JP2000223333A - Exciter - Google Patents

Exciter

Info

Publication number
JP2000223333A
JP2000223333A JP11023466A JP2346699A JP2000223333A JP 2000223333 A JP2000223333 A JP 2000223333A JP 11023466 A JP11023466 A JP 11023466A JP 2346699 A JP2346699 A JP 2346699A JP 2000223333 A JP2000223333 A JP 2000223333A
Authority
JP
Japan
Prior art keywords
series
power supply
resonance
capacitor
inductive circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11023466A
Other languages
Japanese (ja)
Inventor
Shoichiro Koseki
庄一郎 古関
Hiroshi Kubo
宏 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11023466A priority Critical patent/JP2000223333A/en
Publication of JP2000223333A publication Critical patent/JP2000223333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the capacity of a power supply small by constructing series resonance circuits in load units, adding AC voltage by inserting transformers in series with inductive circuit elements, and exciting only the AC current components by the resonance circuits. SOLUTION: In an exciter, secondary windings of choke transformers 41, 42 and 43 are inserted in series with electromagnets 11, 12 and 13, and AC voltage is added from the primary side by an AC power source 1, which is connected commonly in parallel to the primary winding of each choke transformer. Although the choke transformers 41, 42 and 43 may be inserted to a choke transformer 22 side, better control is obtained when they are coupled directly to the electromagnet current. When the choke transformers are connected to the choke transformer 22 side, they are inserted by being divided into two, with respect to the resonance circuit 81. The AC power source can be divided into each choke transformer, enabling adjustment of the voltage applied to each resonance circuit. If the resonance circuit 81 for inserting a DC power supply is made plural to result in a plurality of DC power sources, it is possible to reduce the voltage applied to the load.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘導性回路要素を励
磁する装置に関するものであり、特に誘導性回路要素に
コンデンサと組み合せて共振回路を構成し、共振を利用
して励磁する励磁装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for exciting an inductive circuit element, and more particularly to an exciting device for forming a resonant circuit by combining an inductive circuit element with a capacitor and exciting the device using resonance. It is.

【0002】[0002]

【従来の技術】電子などの素粒子を加速する加速器には
各種のものがある。シンクロトロン加速器では電磁石電
流を図2に示すようにパターン励磁して、低電流で素粒
子ビームを入射し、加速とともに電流を増加させて出射
する。
2. Description of the Related Art There are various accelerators for accelerating elementary particles such as electrons. In the synchrotron accelerator, the electromagnet current is pattern-excited as shown in FIG. 2, and the elementary particle beam is incident at a low current, and the current is increased and emitted with acceleration.

【0003】このような加速器において、入出射の密度
を高めるために電磁石を、例えば1秒間に25回のよう
に、繰返して励磁しなければならない場合がある。
In such an accelerator, the electromagnet may need to be repeatedly excited, for example, 25 times per second, in order to increase the density of input and output.

【0004】この場合、単に電源だけで繰り返し励磁し
ようとすると極めて大電力の電源が必要になる。例えば
10mHの電磁石を10台直列に励磁する場合を考え
る。入射時の電流が1000Aで出射時の電流が800
0Aとする。1秒間に25回繰返すため、加速時間を1
000ms/25/2=20msとする。すると直線的
に加速するものとしてもL・di/dtだけで10mH
×10台×(8000A−1000A)/20ms=3
5000Vもの電圧が必要になり、これに抵抗分電圧が
加わって、かつ、電流が8000Aもの電源が必要にな
ってしまう。
[0004] In this case, an extremely large power source is required if the excitation is to be repeated only with the power source alone. For example, consider a case where 10 electromagnets of 10 mH are excited in series. The current at the time of incidence is 1000 A and the current at the time of emission is 800
0A. Acceleration time is 1 to repeat 25 times per second.
000 ms / 25/2 = 20 ms. Then, even if it accelerates linearly, it is 10mH only with Ldi / dt.
× 10 units × (8000A-1000A) / 20ms = 3
A voltage as high as 5000 V is required, and a voltage for resistance is added to this voltage, and a power supply as large as 8000 A is required.

