト層24を介して上部電極25が形成され、上部クラッ
ド層35の側面及び上面と、下部クラッド層21の上面
とに酸化層(SiO2 、あるいはSiO2 にP、B、F
等のドーパントを少なくとも一種類含んだもの)26及
びポリマ層(ポリイミド、あるいはF添加ポリイミド
等)27を形成した積層体の両端面に無反射コーティン
グ層30−1、30−2が形成されたものである。
The present semiconductor optical amplifier is an optical amplifier having a wavelength band of 1.5 μm. A slab-shaped InP (n) lower cladding layer 21 is formed on an InP (n + ) substrate 20. An active layer (InG
an upper cladding layer (InP (p) layer) 35 having a substantially inverted concave cross-sectional shape is formed on the active layer 34 so as to cover the active layer 34 and have a substantially rectangular cross-sectional shape. An upper electrode 25 is formed on the upper cladding layer 35 via an InGaAsP contact layer 24, and an oxide layer (SiO 2 or SiO 2 on the side and upper surfaces of the upper cladding layer 35 and the lower cladding layer 21) is formed. , B, F
And a non-reflective coating layer 30-1, 30-2 formed on both end surfaces of a laminate formed with at least one kind of dopant such as) and a polymer layer (polyimide, F-added polyimide, etc.) 27. It is.

【0034】上部クラッド層35の厚さ及び幅は、活性
層34の厚さ及び幅と略同程度かそれより大きい値であ
るのが好ましい。InP(n+ )基板20の下面には下
部電極29が形成され、上部電極25と、下部電極29
との間には端子32からしきい値電流以下の電流が矢印
33方向に流れ、積層体の一方の端面(図では左側端
面)から矢印40−1方向に活性層34内に入射された
信号光は活性層34内を伝搬することによって増幅さ
れ、積層体の他方の端面(図では右側端面)から矢印4
0−2方向に出射される。
The thickness and width of the upper cladding layer 35 are preferably substantially the same as or larger than the thickness and width of the active layer 34. A lower electrode 29 is formed on the lower surface of the InP (n + ) substrate 20, and an upper electrode 25 and a lower electrode 29 are formed.
Between the terminal 32 and the terminal, a current equal to or less than the threshold current flows in the direction of arrow 33, and the signal is incident on the active layer 34 in the direction of arrow 40-1 from one end face (left end face in the figure) of the laminate. The light is amplified by propagating in the active layer 34, and the light from the other end face (the right end face in the figure) of the arrow 4
The light is emitted in the 0-2 direction.

【0035】ここで、同図(b)に示すように、活性層
34及び上部クラッド層35が積層体の一方の端面から
他方の端面へ一直線状に形成されておらず、折れ線状に
形成されているのが本発明の特徴の一つである。
Here, as shown in FIG. 3B, the active layer 34 and the upper clad layer 35 are not formed linearly from one end face to the other end face of the laminate, but are formed in a polygonal line shape. This is one of the features of the present invention.

【0036】すなわち、本半導体光増幅器は、入射端側
の活性層と出射端側の活性層との間のずれSが、好まし
くは光ファイバの直径(125μm)と同程度の大きさ
かそれよりも大きくなるように構成されている。このよ
うなずれSをとることにより、入射側の光ファイバ(図
示せず)から出射した信号光が活性層34以外(下部ク
ラッド層、上部クラッド層、酸化層及びポリマ層)に漏
れて伝搬し、出射側の光ファイバ(図示せず)へ漏れ込
むことを抑制することができる。
That is, in the present semiconductor optical amplifier, the shift S between the active layer on the incident end side and the active layer on the output end side is preferably equal to or larger than the diameter (125 μm) of the optical fiber. It is configured to be large. By taking such a shift S, the signal light emitted from the optical fiber (not shown) on the incident side leaks and propagates to portions other than the active layer 34 (the lower clad layer, the upper clad layer, the oxide layer, and the polymer layer). In addition, it is possible to suppress leakage into the optical fiber (not shown) on the emission side.

