JP2000221416A - Optical path conversion optical system - Google Patents

Optical path conversion optical system

Info

Publication number
JP2000221416A
JP2000221416A JP11026448A JP2644899A JP2000221416A JP 2000221416 A JP2000221416 A JP 2000221416A JP 11026448 A JP11026448 A JP 11026448A JP 2644899 A JP2644899 A JP 2644899A JP 2000221416 A JP2000221416 A JP 2000221416A
Authority
JP
Japan
Prior art keywords
optical
reflecting surface
optical member
optical system
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11026448A
Other languages
Japanese (ja)
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11026448A priority Critical patent/JP2000221416A/en
Priority to PCT/EP2000/000796 priority patent/WO2000046626A1/en
Priority to DE10080406T priority patent/DE10080406T1/en
Priority to DE20023373U priority patent/DE20023373U1/en
Publication of JP2000221416A publication Critical patent/JP2000221416A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end

Abstract

PROBLEM TO BE SOLVED: To obtain a compact optical path conversion optical system realizing the side vision at about 90 deg. and housed in one pipe by constituting the system of a 1st optical member, a 2nd optical member, a light shielding plate and a concave lens. SOLUTION: Light beams (a), (b) and (c) ((a) is a light beam along an optical axis O, (b) is either peripheral light beam and (c) is other peripheral light beam) from an examinee introduced in the 2nd optical member 2 through a cover glass CG, the concave lens L and an aperture SH1 are respectively reflected by 4th and 3rd reflection surfaces 2c and 2b, introduced in the 1st optical member 1 through a bonded surface 1d, and further reflected by 2nd and 1st reflection surfaces 1b and 1a and guided to an objective lens L1. Thus, a hard mirror capable of realizing the side vision at 90 deg. is provided. A field-direction conversion optical system consisting of the 1st and the 2nd optical members 1 and 2, the light shielding plate SH and the concave lens L is compactly housed in the pipe P so as to be fit to the outside shape of the tip part of the needle- like constituted mirror.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光路変換光学系、
特に側視、前方斜視又は後方斜視型の硬性鏡等に適する
視野変換光学系に関する。
The present invention relates to an optical path changing optical system,
In particular, the present invention relates to a visual field conversion optical system suitable for a side-view, front-oblique or rear-oblique rigid scope.

【0002】[0002]

【従来の技術】一般に、内視鏡の先端部は、内部に配置
されたレンズ系が直接外気に触れないようにするため、
カバーガラスによって密封されていることが必要であ
る。そのため、直視、斜視、側視等何れの形式の場合
も、光学系は一本のパイプの中に納まるようにコンパク
トに設計することが要求される。これらの要求に応える
ために、従来様々な提案がなされている。
2. Description of the Related Art Generally, a distal end portion of an endoscope is provided so that a lens system disposed inside the endoscope does not directly contact the outside air.
It must be sealed by a cover glass. Therefore, in any of the direct-viewing, oblique, and side-viewing types, it is required that the optical system be designed to be compact so as to fit in one pipe. Various proposals have hitherto been made to meet these demands.

【0003】[0003]

【発明が解決しようとする課題】図7は、従来の斜視光
学系の代表例として、特開昭59−87403号公報に
開示された70度斜視の視野変換光学系を示している
が、このプリズム方式では側視(90度方向)を実現す
ることができない。何故ならば、これを側視にするため
には、第一反射面Rの角度を変えて光軸を90度方向に
折り曲げると同時に、上部の平行平板P1 の上面を長手
方向に沿った光軸(射出光軸)Oと平行になるように角
度設定する必要があり、この上面に配置する凹レンズL
の外径が第一反射面Rと干渉しないようにしながら最適
の位置を探すことになるが、すると90度折り曲げられ
た光軸がプリズムP2 を射出する位置が光軸Oに対して
上側に位置するようになるため、この上に凹レンズLを
置いた場合カバーガラスを前記パイプ内に収めることが
できなくなるからである。
FIG. 7 shows, as a typical example of a conventional oblique optical system, a 70-degree oblique view conversion optical system disclosed in Japanese Patent Application Laid-Open No. 59-87403. In the prism system, side view (90-degree direction) cannot be realized. Since this to the side vision, and at the same time by changing the angle of the first reflecting surface R bending the optical axis in the direction of 90 degrees, the light along the upper surface of the parallel plate P 1 of the top in the longitudinal direction The angle must be set so as to be parallel to the axis (emission optical axis) O, and the concave lens L
An optimal position is searched for so that the outer diameter of the optical axis does not interfere with the first reflecting surface R. Then, the position at which the optical axis bent by 90 degrees exits the prism P 2 is positioned above the optical axis O. This is because the cover glass cannot be accommodated in the pipe when the concave lens L is placed thereon.

