JP2000223423A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JP2000223423A
JP2000223423A JP11021708A JP2170899A JP2000223423A JP 2000223423 A JP2000223423 A JP 2000223423A JP 11021708 A JP11021708 A JP 11021708A JP 2170899 A JP2170899 A JP 2170899A JP 2000223423 A JP2000223423 A JP 2000223423A
Authority
JP
Japan
Prior art keywords
thermocouple
temperature
semiconductor manufacturing
protection pipe
heat block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11021708A
Other languages
Japanese (ja)
Inventor
Kenji Eto
謙次 江藤
Genichi Kanazawa
元一 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP11021708A priority Critical patent/JP2000223423A/en
Publication of JP2000223423A publication Critical patent/JP2000223423A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing equipment, where a gap is restrained from occurring between a heat block fixed to a temperature detection work and a thermocouple for eliminating the influence of gas interposed between the thermocouple and the thermal block, so as to stably measure the inner temperature of a processing chamber provided inside the semiconductor manufacturing equipment, and a processed product can be improved in quality. SOLUTION: The tip of a thermocouple 25 is embedded in a thermal block 19 fixed to a temperature detection work 16, the thermocouple 25 is housed in a protective pipe 26, and the tip of the protective pipe 26 is hermetically fixed to the thermal block 19, and the thermocouple 25 is reinforced with the protective pipe 26, so that a temperature detecting device is not required to be enhanced in strength and rigidity and can be lessened in diameter, and even if there is thermal expansion difference between the thermal block and the thermocouple, gaps are restrained from occurring between them, so that the temperature of the work 16 can be detected stably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマCVD装置
等、真空容器である反応室を具備する半導体製造装置、
特に反応室の内部の温度を検出する温度検出部の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus having a reaction chamber which is a vacuum vessel, such as a plasma CVD apparatus.
In particular, the present invention relates to an improvement in a temperature detection unit that detects a temperature inside a reaction chamber.

【0002】[0002]

【従来の技術】半導体製造装置の1つであるプラズマC
VD装置等の処理装置に於いては、真空容器である反応
室での処理中の温度を検出する必要がある。特に、前記
プラズマCVD装置では被処理基板を反応室内部に装入
し、反応性ガスを導入し更に加熱するか或はプラズマを
発生させることにより反応ガスを分離させ前記被処理基
板上に薄膜の生成処理等を行う。斯かる処理に於いて、
被処理基板温度が成膜速度等処理状態に大きく影響する
為、被処理基板が載置される基板載置台にヒータを埋設
し、該ヒータを利用し基板載置台を介して前記被処理基
板を温度制御している。
2. Description of the Related Art Plasma C, one of semiconductor manufacturing apparatuses, is used.
In a processing apparatus such as a VD apparatus, it is necessary to detect a temperature during processing in a reaction chamber which is a vacuum vessel. In particular, in the plasma CVD apparatus, a substrate to be processed is charged into a reaction chamber, and a reactive gas is introduced and further heated or a plasma is generated to separate a reactive gas and form a thin film on the substrate to be processed. Perform generation processing and the like. In such processing,
Since the temperature of the substrate to be processed greatly affects the processing state such as the film forming rate, a heater is embedded in the substrate mounting table on which the substrate to be processed is mounted, and the substrate is processed through the substrate mounting table using the heater. Temperature controlled.

【0003】先ず図2に於いて、プラズマCVD装置の
概略を説明する。
First, referring to FIG. 2, an outline of a plasma CVD apparatus will be described.