【0037】37−1及び37−2は、スポットサイズ
変換部であり、活性層34及び上部クラッド層35共に
端面側に向かってテーパ状に先細り形状にすることによ
り、活性層34の厚さ方向及び幅方向の光強度分布の広
がりを端面側に向かって大きくすることができる。
Reference numerals 37-1 and 37-2 denote spot size converters, and the active layer 34 and the upper cladding layer 35 are tapered toward the end face to form a taper in the thickness direction of the active layer 34. In addition, the spread of the light intensity distribution in the width direction can be increased toward the end face.

【0038】すなわち、従来の埋め込み型の半導体光増
幅器は活性層34のみが端面側に向かってテーパ状に先
細りしているだけであり、厚さ方向及び幅方向の光強度
分布をより大きく広げるためにはスポットサイズ変換部
37−1、37−2の伝搬長を長くしなければならなか
った。
That is, in the conventional buried type semiconductor optical amplifier, only the active layer 34 is only tapered toward the end face side, so that the light intensity distribution in the thickness direction and the width direction can be further expanded. , The propagation length of the spot size conversion units 37-1 and 37-2 had to be increased.

【0039】これに対して本発明の半導体光増幅器は上
部クラッド層35が略逆凹字断面形状であり、テーパ状
に先細りしているので、活性層34の厚さ方向及び幅方
向の光強度分布の広がり度合いが略等しく、より短い伝
搬長で拡大することができる。このため光ファイバとの
結合をより偏波依存性の少ない状態で実現することがで
きる。
On the other hand, in the semiconductor optical amplifier of the present invention, since the upper cladding layer 35 has a substantially inverted concave cross section and is tapered, the light intensity in the thickness direction and the width direction of the active layer 34 is increased. The degree of spread of the distribution is substantially equal, and the distribution can be expanded with a shorter propagation length. For this reason, the coupling with the optical fiber can be realized with less polarization dependence.

【0040】38−1及び38−2は平行な直線部であ
り、39は斜め直線部である。すなわち、積層体の一方
の端面から他方の端面に向かって直線部38−1、38
−2、39は折れ線状に形成されている。斜め直線部3
9の長さ及び傾斜角を大きくすることにより、ずれSを
大きくすることができる。
Reference numerals 38-1 and 38-2 denote parallel linear portions, and reference numeral 39 denotes an oblique linear portion. That is, the straight portions 38-1 and 38-1 extend from one end face of the laminate to the other end face.
-2 and 39 are formed in a polygonal line shape. Diagonal straight section 3
The shift S can be increased by increasing the length and the inclination angle of 9.

【0041】図1に示した半導体光増幅器の特徴は、略
矩形断面形状の活性層を略逆凹字断面形状の上部クラッ
ド層35で覆って全体を略矩形断面形状にし、周囲を低
誘電率で低屈折率の酸化層26とポリマ層27とで覆っ
て全体として略矩形断面形状とすることにより、寄生容
量を小さくすることができるので、光ゲート回路を構成
した場合に高速のスイッチング特性を達成することがで
きる。また、活性層34内への信号光の閉じ込め特性が
向上し、高利得特性を得ることができる。さらに偏波依
存性も埋め込み型と同程度かそれよりも向上し、かつ、
低コスト化が図れる。また、リッジ型と比較すると、利
得特性で優れる他、偏波依存性が小さく、光ファイバと
の接続性の面でも優れている。
The semiconductor optical amplifier shown in FIG. 1 is characterized in that the active layer having a substantially rectangular cross section is covered with an upper cladding layer 35 having a substantially inverted concave cross section, and the whole is made to have a substantially rectangular cross section. In this case, the parasitic capacitance can be reduced by covering the entire surface with the oxide layer 26 having a low refractive index and the polymer layer 27 to have a substantially rectangular cross-sectional shape. Can be achieved. Further, the characteristic of confining the signal light in the active layer 34 is improved, and a high gain characteristic can be obtained. Furthermore, the polarization dependence is about the same as or better than the embedded type, and
Cost reduction can be achieved. Compared with the ridge type, it has excellent gain characteristics, small polarization dependence, and excellent connectivity with optical fibers.