【0004】図8は、従来の90度側視光学系の代表例
として、特開平9−294709号公報に開示されたも
のを示しているが、この例では、側視プリズムLP上の
凹レンズLは上方に大きくはみ出していて、一本のパイ
プ内に収められていない。又、このプリズム形状で長手
方向に平行なプリズムの射出面を下げても、更にこの上
に配置される凹レンズLの外径との干渉を避けながら十
分下方の位置に配置することができなくなる。又、この
例では、2つのプリズムを接着剤で接合しており、この
接着面で全反射又は透過を入射角に応じて使い分けてい
るが、接合剤の厚みが薄いと光が全反射せずに抜けてし
まうため、部品の接合作業が大変で作業性が悪い。
FIG. 8 shows a typical example of a conventional 90-degree side-view optical system disclosed in Japanese Patent Laid-Open No. 9-294709. In this example, a concave lens L on a side-view prism LP is shown. Is protruding significantly upwards and is not contained within a single pipe. Further, even if the exit surface of the prism parallel to the longitudinal direction in this prism shape is lowered, it is not possible to dispose the prism at a sufficiently lower position while avoiding interference with the outer diameter of the concave lens L disposed thereon. Also, in this example, the two prisms are bonded with an adhesive, and the total reflection or transmission is selectively used at the bonding surface according to the incident angle. However, if the thickness of the bonding agent is thin, light is not totally reflected. Therefore, the work of joining the parts is difficult and the workability is poor.

【0005】図9は、従来の斜視光学系として、特開昭
60−64320号公報に開示された110度後方視の
視野変換光学系を示しているが、この方式では、平行平
板P 1 を光軸Oと平行に所定の光学性能を確保しつつ配
置することができないため、側視(90度)が実現でき
ない。
FIG. 9 shows a conventional perspective optical system disclosed in
110-degree rear view disclosed in
Although the field-of-view conversion optical system is shown, this system
Board P 1Are arranged in parallel with the optical axis O while ensuring the predetermined optical performance.
Can not be placed, so side view (90 degrees) can be realized
Absent.

【0006】このように、従来、側視プリズムを用いた
もので関連した光学系全体が一本のパイプの中に収めら
れた視野変換光学系は未だ提案されていない。一方、脳
外科手術においては、低侵襲手術が望まれており、ピン
ホールサージェリーと云われる脳に細くて深い穴を開け
て手術用顕微鏡下で内視鏡を併用する手技が広がって来
ている。内視鏡併用の目的は、ピンホール内の顕微鏡の
死角になる側壁観察である。現状では、70度斜視が使
用されているが、オリエンテーションの付け易さから9
0度側視が望まれるようになって来た。
As described above, a field conversion optical system using a side-viewing prism and incorporating the entire related optical system in a single pipe has not yet been proposed. On the other hand, in brain surgery, minimally invasive surgery has been desired, and a technique of using a pinhole surgery to make a thin and deep hole in the brain and use an endoscope together under an operating microscope has been spreading. . The purpose of the combined use with the endoscope is to observe a blind spot of a microscope in a pinhole. At present, a 70-degree oblique view is used.
0 degree side viewing has come to be desired.