【0004】真空容器1は真空容器本体2と該真空容器
本体2を気密に閉塞する天井蓋3で構成され、該天井蓋
3の下面には絶縁材4を介して上部ヒータ5、シャワー
プレートを兼ねる上部電極(カソード)6が設けられて
いる。前記天井蓋3、絶縁材4を貫通し前記上部ヒータ
5に達するプロセスガス導入口7が設けられ、該プロセ
スガス導入口7と前記天井蓋3とは絶縁材8により絶縁
されている。前記上部ヒータ5と前記上部電極6との間
にはガス溜め9が形成され、該ガス溜め9と前記プロセ
スガス導入口7とは連通孔10により連通され、前記ガ
ス溜め9と真空容器1内部とはシャワー孔11により連
通している。
[0004] The vacuum vessel 1 comprises a vacuum vessel body 2 and a ceiling lid 3 for hermetically closing the vacuum vessel body 2. An upper heater 5 and a shower plate are provided on the lower surface of the ceiling lid 3 via an insulating material 4. An upper electrode (cathode) 6 that also serves as an upper electrode is provided. A process gas inlet 7 penetrating the ceiling lid 3 and the insulating material 4 and reaching the upper heater 5 is provided. The process gas inlet 7 and the ceiling lid 3 are insulated by an insulating material 8. A gas reservoir 9 is formed between the upper heater 5 and the upper electrode 6, and the gas reservoir 9 and the process gas inlet 7 are communicated with each other through a communication hole 10, and the gas reservoir 9 and the inside of the vacuum vessel 1 are formed. Are connected to each other by a shower hole 11.

【0005】前記真空容器本体2の底部を貫通して下部
電極ユニット13が昇降可能に設けられている。
A lower electrode unit 13 is provided so as to be able to move up and down through the bottom of the vacuum vessel body 2.

【0006】図示しないシリンダ等により昇降座14が
昇降可能に支持され、該昇降座14に中空の支柱15が
立設され、該支柱15の上端に下部ヒータ16が固着さ
れ、該下部ヒータ16の上面に被処理基板の受載台を兼
ねる下部電極(アノード)17が固着されている。前記
昇降座14を熱電対18が気密に貫通し、該熱電対18
の上端が熱ブロック19を介して前記下部ヒータ16に
埋設されている。又、前記支柱15と真空容器本体2の
底面間にはベローズ20が設けられ、下部電極ユニット
13の貫通部は気密となっている。
An elevating seat 14 is supported by a cylinder or the like (not shown) so as to be able to move up and down. A hollow column 15 is erected on the elevating column 14, and a lower heater 16 is fixed to an upper end of the column 15. A lower electrode (anode) 17 also serving as a receiving table for the substrate to be processed is fixed to the upper surface. A thermocouple 18 airtightly penetrates the elevating seat 14, and the thermocouple 18
Is buried in the lower heater 16 via a heat block 19. A bellows 20 is provided between the support 15 and the bottom surface of the vacuum vessel main body 2, and a penetrating portion of the lower electrode unit 13 is airtight.

【0007】上記プラズマCVD装置に於ける基板処理
について略述する。
[0007] Substrate processing in the above plasma CVD apparatus will be briefly described.

【0008】前記上部ヒータ5、下部ヒータ16により
前記真空容器1内が所要温度に加熱され、図示しないゲ
ートバルブを介して被処理基板が搬入され前記下部電極
17に乗載されると、前記プロセスガス導入口7より反
応ガスが導入され、反応ガスは前記連通孔10、ガス溜
め9、シャワー孔11を介して前記真空容器1内に分散
導入される。
When the inside of the vacuum vessel 1 is heated to a required temperature by the upper heater 5 and the lower heater 16 and a substrate to be processed is carried in through a gate valve (not shown) and mounted on the lower electrode 17, the process is performed. A reaction gas is introduced from a gas inlet 7, and the reaction gas is dispersed and introduced into the vacuum vessel 1 through the communication hole 10, the gas reservoir 9, and the shower hole 11.

【0009】前記上部電極6と前記下部電極17間に高
周波電力が印加され、プラズマが生成され、前記被処理
基板に所要の薄膜が生成される。
High-frequency power is applied between the upper electrode 6 and the lower electrode 17, plasma is generated, and a required thin film is generated on the substrate to be processed.