【0042】図2(a)は本発明の半導体光増幅器の他
の実施の形態を示す正面図であり、図2(b)は図2
(a)のD−D線断面図、図2(c)は図2(a)のE
−E線断面図である。なお、図1に示した実施の形態と
同様の部材には共通の符号を用いた。
FIG. 2A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, and FIG.
FIG. 2A is a cross-sectional view taken along line DD, and FIG.
FIG. 4 is a sectional view taken along line -E. The same reference numerals are used for members similar to those of the embodiment shown in FIG.

【0043】図1に示した実施の形態との相違点は、半
導体光増幅器は、下部クラッド層21と活性層34との
間に、屈折率が下部クラッド層21の屈折率よりも高
く、活性層34の屈折率よりも低いバッファ層36を形
成した点と、活性層34及び上部クラッド層35が積層
体の一方の端面から他方の端面に向かって曲線状(S字
状)に形成されている点である。
The difference from the embodiment shown in FIG. 1 is that, in the semiconductor optical amplifier, the refractive index between the lower cladding layer 21 and the active layer 34 is higher than that of the lower The point where the buffer layer 36 having a refractive index lower than that of the layer 34 is formed, and the active layer 34 and the upper cladding layer 35 are formed in a curved shape (S shape) from one end face to the other end face of the laminate. It is a point.

【0044】このバッファ層36は、スポットサイズ変
換部37−1、37−2での屈折率と厚さを変えること
により、活性層34内の厚さ方向及び幅方向の光強度分
布の広がり量を略等しくすることができる。バッファ層
36は偏波依存性を小さく抑えるのに有効な層である。
なお、バッファ層36の厚さは下部クラッド層21の厚
さと同程度か薄いのが好ましい。
The buffer layer 36 changes the refractive index and thickness at the spot size converters 37-1 and 37-2 so that the light intensity distribution spread in the thickness direction and the width direction in the active layer 34. Can be made substantially equal. The buffer layer 36 is an effective layer for suppressing polarization dependence.
The thickness of the buffer layer 36 is preferably equal to or smaller than the thickness of the lower cladding layer 21.

【0045】図3(a)は本発明の半導体光増幅器の他
の実施の形態を示す正面図であり、図3(b)は図3
(a)のF−F線断面図、図3(c)は図3(a)のG
−G線断面図である。
FIG. 3A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, and FIG.
3A is a cross-sectional view taken along line FF, and FIG.
It is a G line sectional view.

【0046】図1に示した実施の形態との相違点は、信
号光の入射端面及び出射端面を角度θだけ斜めに形成し
た点である。
The difference from the embodiment shown in FIG. 1 lies in that the incident end face and the output end face of the signal light are formed obliquely by an angle θ.

【0047】角度θとしては2°から10°の範囲が好
ましい。入射端面及び出射端面を傾斜させた理由は、端
面での信号光の反射光が半導体増幅器内や光ファイバ
(図示せず)内へ戻ってくるのを防止するためである。
The angle θ is preferably in the range of 2 ° to 10 °. The reason why the input end face and the output end face are inclined is to prevent the reflected light of the signal light at the end face from returning to the inside of the semiconductor amplifier or the optical fiber (not shown).

【0048】このような半導体光増幅器においても図1
に示した半導体光増幅器と同様な効果が得られる。
In such a semiconductor optical amplifier, FIG.
The same effects as those of the semiconductor optical amplifier shown in FIG.

【0049】図4(a)は本発明の半導体光増幅器の他
の実施の形態を示す正面図であり、図4(b)は図4
(a)のH−H線断面図、図4(c)は図4(a)のI
−I線断面図である。
FIG. 4A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, and FIG.
FIG. 4A is a cross-sectional view taken along line HH, and FIG.
FIG. 2 is a sectional view taken along line I.

【0050】図1に示した実施の形態との相違点は、上
部電極25に電極分離溝42を形成して二つの上部電極
25−1、25−2に分離した点である。
The difference from the embodiment shown in FIG. 1 is that an electrode separation groove 42 is formed in the upper electrode 25 to separate the upper electrode 25 into two upper electrodes 25-1 and 25-2.