【0007】本発明は、上述の如き実情に鑑みてなされ
たものであり、その目的とするところは、略90度の側
視で一本のパイプ内に収めることの出来るコンパクトな
光路変換光学系を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide a compact optical path changing optical system which can be accommodated in a single pipe when viewed from the side at approximately 90 degrees. Is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明による光路変換光学系は、細長いハウジング
内に収納されていて射出側から入射側に向って逆に光路
を辿ったときに、該ハウジングの長手方向に沿った光軸
を下方へ折り曲げる第一反射面と該第一反射面により折
り曲げられた光軸を前方上方へ折り曲げる第二反射面と
を有する第一光学部材と、前記ハウジング内に収納され
ていて前記第一光学部材の前方に隣接配置されていて前
記第二反射面により折り曲げられた光軸を下方へ折り曲
げる第三反射面と該第三反射面により折り曲げられた光
軸を所定の上方へ折り曲げる第四反射面とを有する第二
光学部材を備えている。
In order to achieve the above object, an optical path changing optical system according to the present invention is housed in an elongated housing, and traces an optical path from an exit side to an entrance side in reverse. A first optical member having a first reflecting surface for bending an optical axis along a longitudinal direction of the housing downward, and a second reflecting surface for bending an optical axis bent by the first reflecting surface forward and upward; and the housing. A third reflecting surface, which is accommodated in the first optical member and is disposed adjacent to the front of the first optical member and which bends an optical axis bent by the second reflecting surface downward, and an optical axis bent by the third reflecting surface And a fourth reflecting surface that bends a predetermined upward direction.

【0009】本発明によれば、光路変換光学系は、前記
ハウジング内に収納されていて前記第二光学部材の上方
に配置された第三光学部材を更に備えている。
According to the present invention, the optical path conversion optical system further includes a third optical member housed in the housing and disposed above the second optical member.

【0010】また、本発明によれば、前記第二光学部材
と第三光学部材は僅かな空気間隔を隔てて配置されてい
る。
Further, according to the present invention, the second optical member and the third optical member are arranged with a slight air gap.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を図示
した実施例に基づき説明する。図1は本発明による光路
変換光学系の第一実施例を視野方向変換光学系として内
蔵した硬性鏡先端部の縦断面図、図2は遮光板の底面図
である。図中、Tは細長いハウジングとして構成された
ステンレスチューブ、GPはステンレスチューブT内に
挿入固定されたガイドパイプ、PはガイドパイプGP内
に圧入されたパイプ、OはステンレスチューブTの長手
方向に沿った光軸(射出光軸)、1はパイプP内に固定
されていて光軸Oを下方へ折り曲げる第一反射面1aと
該第一反射面1aにより折り曲げられた光軸をステンレ
スチューブTの前方へ折り曲げる第二反射面1bと光軸
Oと同芯の球面1cとを有する第一光学部材、2は第一
光学部材1の前側に配置されていて第一光学部材1の接
合面1dに接合された光導入面2aと該光導入面2aよ
り導入された第二反射面1bよりの反射光の光軸を下方
へ折り曲げる第三反射面2bと該第三反射面2bにより
折り曲げられた光軸を側視方向即ち光軸Oと直交する方
向へ折り曲げる第四反射面2cとを有する第二光学部
材、SHは第三反射面2b上に設けられていて第四反射
面2cからの反射光を通過させるための開口SH1 を有
する遮光板、Lは遮光板SH上に開口SH1 と整合する
ように設置された凹レンズ、CGは凹レンズLに整合し
てステンレスチューブTに液密的に取付けられたカバー
ガラス、LGは被検体の視界範囲を照明するため図示し
ない光源より照明光を導びくためのライトガイド、L1
はパイプPに嵌着された対物レンズである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on illustrated embodiments. FIG. 1 is a longitudinal sectional view of a distal end portion of a rigid mirror in which a first embodiment of an optical path changing optical system according to the present invention is incorporated as a viewing direction changing optical system, and FIG. 2 is a bottom view of a light shielding plate. In the figure, T is a stainless steel tube configured as an elongated housing, GP is a guide pipe inserted and fixed in the stainless steel tube T, P is a pipe press-fitted in the guide pipe GP, and O is a longitudinal direction of the stainless steel tube T The optical axis (emission optical axis) 1 is fixed in the pipe P, and the first reflecting surface 1a for bending the optical axis O downward and the optical axis bent by the first reflecting surface 1a are positioned in front of the stainless steel tube T. The first optical member 2 having a second reflecting surface 1b to be bent and a spherical surface 1c concentric with the optical axis O is disposed on the front side of the first optical member 1 and joined to the joining surface 1d of the first optical member 1. The third reflecting surface 2b for bending the optical axis of the reflected light from the light introducing surface 2a and the second reflecting surface 1b introduced from the light introducing surface 2a downward, and the optical axis bent by the third reflecting surface 2b Side view SH, which is provided on the third reflecting surface 2b and allows the reflected light from the fourth reflecting surface 2c to pass therethrough, the second optical member having a fourth reflecting surface 2c that is bent in a direction perpendicular to the optical axis O. shading plate, L is the installed concave to match the opening SH 1 on the light shielding plate SH, CG is a cover glass attached to a liquid-tight manner to stainless steel tubing T in alignment with the concave lens L having an aperture SH 1 of , LG are light guides for guiding illumination light from a light source (not shown) to illuminate the field of view of the subject, L 1
Is an objective lens fitted to the pipe P.