【0005】上記のような問題を解決する手段として電
磁石回路にコンデンサを接続して並列共振回路を構成し
て励磁する方式がある。その例は、High Energy Accele
rator Research OrganizationのJHF ACCELERATOR DESIG
N STUDY REPORTの3−93ページから3−95ページに
記載されている。そのような回路の動作を図3を用いて
説明する。この図において、簡単化のため上記例の10
台の電磁石の内、3台分だけの場合を説明する。他も同
様に直列に接続して構成することができる。
As a means for solving the above-mentioned problem, there is a method in which a capacitor is connected to an electromagnet circuit to form a parallel resonance circuit to excite the circuit. An example is the High Energy Accele
JHF ACCELERATOR DESIG of rator Research Organization
It is described on pages 3-93 to 3-95 of N STUDY REPORT. The operation of such a circuit will be described with reference to FIG. In this figure, for simplicity, 10 of the above example is shown.
The case of only three electromagnets will be described. Others can be similarly connected and connected in series.

【0006】電磁石回路ごとに以下に述べるように並列
共振回路81,82,83が構成されている。
As described below, parallel resonance circuits 81, 82 and 83 are provided for each electromagnet circuit.

【0007】図3において11,12,13が加速器の
電磁石であり、インダクタンスをLmとする。複数個の
電磁石を直列接続している場合もある。2は、電磁石1
1,12,13に流す直流電流をバイパスさせ、かつ共
振交流励磁電流を加えるためのチョーク変圧器である。
密結合の相互インダクタンス回路を考えてもよい。2次
側の各巻線311,312,32,33は互いに密に結
合しており、インダクタンスは、2次側からみたとき、
説明は省略するが、あたかもそれぞれインダクタンスが
Lch/2,Lch/2,Lch,Lchのチョークと
して機能する。51,511,512,52,53は共
振回路を構成するためのコンデンサであり、それぞれの
容量をC1,C2,C2,C,Cとする。
In FIG. 3, reference numerals 11, 12, and 13 denote electromagnets of the accelerator, and the inductance is Lm. A plurality of electromagnets may be connected in series. 2 is an electromagnet 1
This is a choke transformer for bypassing a direct current flowing through 1, 12, 13 and applying a resonant alternating current.
A tightly coupled mutual inductance circuit may be considered. The windings 311, 312, 32, and 33 on the secondary side are tightly coupled to each other, and the inductance is, when viewed from the secondary side,
Although the description is omitted, it is as if the inductances function as chokes of Lch / 2, Lch / 2, Lch, and Lch. Reference numerals 51, 511, 512, 52, and 53 denote capacitors for forming a resonance circuit, and the respective capacitances are C1, C2, C2, C, and C.

【0008】共振回路82だけを取り出して考えてみ
る。この回路は図4のように書き換えられ、LmとLc
hの並列回路とCとで並列共振回路を構成している。共
振角周波数ω1は
Let us consider only the resonance circuit 82. This circuit is rewritten as shown in FIG.
The parallel circuit of h and C constitute a parallel resonance circuit. The resonance angular frequency ω1 is

【0009】で与えられる。[0009]

【0010】共振回路81は、図5のように書き換えら
れる。巻線311とコンデンサ511,巻線312とコンデ
ンサ512が同じ共振周波数となるようにコンデンサ5
11,512の容量C2を決める。インダクタンスがL
ch/2であることから C2=2CLm/(Lm+Lch) となる。仮に Lch=Lm とするとC2=Cである。
The resonance circuit 81 is rewritten as shown in FIG. The winding 511 and the capacitor 511 and the winding 312 and the capacitor 512 are set so that they have the same resonance frequency.
The capacity C2 of 11,512 is determined. Inductance is L
Since ch / 2, C2 = 2CLm / (Lm + Lch). If Lch = Lm, C2 = C.

【0011】次にコンデンサ511とコンデンサ512
の直列回路にコンデンサ51が並列接続される。その合
成容量がCに等しくなるようにコンデンサ512の容量
C1を決める。
Next, a capacitor 511 and a capacitor 512
Are connected in parallel to the series circuit of. The capacitance C1 of the capacitor 512 is determined so that the combined capacitance becomes equal to C.