【0010】成膜時の基板温度は成膜品質に強く影響す
るので、前記熱電対18により前記下部ヒータ16の温
度が検出され、前記下部電極17を介して被処理基板の
温度が検出される様になっており、前記熱電対18の検
出結果を基に図示しない温度制御器により、前記下部ヒ
ータ16の発熱状態が制御される。
Since the temperature of the substrate during film formation strongly affects the film formation quality, the temperature of the lower heater 16 is detected by the thermocouple 18, and the temperature of the substrate to be processed is detected via the lower electrode 17. The heat generation state of the lower heater 16 is controlled by a temperature controller (not shown) based on the detection result of the thermocouple 18.

【0011】図3に於いて、前記熱電対18の上端部、
前記昇降座14の貫通部を説明する。
In FIG. 3, the upper end of the thermocouple 18
The penetrating portion of the lift seat 14 will be described.

【0012】前記熱電対18の上端はアルミ合金製の前
記熱ブロック19に圧入され、該熱ブロック19はアル
ミ合金製の前記下部ヒータ16にカシメ止されている。
前記熱電対18の昇降座14の貫通箇所下面にはシール
フランジ22が設けられ、該シールフランジ22にはシ
ールリング23が嵌設され、前記熱電対18を気密にシ
ールしている。而して、前記下部ヒータ16の熱は前記
熱ブロック19を介して前記熱電対18が感知する様に
なっている。
The upper end of the thermocouple 18 is pressed into the heat block 19 made of aluminum alloy, and the heat block 19 is swaged to the lower heater 16 made of aluminum alloy.
A seal flange 22 is provided on the lower surface of the thermocouple 18 at the penetrating portion of the elevating seat 14, and a seal ring 23 is fitted to the seal flange 22 to hermetically seal the thermocouple 18. Thus, the heat of the lower heater 16 is detected by the thermocouple 18 via the heat block 19.

【0013】[0013]

【発明が解決しようとする課題】前記熱電対18は上端
が前記熱ブロック19を介して前記下部ヒータ16に支
持され、又下端が前記シールリング23を介して前記シ
ールフランジ22に支持される2点支持である。この
為、前記熱電対18の取扱い時に容易に変形しない程度
の剛性が必要となり、前記熱電対18の直径は5mm前
後のものが使用されていた。
The thermocouple 18 has an upper end supported by the lower heater 16 via the heat block 19 and a lower end supported by the seal flange 22 via the seal ring 23. Point support. For this reason, the thermocouple 18 needs to have a rigidity that is not easily deformed during handling, and the thermocouple 18 has a diameter of about 5 mm.

【0014】上記した様に前記下部ヒータ16、熱ブロ
ック19はアルミ合金製であるが、一方前記熱電対18
にはインコロイ[Ni(72%)、Fe(8%)、Mn
(1%)、C(0.15%)、Cr(16%)、Cu
(0.5%)、Si(0.5%)、S(0.015
%)]が使用されている。前記アルミ合金とインコロイ
とは熱膨張率が異なり、この為前記下部ヒータ16の昇
温降温を繰返すと、前記熱ブロック19と熱電対18間
に隙間を生じる。熱膨張率はアルミ合金>インコロイで
ある為、昇温時の熱ブロック19と熱電対18間の隙間
は前記熱電対18の直径が大きい程隙間は大きくなる。
この隙間は、加工によって零にすることはできない。隙
間の存在は、熱伝達に大きく影響し、隙間の増減により
熱伝達率が変化し、安定した温度測定が難しいという問
題があった。
As described above, the lower heater 16 and the heat block 19 are made of an aluminum alloy.
Include Incoloy [Ni (72%), Fe (8%), Mn
(1%), C (0.15%), Cr (16%), Cu
(0.5%), Si (0.5%), S (0.015
%)] Is used. The aluminum alloy and Incoloy have different coefficients of thermal expansion. Therefore, when the temperature of the lower heater 16 is repeatedly increased and decreased, a gap is formed between the heat block 19 and the thermocouple 18. Since the coefficient of thermal expansion is aluminum alloy> incoloy, the gap between the heat block 19 and the thermocouple 18 at the time of temperature increase becomes larger as the diameter of the thermocouple 18 becomes larger.
This gap cannot be made zero by machining. The existence of the gap greatly affects the heat transfer, and the heat transfer coefficient changes due to the increase and decrease of the gap, and there is a problem that stable temperature measurement is difficult.