【0012】なお、ここでは対物レンズL1 と視野変換
光学系とを一応分けているが、両者をまとめて側視型対
物レンズと観念されることもある。また、便宜上第一光
学部材1側から構成を説明したが、内視鏡では第二光学
部材2から第一光学部材1へ光が進行するように使用す
るので、後述する通り、実際の光路はここでの説明とは
逆である。
[0012] Here, although once separate the objective lens L 1 and the field conversion optical system is sometimes collectively both is considered that the side-view type objective lens. Also, the configuration has been described from the first optical member 1 side for convenience, but since the endoscope is used so that light travels from the second optical member 2 to the first optical member 1, the actual optical path is This is the opposite of the description here.

【0013】上記の場合、第一及び第二光学部材1,2
は光学ガラスのプリズムから成っており、第一光学部材
1の頂角(第一反射面1aと第二反射面1bとのなす
角)は20度で、第二反射面1bは光軸Oと平行な底面
をなしている。第一反射面1aで折り曲げられた光軸は
光軸Oに対して40度の傾斜角となるようにされてい
る。第一光学部材1の屈折率は1.88に設定されてい
て、第一反射面1aは空気層(屈折率1.0)及び接着
剤(屈折率1.52)との間で全反射するようになって
いる。又、第一反射面1aにおいては、空気との臨界角
は32度、接着剤との臨界角は53度で、光線の入射角
は60度乃至80度と何れの臨界角よりも大きい角度に
なるようにされているため、空気部でも接着剤部でも全
反射する。又、第二光学部材2との境界面で反射時の有
効径と透過時の有効径の位置が分離できているので、第
一反射面1aには第二光学部材2との境界面の反射部の
みに金属膜を蒸着した後に接合するようにしても良い。
In the above case, the first and second optical members 1, 2
Is composed of a prism of optical glass, the apex angle of the first optical member 1 (the angle between the first reflection surface 1a and the second reflection surface 1b) is 20 degrees, and the second reflection surface 1b is It has a parallel bottom. The optical axis bent at the first reflecting surface 1a has an inclination angle of 40 degrees with respect to the optical axis O. The refractive index of the first optical member 1 is set to 1.88, and the first reflecting surface 1a totally reflects between the air layer (refractive index 1.0) and the adhesive (refractive index 1.52). It has become. In the first reflecting surface 1a, the critical angle with air is 32 degrees, the critical angle with adhesive is 53 degrees, and the incident angle of light rays is 60 to 80 degrees, which is larger than any of the critical angles. As a result, the air part and the adhesive part are totally reflected. Further, since the position of the effective diameter at the time of reflection and the position of the effective diameter at the time of transmission can be separated at the boundary surface with the second optical member 2, the reflection at the boundary surface with the second optical member 2 is reflected on the first reflection surface 1 a. The bonding may be performed after depositing the metal film only on the portion.