【0051】本半導体光増幅器は、各上部電極25−
1、25−2に、独立にしきい値電流以下の順方向電流
k1、Ik2を端子32−1、32−2に注入することに
よって信号光の増幅利得を前段と後段とで調節、制御で
きるようになっている。
In the present semiconductor optical amplifier, each upper electrode 25-
To 1,25-2, adjust the amplification gain of the signal light at the front and rear stages by injecting the following order threshold current direction current I k1, I k2 to the terminal 32-1 and 32-2 independently control I can do it.

【0052】図5(a)は本発明の半導体光増幅器の他
の実施の形態を示す正面図であり、図5(b)は図5
(a)のJ−J線断面図、図5(c)は図5(a)のK
−K線断面図である。
FIG. 5A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, and FIG.
5A is a cross-sectional view taken along the line JJ, and FIG.
FIG. 4 is a sectional view taken along line -K.

【0053】この半導体光増幅器は、上部電極25を電
極分離溝42によって二つの上部電極25−1、25−
2に分離し、一方の端子32−1にはしきい値電流以下
の順方向電流Ik を注入して光増幅部を構成し、他方の
端子32−2には逆方向電圧−Vk を印加することによ
って可飽和吸収部を構成し、前段の光増幅部で増幅され
た信号光に含まれている雑音成分を低減させるようにし
たものである。
In this semiconductor optical amplifier, the upper electrode 25 is divided into two upper electrodes 25-1 and 25- by an electrode separating groove 42.
Separated into two, the one terminal 32-1 constitutes the optical amplifier by injecting a forward current I k below the threshold current, the other terminal 32-2 reverse voltage -V k The saturable absorption section is formed by applying the voltage, and a noise component included in the signal light amplified by the optical amplification section at the preceding stage is reduced.

【0054】可飽和吸収部は、活性層34以外のクラッ
ド層21、35、バッファ層36や基板20内等に漏れ
て伝搬する不要光の低減にも有効に作用し、結果的に高
消光比、低雑音特性を実現することができる。
The saturable absorber effectively functions to reduce unnecessary light leaking and propagating into the cladding layers 21 and 35 other than the active layer 34, the buffer layer 36 and the substrate 20. , Low noise characteristics can be realized.

【0055】本発明は、上記実施の形態に限定されな
い。例えば、活性層にはバルク構造以外に、多重量子井
戸構造を用いてもよい。このような構造によってより偏
波依存性の小さい半導体光増幅器を実現することができ
る。
The present invention is not limited to the above embodiment. For example, a multiple quantum well structure may be used for the active layer other than the bulk structure. With such a structure, a semiconductor optical amplifier having less polarization dependence can be realized.

【0056】多重量子井戸構造の例として、例えば7周
期構造が挙げられる。信号光の波長帯を1.5μm帯と
すると、上記7周期構造は井戸層(膜厚約7nm、In
GaAs層)と、バリア層(膜厚約8nm、InGaA
sP層)の7周期構造である。また、このような活性層
の上下に導波路層を形成することによりモードフィール
ド径を広げるようにしてもよい。例えば、上側の導波路
層としてバンドギャップ波長が1.15μmで厚さが約
0.05μmのものを形成し、下側の導波路層としてバ
ンドギャップ波長が1.15μmで厚さが約0.15μ
mのものを形成することにより、より大きなモードフィ
ールド径を得ることができる。なお、活性層の厚さと幅
とは、低偏波特性を実現する上で略等しい値が好ましい
(すなわち略矩形断面形状とするのが好ましい)。
As an example of the multiple quantum well structure, for example, a seven-period structure is given. Assuming that the wavelength band of the signal light is the 1.5 μm band, the seven-period structure has a well layer (about 7 nm thick, In
A GaAs layer) and a barrier layer (about 8 nm thick, InGaAs).
(sP layer). Further, the mode field diameter may be increased by forming waveguide layers above and below such an active layer. For example, an upper waveguide layer having a bandgap wavelength of 1.15 μm and a thickness of about 0.05 μm is formed, and a lower waveguide layer having a bandgap wavelength of 1.15 μm and a thickness of about 0.5 μm. 15μ
By forming m, a larger mode field diameter can be obtained. It is to be noted that the thickness and width of the active layer are preferably substantially equal for realizing low polarization characteristics (that is, it is preferable to have a substantially rectangular cross-sectional shape).