【0015】更に、真空容器1内は大気圧状態、減圧状
態と変化し、前記熱ブロック19と熱電対18間の隙間
に気体が存在する場合と存在しない場合があり、隙間に
気体の有無によっても熱伝達率は変化し、安定した温度
測定を難しくする要因の1つとなっていた。
Further, the inside of the vacuum vessel 1 changes between an atmospheric pressure state and a depressurized state, and a gas may or may not be present in the gap between the heat block 19 and the thermocouple 18, and depending on the presence or absence of gas in the gap. However, the heat transfer coefficient also changed, which was one of the factors that made it difficult to measure a stable temperature.

【0016】本発明は斯かる実情に鑑み、熱電対と熱ブ
ロック間に間隙の発生を抑制し、又熱電対と熱ブロック
間に介在する気体の影響を除去し、半導体製造装置の処
理室内に於ける安定した温度測定を可能とし、処理品質
の向上を図るものである。
In view of the above circumstances, the present invention suppresses the generation of a gap between a thermocouple and a heat block, and removes the influence of gas interposed between the thermocouple and the heat block, so that the present invention can be used in a processing chamber of a semiconductor manufacturing apparatus. The purpose of the present invention is to enable stable temperature measurement and to improve processing quality.

【0017】[0017]

【課題を解決するための手段】本発明は、被温度検出体
に固着される熱ブロックに熱電対の先端部を埋設し、該
熱電対を保護パイプ内に収納し、該保護パイプの先端を
前記熱ブロックに気密に固着した温度検出装置を具備し
た半導体製造装置に係り、又被温度検出体が気密な反応
室に設けられ被処理基板を加熱する下部ヒータであり、
前記保護パイプは前記反応室外に突出し、反応室外と連
通する半導体製造装置に係り、又前記熱電対径は温度検
出に必要な最小径である半導体製造装置に係るものであ
り、更に又前記保護パイプ内を気密とした半導体製造装
置に係り、前記熱電対は保護パイプに補強されているの
で、強度剛性は必要なく、細径にし得る。従って、熱ブ
ロックと熱電対間で熱膨張率の違いがあっても間隙の発
生が抑制され、安定した温度検出が可能となる。
According to the present invention, a tip of a thermocouple is buried in a heat block fixed to a temperature detection object, the thermocouple is housed in a protection pipe, and a tip of the protection pipe is attached to the protection pipe. The present invention relates to a semiconductor manufacturing apparatus having a temperature detection device hermetically fixed to the heat block, and a lower heater for heating a substrate to be processed, wherein a temperature detection target is provided in an airtight reaction chamber,
The protection pipe relates to a semiconductor manufacturing apparatus that protrudes outside the reaction chamber and communicates with the outside of the reaction chamber, and the thermocouple diameter relates to a semiconductor manufacturing apparatus that is a minimum diameter necessary for temperature detection. According to the semiconductor manufacturing apparatus in which the inside is airtight, the thermocouple is reinforced by a protection pipe, so that strength and rigidity are not required and the diameter can be reduced. Therefore, even if there is a difference in the coefficient of thermal expansion between the heat block and the thermocouple, the generation of a gap is suppressed, and stable temperature detection becomes possible.

【0018】[0018]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態を説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本実施の形態の要部を示しており、
図1中、図3中で示したものと同様のものには同符号を
付し説明を省略する。
FIG. 1 shows a main part of the present embodiment.
1, the same components as those shown in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted.