【0014】第二反射面1bにおいても空気との臨界角
は32度であり、光線の入射角は40度乃至60度の角
度であって全反射するので、全反射させても良いし、金
属膜を蒸着して反射させるようにしても良いが、この実
施例では、正規の光路以外を伝達してゴーストやフレア
ーとなる光線を出来るだけなくするため、敢えて有効径
内に金属膜を施し、有効径外には黒の塗料を塗って遮光
するようにしている。
The critical angle of the second reflection surface 1b with the air is 32 degrees, and the incident angle of the light beam is 40 degrees to 60 degrees, so that the light is totally reflected. Although a film may be deposited and reflected, in this embodiment, a metal film is intentionally applied within the effective diameter in order to transmit light other than the normal optical path and to reduce ghost and flare rays as much as possible. Outside the effective diameter, black paint is applied to shield light.

【0015】第一光学部材1の接合面1dと第二光学部
材2の光導入面2aとの境界面に対する第二反射面1b
からの反射光の入射角は20度乃至40度であり、接着
剤とガラスとの臨界角は52度であるため、この反射光
は上記境界面を透過することが出来る。
The second reflecting surface 1b with respect to the boundary between the joining surface 1d of the first optical member 1 and the light introducing surface 2a of the second optical member 2
The incident angle of the reflected light from the glass is 20 degrees to 40 degrees, and the critical angle between the adhesive and the glass is 52 degrees, so that the reflected light can pass through the boundary surface.

【0016】第二光学部材2は、頂角が20度と25度
から成るプリズムであり、頂角20度の面が光導入面2
aとして第一光学部材2に接着されているので、第三反
射面2bは光軸Oに平行な面となっている。第二反射面
1bで折り曲げられた光軸と第三反射面2bとのなす角
度は40度であり、第三反射面2bで全反射するように
第二光学部材2の屈折率が設定されている。即ち、第三
反射面2bに垂直な軸に対して第二反射面1bからの反
射光のなす角度は40度乃至60度であり、第三反射面
2bにおいて空気との臨界角は32度であるので全反射
する。第三反射面2bで折り曲げられた光軸は、頂角2
5度の面(第四反射面2c)で折り曲げられて、光軸O
に対して90度の側視方向へ偏向される。第四反射面2
cには金属膜が蒸着されていて、ここで折り曲げられた
光軸は、第三反射面2bを垂直に透過する。かくして透
過した光軸は遮光板SHの開口SH1 と凹レンズLを通
ってステンレスチューブTに固定されたカバーガラスC
Gを透過する。
The second optical member 2 is a prism having an apex angle of 20 degrees and 25 degrees.
Since it is adhered to the first optical member 2 as a, the third reflection surface 2b is a surface parallel to the optical axis O. The angle formed between the optical axis bent by the second reflection surface 1b and the third reflection surface 2b is 40 degrees, and the refractive index of the second optical member 2 is set so that the light is totally reflected by the third reflection surface 2b. I have. That is, the angle formed by the reflected light from the second reflection surface 1b with respect to the axis perpendicular to the third reflection surface 2b is 40 degrees to 60 degrees, and the critical angle with air at the third reflection surface 2b is 32 degrees. There is total reflection. The optical axis bent at the third reflecting surface 2b has an apex angle of 2
The optical axis O is bent at a plane of 5 degrees (the fourth reflecting surface 2c).
Is deflected in a side viewing direction of 90 degrees. Fourth reflective surface 2
A metal film is deposited on c, and the optical axis bent here passes vertically through the third reflecting surface 2b. Thus transmitted light axis shielding plate SH opening SH 1 and a concave lens L a through with a stainless tube T which is fixed to the cover glass C
G is transmitted.