【0012】C1=C−C2/2 Lch=Lmとした上記の例の場合には、C1=C/2
となる。
In the above example where C1 = C-C2 / 2 Lch = Lm, C1 = C / 2
Becomes

【0013】このようにするとコンデンサ51と電磁石
11からなる回路も上記と同じ共振角周波数での並列共
振回路となる。このため直流電源6が接続されている点
は共振の節となりここには共振交流電流はほどんど流れ
ない。このため直流電源6は共振交流電流の影響をほど
んど受けずに巻線311,電磁石11,巻線33,電磁
石13…,巻線312を経由して電磁石11から13を
直流励磁することができる。そして直流電源6を除いて
考えれば共振回路81は全体として同じ共振周波数の並
列共振回路となるのでほかの共振回路82,83と同じ
ように機能する。
In this way, the circuit composed of the capacitor 51 and the electromagnet 11 also becomes a parallel resonance circuit at the same resonance angular frequency as described above. For this reason, the point to which the DC power supply 6 is connected becomes a node of resonance, and a resonance AC current hardly flows there. For this reason, the DC power supply 6 can excite the electromagnets 11 to 13 via the winding 311, the electromagnet 11, the winding 33, the electromagnet 13,... . Considering that the DC power supply 6 is excluded, the resonance circuit 81 is a parallel resonance circuit having the same resonance frequency as a whole, and thus functions in the same manner as the other resonance circuits 82 and 83.

【0014】そこで交流電源1から巻線30を介して上
記並列共振を励起するように交流電流を流し込めば、小
容量の電源であっても電磁石11〜13に大きな交流電
流を流すことができる。各電磁石には前述のように直流
電流が流れており、これに共振交流電流が加わり、図6
のような電流を流すことができる。これによって電磁石
を所要の繰返しで励磁することが可能となり、高い繰返
しで加速できる加速器を実現することができる。このよ
うにしたとき、この加速器と電源全体はあたかも一つの
共振励磁装置として考えることができる。
If an AC current is supplied from the AC power supply 1 via the winding 30 so as to excite the parallel resonance, a large AC current can be supplied to the electromagnets 11 to 13 even with a small-capacity power supply. . As described above, a DC current flows through each electromagnet, and a resonant AC current is added to the DC current.
Can be passed. As a result, the electromagnet can be excited at a required repetition, and an accelerator capable of accelerating at a high repetition can be realized. In this case, the accelerator and the entire power supply can be considered as a single resonance exciter.

【0015】[0015]

【発明が解決しようとする課題】ところがこのような共
振励磁装置において、交流電源1は、並列共振を励起す
るため電流源として機能しなければならない。すなわ
ち、もし電源1が電圧源であるとするとチョーク変圧器
の2次側からみたとき1次側の回路が並列に入ることに
なるため、共振回路が違ってしまう。これは、従来はパ
ルス電源により構成していたため影響はパルス通電期間
だけであり問題はなかった。ところがパルス電源が発生
する高調波の問題があり、近年は正弦波電源とすること
が望まれている。この場合、一般の交流電源は電圧源と
して機能するため適用は困難となった。
However, in such a resonance excitation device, the AC power supply 1 must function as a current source to excite parallel resonance. That is, if the power supply 1 is a voltage source, the primary side circuit will be in parallel when viewed from the secondary side of the choke transformer, and the resonance circuit will be different. Since this was conventionally configured with a pulse power supply, the effect was only the pulse energizing period, and there was no problem. However, there is a problem of harmonics generated by a pulse power supply, and in recent years, a sine wave power supply has been desired. In this case, the general AC power supply functions as a voltage source, so that application becomes difficult.

【0016】これを解決するひとつの方法は、電流源特
性の電源を使用するか、制御により電流源特性をもたせ
ることである。ところが電流形変換装置と呼ばれる電流
源特性の変換装置は正弦波電流出力特性があまりよくな
く、またあまり一般的でない。このため電流源特性の電
源を使用することができない。また制御により電流源特
性をもたせたときには制御応答が悪くなりやはり適用で
きない。特に共振周波数を変えるような場合には適用が
不可能である。
One method for solving this problem is to use a power source having current source characteristics or to provide current source characteristics by control. However, a current-source conversion device called a current-source conversion device has a poor sine-wave current output characteristic and is not very common. Therefore, a power supply having current source characteristics cannot be used. Further, when the current source characteristic is provided by the control, the control response is deteriorated, so that the method cannot be applied. In particular, it is not applicable when changing the resonance frequency.