【0020】熱ブロック19中に細径の熱電対25を鋳
込み、該熱電対25と同心に中空有底の保護パイプ26
を配設し、該保護パイプ26の上端を前記熱ブロック1
9の下面に溶接する。前記熱電対25は前記保護パイプ
26の底部を貫通しており、前記熱電対25と前記保護
パイプ26の底部とは溶接付されている。前記熱ブロッ
ク19は前記下部ヒータ16と同材質又は熱膨張率の近
い材質とし、前記下部ヒータ16に圧入等の手段により
密着固定されている。
A thermocouple 25 having a small diameter is cast into the heat block 19, and a protective pipe 26 having a hollow bottom is formed concentrically with the thermocouple 25.
And the upper end of the protection pipe 26 is connected to the heat block 1.
9 is welded to the lower surface. The thermocouple 25 passes through the bottom of the protection pipe 26, and the thermocouple 25 and the bottom of the protection pipe 26 are welded. The heat block 19 is made of the same material as the lower heater 16 or a material having a similar thermal expansion coefficient, and is fixed to the lower heater 16 by means of press fitting or the like.

【0021】前記昇降座14の下面に固着したシールフ
ランジ22に前記保護パイプ26を貫通し、前記シール
フランジ22に嵌装したシールリング23により、前記
保護パイプ26と前記シールフランジ22間を気密にシ
ールする。前記保護パイプ26の下端近傍に通孔27を
穿設し、前記保護パイプ26の内部と大気とを連通す
る。
The protective pipe 26 penetrates the seal flange 22 fixed to the lower surface of the elevating seat 14, and the space between the protective pipe 26 and the seal flange 22 is hermetically sealed by the seal ring 23 fitted on the seal flange 22. Seal. A through hole 27 is formed near the lower end of the protection pipe 26 to communicate the inside of the protection pipe 26 with the atmosphere.

【0022】前記熱電対25は前記熱ブロック19に鋳
込まれているので、間隙は極めて少なく、又前記熱電対
25は上端部と下端部の2点が支持され、前記保護パイ
プ26が設けられ前記熱電対25を保護しているので、
該熱電対25自体には剛性、強度が要求されなく、又該
熱電対25の太さは測定に必要な最小径で充分である。
Since the thermocouple 25 is cast into the heat block 19, the gap is extremely small. The thermocouple 25 is supported at two points, an upper end and a lower end, and is provided with the protective pipe 26. Since the thermocouple 25 is protected,
The thermocouple 25 itself does not require rigidity and strength, and the thickness of the thermocouple 25 is sufficient to be the minimum diameter required for measurement.

【0023】前述した様に、前記熱ブロック19と前記
熱電対25とは熱膨張率が異なり、前記下部ヒータ16
の昇温、降温で熱電対25と前記熱ブロック19間に間
隙が生じる可能性があるが、前記熱電対25は測定に必
要な最小限の太さとなっており、細径であり、発生する
間隙は小さい。
As described above, the thermal block 19 and the thermocouple 25 have different coefficients of thermal expansion, and
There is a possibility that a gap may be formed between the thermocouple 25 and the heat block 19 when the temperature rises or falls. However, the thermocouple 25 has a minimum thickness necessary for measurement, has a small diameter, and is generated. The gap is small.

【0024】更に、前記保護パイプ26の内部は外気に
通じて、前記保護パイプ26と真空容器1内部とは離隔
されているので、該真空容器1内部が真空、大気圧復帰
を繰返しても、前記保護パイプ26内部が大気圧状態で
あることは変わりない。而して、昇温時、降温時、真空
容器1内部が減圧時、大気圧のいずれも前記熱電対25
と熱ブロック19間に空気が介在する条件は変わりな
く、熱伝達の条件は一定になる。
Further, since the inside of the protection pipe 26 is open to the outside air and the inside of the protection pipe 26 is separated from the inside of the vacuum vessel 1, even if the inside of the vacuum vessel 1 repeatedly returns to the vacuum and the atmospheric pressure, The inside of the protection pipe 26 is still in the atmospheric pressure state. Thus, when the temperature is raised, when the temperature is decreased, when the inside of the vacuum vessel 1 is depressurized, and when the atmospheric pressure
The condition that air is interposed between the heat block 19 and the heat block 19 remains unchanged, and the condition of heat transfer is constant.