【0017】本実施例は上記のように構成されているか
ら、カバーガラスCG、凹レンズL及び開口SH1 を介
して第二光学部材2内へ導入された被検体よりの光a,
b,c(aは光軸に沿う光を、bは一方の周辺光を、c
は他の周辺光を示す)は、夫々第四反射面2c,第三反
射面2bにより図示の如く反射せしめられて接合面1d
を介して第一光学部材1内へ導入され、更に第二反射面
1b,第一反射面1aにより反射されて、対物レンズL
1 へ導かれる。かくして、90度側視可能な硬性鏡を提
供することができる。
[0017] Since this embodiment is constructed as described above, the cover glass CG, light a than the object introduced through the concave lens L and aperture SH 1 to the second optical member 2,
b, c (a is light along the optical axis, b is one peripheral light, c
Indicates other ambient light) is reflected by the fourth reflecting surface 2c and the third reflecting surface 2b, respectively, as shown in FIG.
Is introduced into the first optical member 1 through the first lens unit 1 and further reflected by the second reflecting surface 1b and the first reflecting surface 1a.
Guided to 1 . Thus, it is possible to provide a rigid endoscope that can be viewed 90 degrees sideways.

【0018】この説明で明らかなように、第一光学部材
1、第二光学部材2、遮光板SH及び凹レンズLより成
る視野方向変換光学系は、例えば針状硬性鏡先端部の外
形にも適合し得るようにパイプP内へコンパクトに収納
することができ、またこれらの光学部材はパイプP内へ
予め組み込んで固定した後、このパイプPをガイドパイ
プGP内へ圧入するだけで組み立てを完了することが出
来るから、製作上極めて好都合である。
As is apparent from this description, the viewing direction changing optical system including the first optical member 1, the second optical member 2, the light shielding plate SH, and the concave lens L is suitable for, for example, the outer shape of the tip of the needle-shaped rigid mirror. The optical members can be compactly housed in the pipe P so that the optical members can be assembled in the pipe P in advance and fixed, and then the pipe P is pressed into the guide pipe GP to complete the assembly. This is extremely convenient in terms of manufacturing.

【0019】上記第一実施例では、第一光学部材1から
の光の射出位置(第三反射面2bの位置)を、光軸Oの
延長線よりも更に下の位置に設定することも可能であ
る。又、第一反射面1aと第二光学部材2との接着面
に、反射光の有効径のみに金属膜を施すことで、接着剤
による反射部を全く無くすことが出来るので、安定した
生産が可能になる。又、光学部材の加工誤差等により部
品の寸法にバラツキがあっても、凹レンズLの位置が前
後に移動するだけでパイプP内へ光学部材を組み込むの
に問題となることは無く、又、凹レンズLが前後に移動
しても干渉する光学部材の斜面(第一反射面1a)が離
れた位置にあるので、組み立てが不可能になると云う問
題も生じない。又、第一反射面1aと第二反射面1bで
折り曲げられた光軸との交叉位置を光軸Oの延長線より
も或る程度低い位置にしなければならないため、第一光
学部材1の頂角は15度乃至30度が望ましく、更に加
工性と凹レンズLの位置を十分に下げることを考慮する
と、20度乃至25度程度がより望ましい。なお、遮光
板SHは厚さ方向に段差を付けて第三反射面2b上に空
気層を作るためのスペーサーともなるように構成したか
ら光学系の組み立てを容易にすることが出来る。
In the first embodiment, the position where the light is emitted from the first optical member 1 (the position of the third reflecting surface 2b) can be set at a position further below the extension of the optical axis O. It is. Further, by applying a metal film only to the effective diameter of the reflected light on the bonding surface between the first reflecting surface 1a and the second optical member 2, it is possible to completely eliminate the reflecting portion due to the adhesive, thereby achieving stable production. Will be possible. Further, even if the dimensions of the components vary due to the processing error of the optical member or the like, there is no problem in incorporating the optical member into the pipe P merely by moving the position of the concave lens L back and forth. Even if L moves back and forth, since the oblique surface (first reflecting surface 1a) of the optical member that interferes is located at a distance, there is no problem that assembly becomes impossible. In addition, since the intersection of the optical axis bent by the first reflection surface 1a and the second reflection surface 1b must be set to a position somewhat lower than the extension of the optical axis O, the top of the first optical member 1 The angle is preferably 15 degrees to 30 degrees, and more preferably about 20 degrees to 25 degrees in consideration of workability and a sufficient reduction in the position of the concave lens L. In addition, since the light-shielding plate SH is provided with a step in the thickness direction to serve as a spacer for forming an air layer on the third reflection surface 2b, it is possible to easily assemble the optical system.