【0017】これを解決するまた別のひとつの方法は、
JHF ACCELERATOR DESIGN STUDYREPORTにも記載されてい
るように直列共振を利用する方法である。図7に回路を
示す。この場合、前記の並列共振回路は直列に電源61
が入るため直列共振回路として機能する。電源61は、
直流電流を流しながらかつ交流電圧を発生して直列共振
回路に交流電流を励起する。
Another method for solving this is as follows.
This is a method using series resonance as described in JHF ACCELERATOR DESIGN STUDYREPORT. FIG. 7 shows the circuit. In this case, the parallel resonance circuit is connected in series with the power supply 61.
Function as a series resonance circuit. The power supply 61
An AC voltage is generated while a DC current is flowing to excite the AC current in the series resonance circuit.

【0018】本方式の問題は、電源61が電流,電圧と
も交流と直流の所要値の合成値のピーク値の容量が必要
になることである。例えば図6のような電流を流すと
き、直流分は4500A、交流分は3500Aである
が、電源はそれらの和の8000Aの容量でなければな
らない。交流電圧も同様に加算されるため、電源容量は
直流電源と交流電源に分けた場合の合計容量の2倍程度
になってしまう。
The problem of this method is that the power supply 61 needs a capacity of a peak value of a composite value of required values of AC and DC for both current and voltage. For example, when a current as shown in FIG. 6 is passed, the DC component is 4500 A and the AC component is 3500 A, but the power source must have a capacity of 8000 A which is the sum of them. Since the AC voltage is similarly added, the power supply capacity is about twice as large as the total capacity when the DC power supply and the AC power supply are divided.

【0019】[0019]

【課題を解決するための手段】本発明による励磁装置に
おいては、負荷装置に直列共振回路を構成し、誘導性回
路要素に直列に変圧器を挿入し、これを介して交流電圧
を加える。
In the excitation device according to the present invention, a series resonance circuit is formed in the load device, a transformer is inserted in series with the inductive circuit element, and an AC voltage is applied through the transformer.

【0020】本発明によれば、交流電流分のみを共振回
路により励磁することができる。交流電源は直流を供給
する必要がないため、小容量の電源を使用できる。直列
共振回路を励起するため、電源には電圧源特性のものを
使用できる。電圧源特性の電源には正弦波出力のものが
使用できるため、高調波の少ない励磁ができる。交流電
圧源として制御するため、共振周波数を変える場合にも
容易に使用できる。直列共振であるため共振周波数を変
化させたときにも電源の仕様を変える必要がない。
According to the present invention, only the alternating current can be excited by the resonance circuit. Since the AC power supply does not need to supply DC, a small-capacity power supply can be used. In order to excite the series resonance circuit, a power supply having a voltage source characteristic can be used. Since a sine wave output power supply having a voltage source characteristic can be used, excitation with less harmonics can be performed. Since it is controlled as an AC voltage source, it can be easily used even when the resonance frequency is changed. Because of the series resonance, there is no need to change the specifications of the power supply even when the resonance frequency is changed.

【0021】[0021]

【発明の実施の形態】本発明の実施例を図1に示す。図
2の従来の共振励磁装置との違いは、各電磁石11,1
2,13に直列にチョーク変圧器41,42,43の2
次巻線を挿入し、各チョーク変圧器の1次巻線に共通に
並列接続される交流電源1により、1次側から交流電圧
を加えるようにしたことである。
FIG. 1 shows an embodiment of the present invention. The difference from the conventional resonance excitation device of FIG.
2, 13 in series with choke transformers 41, 42, 43
The secondary winding is inserted, and an AC voltage is applied from the primary side by an AC power supply 1 commonly connected in parallel to the primary winding of each choke transformer.