【0057】半導体基板20にはInP以外にGaAs
を用いてもよい。
The semiconductor substrate 20 is made of GaAs in addition to InP.
May be used.

【0058】図1〜図5に示した半導体光増幅器を図7
に示すようなN入力M出力(N≧1、M≧2)の光分岐
回路の出力ポートに挿入すれば、高消光比、低クロスト
ーク特性を有するN入力M出力の光ゲートスイッチを実
現することができる。
The semiconductor optical amplifier shown in FIGS.
By inserting it into the output port of an N-input M-output (N ≧ 1, M ≧ 2) optical branching circuit as shown in (1), an N-input M-output optical gate switch having a high extinction ratio and low crosstalk characteristics can be realized. be able to.

【0059】以上において本発明によれば、 (1) 略矩形断面形状の活性層が略矩形断面形状となるよ
うに上部クラッド層で覆い、上部クラッド層の外周に低
誘電率、低屈折率の酸化層及びポリマ層を形成すること
により、従来の埋め込み型の半導体光増幅器より高速の
スイッチング特性を有する光ゲート回路を実現すること
ができる。また、偏波依存性も同程度か少ない特性を実
現することができ、この点に関してはリッジ型半導体光
増幅器より優れた特性を得ることができる。さらに活性
層内への光の閉じ込め特性に優れているので高利得特性
を得ることができる。
As described above, according to the present invention, (1) an active layer having a substantially rectangular cross-sectional shape is covered with an upper cladding layer so as to have a substantially rectangular cross-sectional shape, and the outer periphery of the upper cladding layer has a low dielectric constant and a low refractive index. By forming the oxide layer and the polymer layer, it is possible to realize an optical gate circuit having switching characteristics faster than a conventional embedded semiconductor optical amplifier. In addition, it is possible to realize a characteristic having the same or less polarization dependence, and in this regard, it is possible to obtain characteristics superior to the ridge-type semiconductor optical amplifier. Further, since the characteristics of confining light in the active layer are excellent, high gain characteristics can be obtained.

【0060】(2) 略矩形断面形状の活性層及び上部クラ
ッド層が積層体の一方の端面から他方の端面へ一直線状
に形成されていないので、このような半導体光増幅器を
用いて光ゲート回路を構成すると、高消光比の光ゲート
スイッチを実現することができる。
(2) Since the active layer and the upper cladding layer having a substantially rectangular cross section are not formed in a straight line from one end face to the other end face of the laminate, an optical gate circuit using such a semiconductor optical amplifier is used. With this configuration, an optical gate switch having a high extinction ratio can be realized.

【0061】(3) 略矩形断面形状の活性層及び上部クラ
ッド層の幅が、信号光の入射側及び出射側で先細りのテ
ーパ状に形成されているので、活性層の厚さ方向及び幅
方向の光強度分布の広がりを略一様に大きくすることが
でき、偏波依存性の少ない光ファイバとの結合を実現す
ることができる。
(3) Since the widths of the active layer and the upper cladding layer having a substantially rectangular cross-sectional shape are tapered on the incident side and the output side of the signal light, the thickness direction and the width direction of the active layer Of the light intensity distribution can be increased substantially uniformly, and coupling with an optical fiber having little polarization dependence can be realized.

【0062】(4) 上記(1) の構成により、活性層内への
信号光の閉じ込め特性を向上させて伝搬させることがで
きるので、上記(2) の構成とすることにより、さらに高
い消光比特性を得ることができる。
(4) According to the configuration (1), the signal light can be propagated with improved confinement characteristics in the active layer. Therefore, by adopting the configuration (2), the extinction ratio can be further increased. Properties can be obtained.