【0020】図3は、本発明による光路変換光学系の第
二実施例を視野方向変換光学系として内蔵した硬性鏡先
端部の縦断面図である。この実施例は、第二光学部材2
と凹レンズLとの間に第三光学部材3が介在され、第二
反射面1bに金属膜がなくて全反射面となるように構成
されている点で、第一実施例とは異なる。即ち、この実
施例では、第二光学部材2の第三反射面2b上に有効径
を避けて接着されたスペーサーSPを介して平行平面板
として構成された第三光学部材3が配置され、凹レンズ
Lと遮光板SHはこの第三光学部材3上に設置されてい
る。スペーサーSPを用いて第二光学部材2と第三光学
部材3の間に空気層を設けたのは、凹レンズLを第三光
学部材3上に固定するための接着剤が直接第三反射面2
b上に付くと全反射せずに光量損失をおこすので、これ
を避けるためである。上述のように第二反射面1bには
金属膜がなく黒の塗料も施されていないので、フレアー
やゴーストとなる不要光が入り易いが、第三光学部材3
や遮光板SHを上述のように配置することにより、フレ
アーやゴーストを少なくするようにしている。
FIG. 3 is a longitudinal sectional view of the tip of a rigid endoscope in which a second embodiment of the optical path changing optical system according to the present invention is incorporated as a viewing direction changing optical system. In this embodiment, the second optical member 2
The third embodiment is different from the first embodiment in that the third optical member 3 is interposed between the first lens and the concave lens L, and the second reflection surface 1b is configured to be a total reflection surface without a metal film. That is, in this embodiment, the third optical member 3 configured as a parallel plane plate is disposed on the third reflecting surface 2b of the second optical member 2 via the spacer SP bonded so as to avoid the effective diameter, and the concave lens L and the light shielding plate SH are provided on the third optical member 3. The reason why the air layer is provided between the second optical member 2 and the third optical member 3 by using the spacer SP is that the adhesive for fixing the concave lens L on the third optical member 3 is directly applied to the third reflecting surface 2.
This is to prevent light from being lost if the light is not reflected on the surface b without causing total reflection. As described above, since the second reflection surface 1b has no metal film and is not coated with a black paint, unnecessary light such as flare or ghost is likely to enter.
By arranging the light shielding plate SH as described above, flare and ghost are reduced.

【0021】第二実施例のその他の構成及び作用は、第
一実施例と同様であるので説明を省略するが、第二実施
例では第二反射面1bが全反射面となっているため、反
射率が向上し明るい観察が可能となる。又、プリズムか
らの射出位置即ち第二光学部材2の第三反射面2bの位
置を、光軸Oの延長線とほぼ同じ位置に設定することも
可能である。又、第一及び第二光学部材であるプリズム
の加工誤差等により寸法に多少のバラツキがあっても、
凹レンズLの位置が前後に移動するだけでパイプPにこ
れらが入らなくなると云うような問題は無く、また凹レ
ンズが前後に移動したとしても干渉する斜面(第一反射
面1a)が離れているため組み立てに支障を来すような
こともない。
The other constructions and operations of the second embodiment are the same as those of the first embodiment, and will not be described. However, in the second embodiment, the second reflection surface 1b is a total reflection surface. The reflectivity is improved and bright observation is possible. Further, the exit position from the prism, that is, the position of the third reflection surface 2b of the second optical member 2 can be set to be substantially the same as the extension of the optical axis O. Also, even if there is some variation in dimensions due to processing errors and the like of the first and second optical members prism,
There is no problem that the concave lens L moves forward and backward, so that they do not enter the pipe P. Further, even if the concave lens L moves forward and backward, the slope (first reflection surface 1a) that interferes is far away. There is no hindrance to assembly.