【0022】チョーク変圧器は必ずしも共振回路ごとに
挿入する必要はなく、1箇所にまとめてもよいが、不平
衡の影響が出やすくなるため分けるようにした。もちろ
ん、例えば共振回路2組を1組の共振回路とし2組を単
位として挿入すると言うようにしてもよい。
The choke transformers need not always be inserted for each resonance circuit, and may be integrated at one place. However, the choke transformers are divided because the influence of unbalance is likely to occur. Of course, two sets of resonance circuits may be used as one set of resonance circuits and two sets may be inserted as a unit.

【0023】チョーク変圧器41,42,43は、チョ
ーク変圧器22の側に挿入してもよいが、電磁石電流と
直接結合させた方がよい制御が可能となる。なお、チョ
ーク変圧器22の側に接続する場合は、バランスをよく
するため共振回路81に対して2分割して挿入すること
が望ましい。チョーク変圧器22は、各巻線を必ずしも
互いに密に結合させず、個別のリアクトルとしてもよい
が、寄生振動を抑制するためにはこのようにするのがよ
い。
The choke transformers 41, 42, 43 may be inserted on the choke transformer 22 side, but better control is possible if they are directly coupled to the electromagnet current. When connecting to the choke transformer 22 side, it is desirable to insert it into the resonance circuit 81 in two parts in order to improve the balance. The choke transformer 22 does not necessarily couple each winding tightly to each other, and may be an individual reactor. However, this is preferable in order to suppress parasitic vibration.

【0024】交流電源は、各チョーク変圧器ごとに分け
てもよく、共振回路ごとに加える電圧の調整が可能とな
る。また、複数のチョーク変圧器ごとに分けてもよく、
個別の電源の容量を適当な大きさに分割することができ
る。
The AC power supply may be divided for each choke transformer, and the voltage applied to each resonance circuit can be adjusted. Also, it may be divided into multiple choke transformers,
The capacity of the individual power supply can be divided into appropriate sizes.

【0025】直流電源を挿入するための共振回路81
は、複数個として、直流電源を分けてもよい。これによ
り、直流電圧を分担させ負荷に加わる電圧を低減でき
る。
Resonant circuit 81 for inserting DC power supply
May be divided into plural DC power supplies. This makes it possible to share the DC voltage and reduce the voltage applied to the load.

【0026】本発明のほかの実施例を図8に示す。この
実施例ではチョーク変圧器41,42,43の1次巻線
を直列に接続して交流電源20に接続している。この場
合、負荷の共振回路の不平衡に応じて挿入する電圧が自
動的に分担されるメリットがある。
FIG. 8 shows another embodiment of the present invention. In this embodiment, the primary windings of the choke transformers 41, 42, 43 are connected in series and connected to the AC power supply 20. In this case, there is an advantage that the voltage to be inserted is automatically shared according to the imbalance of the load resonance circuit.

【0027】本発明による共振励磁装置において印加電
圧がどうなるかを考えてみる。説明を簡単化するためイ
ンダクタンスL,抵抗R,コンデンサCの直列共振回路
を対象とする。角周波数ωで電流Iに励磁するとき、所
要励磁電圧Uは、
Consider what happens to the applied voltage in the resonance excitation device according to the present invention. For simplicity of description, a series resonance circuit including an inductance L, a resistance R, and a capacitor C will be described. When exciting the current I at the angular frequency ω, the required exciting voltage U is

【0028】で与えられる。ωが共振周波数に一致して
いれば、U=RIとなる。これはコンデンサを変えて共
振周波数を変えた場合もそれに応じて励磁周波数さえ変
えれば同じである。インダクタンスL、その直列抵抗R
からなる誘導性回路要素とコンデンサからなる並列共振
の場合には共振周波数を変えた場合には周波数に比例し
て電圧を変えなければならず、これに対して本発明によ
る方式は周波数変更が容易にできる特徴がある。
Given by If ω matches the resonance frequency, U = RI. This is the same even when the resonance frequency is changed by changing the capacitor, as long as the excitation frequency is changed accordingly. Inductance L, its series resistance R
In the case of a parallel resonance consisting of an inductive circuit element consisting of a capacitor and a capacitor, when the resonance frequency is changed, the voltage must be changed in proportion to the frequency, whereas the method according to the present invention makes it easy to change the frequency. There is a feature that can be.