【0063】[0063]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0064】スイッチング速度が速く、偏波依存性が少
ない半導体光増幅器及び光ゲートスイッチの提供を実現
することができる。
It is possible to provide a semiconductor optical amplifier and an optical gate switch having a high switching speed and a small polarization dependence.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の半導体光増幅器の一実施の形
態を示す正面図であり、(b)は(a)のB−B線断面
図、(c)は(a)のC−C線断面図である。
1A is a front view showing an embodiment of a semiconductor optical amplifier according to the present invention, FIG. 1B is a cross-sectional view taken along the line BB of FIG. 1A, and FIG. FIG. 4 is a sectional view taken along line C of FIG.

【図2】(a)は本発明の半導体光増幅器の他の実施の
形態を示す正面図であり、(b)は(a)のD−D線断
面図、(c)は(a)のE−E線断面図である。
2A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, FIG. 2B is a sectional view taken along the line DD of FIG. 2A, and FIG. 2C is a sectional view of FIG. It is EE sectional drawing.

【図3】(a)は本発明の半導体光増幅器の他の実施の
形態を示す正面図であり、(b)は(a)のF−F線断
面図、(c)は(a)のG−G線断面図である。
3A is a front view showing another embodiment of the semiconductor optical amplifier of the present invention, FIG. 3B is a sectional view taken along line FF of FIG. 3A, and FIG. 3C is a sectional view of FIG. It is GG sectional drawing.

【図4】(a)は本発明の半導体光増幅器の他の実施の
形態を示す正面図であり、(b)は(a)のH−H線断
面図、(c)は(a)のI−I線断面図である。
4A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, FIG. 4B is a sectional view taken along line HH of FIG. 4A, and FIG. FIG. 2 is a sectional view taken along line II.

【図5】(a)は本発明の半導体光増幅器の他の実施の
形態を示す正面図であり、(b)は(a)のJ−J線断
面図、(c)は(a)のK−K線断面図である。
5A is a front view showing another embodiment of the semiconductor optical amplifier according to the present invention, FIG. 5B is a sectional view taken along line JJ of FIG. 5A, and FIG. 5C is a sectional view of FIG. It is KK sectional drawing.

【図6】従来の埋め込み型の半導体光増幅器の外観斜視
図である。
FIG. 6 is an external perspective view of a conventional embedded semiconductor optical amplifier.

【図7】図6に示した半導体光増幅器を用いて構成した
1入力2出力のゲート型光スイッチの従来例を示すブロ
ック図である。
7 is a block diagram showing a conventional example of a 1-input 2-output gate type optical switch configured using the semiconductor optical amplifier shown in FIG. 6;

【図8】(a)は本発明者が先に提案したリッジ型構造
の半導体光増幅器の正面図であり、(a)は(b)のA
−A線断面図である。
8A is a front view of a ridge-type semiconductor optical amplifier proposed by the present inventor, and FIG. 8A is a front view of FIG.
FIG. 4 is a cross-sectional view taken along a line A.

【符号の説明】[Explanation of symbols]

20 基板(半導体基板) 26 酸化層 27 ポリマ層 34 活性層 35 上部クラッド層(クラッド層) Reference Signs List 20 substrate (semiconductor substrate) 26 oxide layer 27 polymer layer 34 active layer 35 upper cladding layer (cladding layer)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H079 AA02 BA01 CA05 CA09 DA16 DA25 EA03 EA07 EA08 EB04 HA04 HA13 HA15 KA11 KA18 5F073 AA22 AA35 AA61 AA74 AB22 AB25 AB28 BA03 CA12 EA14 EA22 EA27 EA29  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H079 AA02 BA01 CA05 CA09 DA16 DA25 EA03 EA07 EA08 EB04 HA04 HA13 HA15 KA11 KA18 5F073 AA22 AA35 AA61 AA74 AB22 AB25 AB28 BA03 CA12 EA14 EA22 EA27 EA29