【0025】而して、発生する間隙が小さく、更に熱ブ
ロック19と熱電対25間の熱伝達条件が変わらないの
で、昇温時、降温時に限らず、半導体製造装置の処理室
内に於ける安定した温度測定が可能となる。
Since the generated gap is small and the heat transfer conditions between the heat block 19 and the thermocouple 25 do not change, the stability in the processing chamber of the semiconductor manufacturing apparatus is not limited to when the temperature is raised or lowered. Temperature measurement can be performed.

【0026】尚、前記保護パイプ26は必ずしも有底の
パイプである必要はなく、要は熱電対25の下端部が前
記保護パイプ26に固定されていればよい。更に、前記
保護パイプ26内部に絶縁材を充填すれば、前記熱電対
25の下端を前記保護パイプ26に固定する必要がなく
なる。
The protection pipe 26 does not necessarily have to be a bottomed pipe, but it is only necessary that the lower end of the thermocouple 25 be fixed to the protection pipe 26. Furthermore, if the inside of the protection pipe 26 is filled with an insulating material, it is not necessary to fix the lower end of the thermocouple 25 to the protection pipe 26.

【0027】更に、前記保護パイプ26内部を完全な気
密状態とすれば、前記通孔27は穿設する必要がなくな
る。
Further, if the inside of the protection pipe 26 is made completely airtight, the through hole 27 does not need to be formed.

【0028】[0028]

【発明の効果】以上述べた如く本発明によれば、熱電対
を保護パイプにより補強するので、熱電対には強度、剛
性は必要なく、測定に必要な最小限な太さを有すればよ
いので、熱電対の太さを細くでき、前記熱ブロックと熱
電対間の熱膨張差により生じる間隙を抑制でき、昇温
時、降温時の熱伝達率の変化を抑制できるので、安定し
た温度測定を可能とし、基板の成膜処理等の処理品質の
向上を図ることができる。
As described above, according to the present invention, since the thermocouple is reinforced by the protective pipe, the thermocouple does not need to have strength and rigidity, and need only have a minimum thickness necessary for measurement. Therefore, the thickness of the thermocouple can be reduced, a gap generated due to a difference in thermal expansion between the heat block and the thermocouple can be suppressed, and a change in heat transfer coefficient at the time of temperature rise and temperature fall can be suppressed. And the quality of processing such as substrate film forming processing can be improved.

【0029】更に、前記保護パイプ内部を外気に連通す
ることで熱電対と熱ブロック間に介在する気体の影響を
除去することができる等の優れた効果を発揮する。
Further, by communicating the inside of the protection pipe with the outside air, an excellent effect such as the effect of gas present between the thermocouple and the heat block can be removed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の要部を示す断面図である。FIG. 1 is a sectional view showing a main part of an embodiment of the present invention.

【図2】半導体製造装置の反応室の概略断面図である。FIG. 2 is a schematic sectional view of a reaction chamber of the semiconductor manufacturing apparatus.

【図3】従来例の断面図である。FIG. 3 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

14 昇降座 16 下部ヒータ 19 熱ブロック 22 シールフランジ 23 シールリング 26 保護パイプ 27 通孔 14 Lifting seat 16 Lower heater 19 Heat block 22 Seal flange 23 Seal ring 26 Protection pipe 27 Through hole