【0029】負荷の共振周波数を変える場合の本発明の
実施例を図9に示す。コンデンサ521と、スイッチ7
2を介してコンデンサ521に並列接続されるコンデン
サ522の容量比は、例えば1:3となっている。スイ
ッチ72を閉じた場合と開いた場合の容量比は1:0.
25となり共振周波数は1:2となる。ほかのコンデン
サも同様にスイッチで容量すなわち共振周波数を切り換
えられる。切り換えに応じて電磁石12の周波数を変え
れば容易に周波数を変えた励磁が可能となる。電源は電
圧源特性を有しているため周波数を変えることは容易で
ある。スイッチに電子的なものを使用して半サイクルご
と切り換え、加速時は低周波、リセット時は高周波とい
う2共振動作を行うことも容易である。
FIG. 9 shows an embodiment of the present invention in which the resonance frequency of the load is changed. Capacitor 521 and switch 7
The capacitance ratio of the capacitor 522 connected in parallel to the capacitor 521 through the capacitor 2 is, for example, 1: 3. The capacity ratio when the switch 72 is closed and when it is opened is 1: 0.
25, and the resonance frequency is 1: 2. The capacitance of other capacitors, that is, the resonance frequency, can be similarly switched by a switch. If the frequency of the electromagnet 12 is changed in accordance with the switching, the excitation with the changed frequency can be easily performed. Since the power supply has a voltage source characteristic, it is easy to change the frequency. It is also easy to perform a two-resonance operation using an electronic switch as a switch every half cycle, and a low frequency during acceleration and a high frequency during reset.

【0030】なお、各実施例における回路要素の個数あ
るいは組数は、実施例に示した数のみならず、適宜変更
が可能である。
The number or set of circuit elements in each embodiment is not limited to the number shown in the embodiment but can be changed as appropriate.

【0031】[0031]

【発明の効果】本発明によれば、負荷装置に直列共振回
路を構成し、電磁石に直列にチョーク変圧器を挿入し、
これを介して交流電圧を加えているため、交流電流分の
みを共振回路により励磁することができる。交流電源は
直流電源と切り離されるため小容量の電源を使用でき
る。また直列共振回路を励起するため電源には電圧源特
性のものを使用できる。電圧源特性の電源には正弦波出
力のものが使用できるため高調波の少ない励磁ができ
る。交流電圧源として制御するため、共振周波数を変え
る場合にも容易に使用できる。直列共振であるため共振
周波数を変化させたときにも電源の仕様を変える必要が
ない。
According to the present invention, a series resonance circuit is formed in a load device, a choke transformer is inserted in series with an electromagnet,
Since the AC voltage is applied via this, only the AC current can be excited by the resonance circuit. Since the AC power supply is separated from the DC power supply, a small-capacity power supply can be used. Further, a power source having a voltage source characteristic can be used for exciting the series resonance circuit. Since a power supply having a sine wave output can be used as a power supply having a voltage source characteristic, excitation with less harmonics can be performed. Since it is controlled as an AC voltage source, it can be easily used even when the resonance frequency is changed. Because of the series resonance, there is no need to change the specifications of the power supply even when the resonance frequency is changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明するための図。FIG. 1 is a diagram for explaining an embodiment of the present invention.

【図2】加速器における電磁石の通電電流を説明するた
めの図。
FIG. 2 is a diagram for explaining a current flowing through an electromagnet in the accelerator.

【図3】従来の技術を説明するための図。FIG. 3 is a diagram for explaining a conventional technique.

【図4】従来の技術を説明するための補足図(1)。FIG. 4 is a supplementary diagram (1) for explaining a conventional technique.

【図5】従来の技術を説明するための補足図(2)。FIG. 5 is a supplementary diagram (2) for explaining a conventional technique.

【図6】電磁石電流を高い繰返し周波数で通電するとき
の電流を説明するための図。
FIG. 6 is a diagram for explaining a current when an electromagnet current is supplied at a high repetition frequency.

【図7】別の従来の技術を説明するための図。FIG. 7 is a diagram for explaining another conventional technique.