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 下面に下部電極が形成された化合物半導
体基板の上面に、スラブ状の下部クラッド層が形成さ
れ、該下部クラッド層の上面に略矩形断面形状の活性層
が形成され、該活性層を覆うように略逆凹字断面形状の
上部クラッド層が形成され、上記上部クラッド層の上に
コンタクト層を介して上部電極が形成され、該上部クラ
ッド層の側面及び上面に酸化層及びポリマ層が順次形成
された積層体の両端面に無反射コーティング層が形成さ
れ、上記上部電極と上記下部電極との間にしきい値電流
以下の電流を流すことにより、上記積層体の一方の端面
から上記活性層内に入射された信号光が上記活性層内を
伝搬する際に増幅され、増幅された信号光が上記積層体
の他方の端面から出射されることを特徴とする半導体光
増幅器。
1. A slab-shaped lower cladding layer is formed on an upper surface of a compound semiconductor substrate having a lower electrode formed on a lower surface, and an active layer having a substantially rectangular cross section is formed on an upper surface of the lower cladding layer. An upper clad layer having a substantially inverted concave cross section is formed so as to cover the layer, an upper electrode is formed on the upper clad layer via a contact layer, and an oxide layer and a polymer are formed on the side and upper surfaces of the upper clad layer. An anti-reflection coating layer is formed on both end faces of the laminated body in which the layers are sequentially formed, and a current equal to or less than a threshold current is passed between the upper electrode and the lower electrode, so that one end face of the laminated body is formed. A semiconductor optical amplifier, wherein the signal light incident on the active layer is amplified when propagating in the active layer, and the amplified signal light is emitted from the other end face of the stacked body.
【請求項2】 上記下部クラッド層と上記活性層との間
に、上記下部クラッド層の屈折率より高く、上記活性層
の屈折率より低い屈折率を有するバッファ層が形成され
ている請求項1に記載の半導体光増幅器。
2. A buffer layer having a refractive index higher than that of the lower cladding layer and lower than that of the active layer is formed between the lower cladding layer and the active layer. 3. The semiconductor optical amplifier according to 1.
【請求項3】 上記活性層及び上記上部クラッド層が上
記積層体の一方の端面から他方の端面に向かって曲線状
あるいは折れ線状に形成されている請求項1または2に
記載の半導体光増幅器。
3. The semiconductor optical amplifier according to claim 1, wherein the active layer and the upper clad layer are formed in a curved shape or a polygonal shape from one end face to the other end face of the laminate.
【請求項4】 上記活性層及び上記上部クラッド層が上
記積層体の一方の端面から他方の端面に向かってS字部
あるいは斜め直線部を含んだパターン状に形成されてい
る請求項3に記載の半導体光増幅器。
4. The laminate according to claim 3, wherein the active layer and the upper cladding layer are formed in a pattern including an S-shaped portion or an oblique linear portion from one end face to the other end face of the laminate. Semiconductor optical amplifier.
【請求項5】 上記酸化層にはSiO2 が用いられ、上
記ポリマ層にはポリイミドが用いられている請求項1か
ら4のいずれかに記載の半導体光増幅器。
5. The semiconductor optical amplifier according to claim 1, wherein SiO 2 is used for said oxide layer, and polyimide is used for said polymer layer.
【請求項6】 上記活性層及び上記上部クラッド層の幅
は、信号光の入射側及び出射側で端面に向かってテーパ
状に細く形成されている請求項1から5のいずれかに記
載の半導体光増幅器。
6. The semiconductor according to claim 1, wherein the widths of the active layer and the upper clad layer are tapered toward an end face on the signal light incident side and the signal light incident side. Optical amplifier.
【請求項7】 上記活性層はバルク構造あるいは多重量
子井戸構造のいずれかである請求項1から6のいずれか
に記載の半導体光増幅器。
7. The semiconductor optical amplifier according to claim 1, wherein said active layer has a bulk structure or a multiple quantum well structure.
【請求項8】 上記上部電極は信号光の入射側と出射側
との間で電極分離溝で二つに分離されており、各上部電
極に電流を独立に注入することによって信号光の増幅利
得が制御される請求項1から7のいずれかに記載の半導
体光増幅器。
8. The signal light amplification gain is obtained by independently injecting a current into each upper electrode, wherein the upper electrode is separated by an electrode separation groove between an incident side and an output side of the signal light. The semiconductor optical amplifier according to claim 1, wherein is controlled.
【請求項9】 上記上部電極の出射側には逆方向電圧が
印加されると増幅された信号光の雑音が低減する可飽和
吸収部が形成されている請求項8に記載の半導体光増幅
器。
9. The semiconductor optical amplifier according to claim 8, wherein a saturable absorbing portion is formed on an emission side of said upper electrode to reduce noise of amplified signal light when a reverse voltage is applied.
【請求項10】 上記信号光の入射端面及び出射端面が
10°以内の角度に斜めに形成されている請求項1から
9のいずれかに記載の半導体光増幅器。
10. The semiconductor optical amplifier according to claim 1, wherein an input end face and an output end face of the signal light are formed obliquely at an angle of 10 ° or less.
【請求項11】 請求項1から10のいずれかに記載の
半導体光増幅器がN入力M出力(N≧1、M≧2)の光
分岐回路の出力ポートに挿入して構成されている光ゲー
トスイッチ。
11. An optical gate comprising the semiconductor optical amplifier according to claim 1 inserted into an output port of an N-input M-output (N ≧ 1, M ≧ 2) optical branch circuit. switch.
JP11020343A 1999-01-28 1999-01-28 Semiconductor optical amplifier and optical gate switch Pending JP2000223793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11020343A JP2000223793A (en) 1999-01-28 1999-01-28 Semiconductor optical amplifier and optical gate switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11020343A JP2000223793A (en) 1999-01-28 1999-01-28 Semiconductor optical amplifier and optical gate switch