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K030 CA12 FA03 JA10 KA17 KA18 KA39 5F045 DP03 EF05 EH05 EM02 EM10 GB05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K030 CA12 FA03 JA10 KA17 KA18 KA39 5F045 DP03 EF05 EH05 EM02 EM10 GB05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被温度検出体に固着される熱ブロックに
熱電対の先端部を埋設し、該熱電対を保護パイプ内に収
納し、該保護パイプの先端を前記熱ブロックに気密に固
着した温度検出装置を具備したことを特徴とする半導体
製造装置。
An end of a thermocouple is embedded in a heat block fixed to a temperature detection target, the thermocouple is housed in a protection pipe, and a tip of the protection pipe is airtightly fixed to the heat block. A semiconductor manufacturing apparatus comprising a temperature detecting device.
【請求項2】 被温度検出体が気密な反応室に設けられ
被処理基板を加熱する下部ヒータであり、前記保護パイ
プは前記反応室外に突出し、反応室外と連通する請求項
1の半導体製造装置。
2. The semiconductor manufacturing apparatus according to claim 1, wherein the temperature detection object is a lower heater provided in an airtight reaction chamber for heating a substrate to be processed, and the protection pipe projects outside the reaction chamber and communicates with the outside of the reaction chamber. .
【請求項3】 前記保護パイプ内を気密とした請求項1
の半導体製造装置。
3. The inside of the protection pipe is airtight.
Semiconductor manufacturing equipment.
JP11021708A 1999-01-29 1999-01-29 Semiconductor manufacturing equipment Pending JP2000223423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11021708A JP2000223423A (en) 1999-01-29 1999-01-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11021708A JP2000223423A (en) 1999-01-29 1999-01-29 Semiconductor manufacturing equipment

Publications (1)

Publication Number Publication Date
JP2000223423A true JP2000223423A (en) 2000-08-11

Family

ID=12062570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11021708A Pending JP2000223423A (en) 1999-01-29 1999-01-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2000223423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory
KR20120140629A (en) * 2011-06-21 2012-12-31 도쿄엘렉트론가부시키가이샤 Semiconductor manufacturing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory
KR20120140629A (en) * 2011-06-21 2012-12-31 도쿄엘렉트론가부시키가이샤 Semiconductor manufacturing apparatus
JP2013004907A (en) * 2011-06-21 2013-01-07 Tokyo Electron Ltd Semiconductor manufacturing apparatus
US9734993B2 (en) 2011-06-21 2017-08-15 Tokyo Electron Limited Semiconductor manufacturing apparatus
TWI603413B (en) * 2011-06-21 2017-10-21 Tokyo Electron Ltd Semiconductor manufacturing equipment
KR101893938B1 (en) * 2011-06-21 2018-08-31 도쿄엘렉트론가부시키가이샤 Semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
RU2295799C2 (en) Electrostatic holder for use in high-temperature-treatment vacuum chamber, method for substrate treatment, and expansion unit of electrostatic holder
JP4736564B2 (en) Mounting structure and processing device of mounting table device
JP5237151B2 (en) Substrate support for plasma processing equipment
JPH04196528A (en) Magnetron etching system
JP2000036490A (en) Plasma processor and method therefor
JP2001250816A (en) High-temperature electrostatic chuck
JP2002500350A (en) Manufacturing method of ceramic pressure measurement sensor
JP4009100B2 (en) Substrate heating apparatus and substrate heating method
US11837491B2 (en) Electrostatic chuck and reaction chamber
JP2000223423A (en) Semiconductor manufacturing equipment
JP2000058298A (en) Plasma reactor
KR20140053784A (en) Member for semiconductor manufacturing apparatus and method for manufacturing the same
KR100448294B1 (en) Molding heater for use at high temperature
JP3267771B2 (en) Plasma processing equipment
KR101001313B1 (en) An Apparatus for Handling Wafer with Plasma
US20230113486A1 (en) Substrate support assemblies having internal shaft areas with isolated environments that mitigate oxidation
JP3202666B2 (en) Vacuum processing equipment
JP3401104B2 (en) Semiconductor film forming equipment
JP2004063662A (en) Plasma processor
JPH06260687A (en) Gas processor
KR20200117832A (en) Substrate mounting table, plasma processing apparatus and plasma processing method including the same
JPH0527493Y2 (en)
JP2001284256A (en) Plasma processing system
JPH0594972A (en) Plasma treatment device
JP2001217195A (en) Substrate-processing apparatus