【図8】本発明のほかの実施例を説明するための図。FIG. 8 is a diagram for explaining another embodiment of the present invention.

【図9】本発明のまたほかの実施例を説明するための
図。
FIG. 9 is a view for explaining still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,20…交流電源、2,21,22,41,42,4
3…チョーク変圧器、6…直流電源、11,12,13
…電磁石、30,32,33,310,311,312
…チョーク変圧器の巻線、50,51,52,53,5
11,512,521,522,531,532,51
01,5102,5111,5112,5121,51
22…コンデンサ、61…交流・直流共用電源、71,
72,73,711,712…スイッチ、81,82,
83,810…共振回路。
1,20 ... AC power supply, 2,21,22,41,42,4
3: Choke transformer, 6: DC power supply, 11, 12, 13
... Electromagnets, 30, 32, 33, 310, 311, 312
... Coil transformer windings, 50,51,52,53,5
11,512,521,522,531,532,51
01, 5102, 5111, 5112, 5121, 51
22: capacitor, 61: AC / DC common power supply, 71,
72, 73, 711, 712... Switches, 81, 82,
83, 810: Resonant circuit.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】誘導性回路要素とコンデンサとで構成され
て直列共振回路を構成する負荷装置において、回路に直
列に変圧器の2次巻線を挿入し、該変圧器の1次側に交
流電源を接続し、共振周波数付近の電圧を加えることに
より共振回路に共振を励起し、それによって誘導性回路
要素を励磁することを特徴とする励磁装置。
In a load device constituted by an inductive circuit element and a capacitor, forming a series resonance circuit, a secondary winding of a transformer is inserted in series with the circuit, and an alternating current is applied to a primary side of the transformer. An exciter characterized in that a power supply is connected and a resonance frequency is applied to a resonance circuit by applying a voltage near the resonance frequency, thereby exciting an inductive circuit element.
【請求項2】請求項1において、誘導性回路要素とコン
デンサとで構成された直列共振回路を構成する負荷装置
が複数組あり、それらの直列共振回路が直列にループを
構成するように接続され、また、その負荷装置と同一台
数の変圧器を備え、各変圧器の2次巻線を各負荷装置に
直列に挿入し、1次巻線に交流電源を接続したことを特
徴とする励磁装置。
2. A load apparatus according to claim 1, wherein a plurality of sets of load devices constitute a series resonance circuit composed of an inductive circuit element and a capacitor, and the series resonance circuits are connected so as to form a loop in series. An exciting device comprising the same number of transformers as the load device, secondary windings of each transformer being inserted in series with each load device, and an AC power supply connected to the primary winding. .
【請求項3】請求項2において、各変圧器の1次巻線を
並列に接続し、そこに交流電源を接続したことを特徴と
する励磁装置。
3. An exciter according to claim 2, wherein the primary windings of each transformer are connected in parallel, and an AC power supply is connected thereto.
【請求項4】請求項2において、各変圧器の1次巻線を
直列に接続し、そこに交流電源を接続したことを特徴と
する励磁装置。
4. An exciter according to claim 2, wherein the primary winding of each transformer is connected in series and an AC power supply is connected thereto.
【請求項5】請求項1から4のいずれかにおいて、1組
の負荷装置は直列接続された少なくともふたつの誘導性
回路要素で構成され、少なくともひとつの誘導性回路要
素に並列にコンデンサが接続され、コンデンサが接続さ
れていない誘導性回路要素とコンデンサが並列接続され
た誘導性回路要素との直列接続により直列共振回路が構
成されていることを特徴とする励磁装置。
5. The load device according to claim 1, wherein the set of load devices includes at least two inductive circuit elements connected in series, and a capacitor is connected in parallel to at least one inductive circuit element. An exciting device characterized in that a series resonance circuit is formed by series connection of an inductive circuit element to which no capacitor is connected and an inductive circuit element to which a capacitor is connected in parallel.
【請求項6】請求項5において、誘導性回路要素に直列
に直流電源を備え、誘導性回路要素に直流電流を通電す
ることを可能とし、直流電流を通電しながら交流励磁す
ることを特徴とする励磁装置。
6. The inductive circuit element according to claim 5, wherein a DC power supply is provided in series with the inductive circuit element, and a DC current can be supplied to the inductive circuit element, and an AC excitation is performed while supplying the DC current. Exciting device.
【請求項7】請求項1〜6のいずれかにおいて、コンデ
ンサの容量を切り換えることにより共振周波数を可変と
し、同時に加える交流電圧の周波数を切り換えられるよ
うにしたことを特徴とする励磁装置。
7. An exciter according to claim 1, wherein the resonance frequency is made variable by switching the capacitance of the capacitor, and the frequency of the AC voltage to be applied can be switched at the same time.
【請求項8】請求項5〜7のいずれかにおいて、共振回
路を構成する負荷装置が2組以上あり、各負荷装置のう
ちのコンデンサが並列接続された誘導性回路要素は互い
に磁気的に密に結合していることを特徴とする励磁装
置。
8. The inductive circuit element according to claim 5, wherein there are at least two sets of load devices constituting a resonance circuit, and the inductive circuit elements of each load device to which a capacitor is connected in parallel are magnetically dense. An exciter characterized by being coupled to the exciter.
【請求項9】請求項1〜8のいずれかの励磁装置を使用
した加速器。
9. An accelerator using the exciter according to claim 1.
JP11023466A 1999-02-01 1999-02-01 Exciter Pending JP2000223333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11023466A JP2000223333A (en) 1999-02-01 1999-02-01 Exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11023466A JP2000223333A (en) 1999-02-01 1999-02-01 Exciter