Publications (1)

Publication Number Publication Date
JP2000223793A true JP2000223793A (en) 2000-08-11

Family

ID=12024504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11020343A Pending JP2000223793A (en) 1999-01-28 1999-01-28 Semiconductor optical amplifier and optical gate switch

Country Status (1)

Country Link
JP (1) JP2000223793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001172A1 (en) * 2004-06-29 2006-01-05 Anritsu Corporation Waveguide type optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001172A1 (en) * 2004-06-29 2006-01-05 Anritsu Corporation Waveguide type optical device
JP2006047956A (en) * 2004-06-29 2006-02-16 Anritsu Corp Waveguide type optical device
US7330613B2 (en) 2004-06-29 2008-02-12 Anritsu Corporation Waveguide type optical device

Similar Documents

Publication Publication Date Title
US5013113A (en) Lossless non-interferometric electro-optic III-V index-guided-wave switches and switching arrays
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
JP2656598B2 (en) Semiconductor optical switch and semiconductor optical switch array
US5004447A (en) Low loss semiconductor directional coupler switches including gain method of switching light using same
US7627212B2 (en) Optical integrated device
JP2817602B2 (en) Semiconductor Mach-Zehnder modulator and method of manufacturing the same
JP2000223793A (en) Semiconductor optical amplifier and optical gate switch
Hernandez-Gil et al. A tunable MQW-DBR laser with a monolithically integrated InGaAsP/InP directional coupler switch
JP2982835B2 (en) Semiconductor optical modulator
US5537497A (en) Optimized electrode geometries for digital optical switches
US5247592A (en) Semiconductor optical device and array of the same
US5394491A (en) Semiconductor optical switch and array of the same
EP1314333B1 (en) Integrated optical router and wavelength convertor matrix
JP4005705B2 (en) Broadband semiconductor optical amplifier
CA2267018C (en) Optical wavelength converter with active waveguide
JP2000114671A (en) Ridge type semiconductor optical amplifier
EP1059554B1 (en) Operating method for a semiconductor optical device
JP2000124554A (en) High-extinction ratio semiconductor optical amplifier and optical switch using it
JPH086079A (en) Semiconductor optical modulator
JP2806426B2 (en) Light switch
US7336855B1 (en) Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide
JP3441385B2 (en) Optical coupling device
JP2000188444A (en) Semiconductor optical amplifier array
JP2000214497A (en) Light amplifying gate circuit and optical gate switch and wavelength selective filter which use the circuit
JPH06222406A (en) Semiconductor optical device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060228