Publications (1)

Publication Number Publication Date
JP2000223333A true JP2000223333A (en) 2000-08-11

Family

ID=12111314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11023466A Pending JP2000223333A (en) 1999-02-01 1999-02-01 Exciter

Country Status (1)

Country Link
JP (1) JP2000223333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728023A (en) * 2017-10-27 2018-02-23 苏州华电电气股份有限公司 Involvement formula series resonance inductor partial pressure Transmission System for High Voltage Measurements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107728023A (en) * 2017-10-27 2018-02-23 苏州华电电气股份有限公司 Involvement formula series resonance inductor partial pressure Transmission System for High Voltage Measurements
CN107728023B (en) * 2017-10-27 2024-04-02 苏州华电电气股份有限公司 Pressure measuring system for partial pressure of integrated series resonance inductance

Similar Documents

Publication Publication Date Title
Li et al. A WBG based three phase 12.5 kW 500 kHz CLLC resonant converter with integrated PCB winding transformer
US5019954A (en) AC/DC conversion with reduced supply waveform distortion
US20040189432A1 (en) Integrated magnetics for a dc-dc converter with flexible output inductor
US20040239470A1 (en) Harmonic filtering circuit with special transformer
US10224819B2 (en) Ripple canceling in power conversions circuits
WO2011154058A1 (en) Integrated magnetic device for low harmonics three-phase front-end
CA2108080C (en) Pulse generator
JPH09190894A (en) Pulse voltage train generating circuit device
JPH0246170A (en) Stabilized electric source with suppressed ripple component
US6549434B2 (en) Harmonic mitigating method and apparatus
Bloom New integrated-magnetic DC-DC power converter circuits & systems
JP2002528026A (en) Inverter device having three single-phase autotransformers
JP2000223333A (en) Exciter
KR101989658B1 (en) Magnetoelectric device capable of damping power amplification
US6492878B1 (en) High voltage pulse generation device for magnetron
US7683709B1 (en) Low frequency power amplifier employing high frequency magnetic components
RU2230441C1 (en) Twin betatron switch-mode power system
JPH07192918A (en) Pulse magnetic field generator
RU2766846C1 (en) Voltage converter
JPH0667219B2 (en) High voltage pulse generator
Ren et al. A novel compact repetitive frequency voltage booster based on magnetic switches and Fitch generator
US20020140317A1 (en) Reduced component drive circuit
RU2305379C1 (en) Generator of high voltage linearly increasing impulses of microsecond duration
RU32956U1 (en) Double-betatron pulse power supply system with demagnetization of the magnetic circuit
JPH11502965A (en) Circuit device for generating auxiliary voltage