【0022】以上第一及び第二実施例では従来薄く構成
することが困難であった側視即ち入射方向と射出方向が
直交する場合について説明したが、本発明はこれに限定
されるものではなく種々の視野方向変換を行う光路変換
光学系を提供することが出来る。以下にその実施例を示
す。
In the first and second embodiments, the side view, that is, the case where the incident direction is perpendicular to the exit direction, which has conventionally been difficult to make thin, has been described. However, the present invention is not limited to this. It is possible to provide an optical path conversion optical system that performs various viewing direction conversions. An example will be described below.

【0023】図4は本発明による光路変換光学系の第三
実施例の要部を示す断面図である。この実施例では、第
一光学部材は既述の実施例と同様のものが用いられ、第
二光学部材2の第三反射面2bと第四反射面2cを平行
にし、第二光学部材であるプリズムの射出面を第三反射
面とは別の面として形成したものであるが、この構成で
は入射方向は第二反射面1bから第三反射面2bに到る
光路と実質上平行になるので、所謂斜視光学系を実現す
ることが出来る。この場合、第三反射面2bと第四反射
面2cとが角度をなすように構成すれば、その角度に応
じて斜視方向即ち入射光路の方向も変化する。従来は、
既述のように側視型は薄くすることが困難であったばか
りでなく、図7乃至9から明らかなように、側視と斜視
では光学部品の形状に共通性がなく、夫々全く別個に製
作する必要があったし、斜視相互間でも視野方向が異な
れば別個の部品が必要であった。これに対して、本発明
によれば、上述のとおり第一光学部材を共通化して各種
の側視型視野方向変換光学系を構成することが出来るか
ら、部品の共通化或いは製造過程の共通化などの面で極
めて有用である。
FIG. 4 is a sectional view showing a main part of a third embodiment of the optical path changing optical system according to the present invention. In this embodiment, the first optical member is the same as that of the above-described embodiment, and the third optical surface 2b and the fourth optical surface 2c of the second optical member 2 are made parallel to each other, which is the second optical member. Although the exit surface of the prism is formed as a surface different from the third reflection surface, in this configuration, the incident direction is substantially parallel to the optical path from the second reflection surface 1b to the third reflection surface 2b. , A so-called oblique optical system can be realized. In this case, if the third reflection surface 2b and the fourth reflection surface 2c are configured to form an angle, the perspective direction, that is, the direction of the incident optical path changes according to the angle. conventionally,
As described above, not only was it difficult to reduce the thickness of the side-view type, but as is clear from FIGS. In addition, separate parts are required if the viewing directions are different between perspectives. On the other hand, according to the present invention, as described above, the first optical member can be used in common to form various side-view type viewing direction changing optical systems. It is extremely useful in such aspects.

【0024】図5(a)は本発明による光路変換光学系
の第四実施例の要部を示す断面図である。この実施例
は、第二光学部材2内での反射回数を増やした点で、第
三実施例とは異なる。この場合、第二光学部材2はプリ
ズムであって、第三実施例に比べると反射面R1 とR2
が増えている。これは、入射光路から射出光路までの距
離を長く取りたい場合に有用である。この実施例では、
反射面R1 は第三反射面2bと同一面上にあり、この面
と反射面R2 は平行であるが、図5(b)に示された変
形例の如く、反射面R2 は第三反射面2bと反射面R1
が在る面に対して傾けられていても良い。この変形例で
は、反射面R1 と第三反射面2bが在る面と、反射面R
2 と第四反射面2cが在る面との間隔は入射側に近づく
に連れて狭くなっているが、この構成では、各反射面に
おける反射角が徐々に小さくなるので、この作用を利用
して、入射方向と射出方向のなす角度も種々に設定する
ことができる。この実施例及び変形例では、反射面R1
と第三反射面2b、反射面R 2 と第四反射面2cが夫々
同一面上に在るように構成されているが、一つのプリズ
ムで反射回数が多い光学部材を構成しようとすると、形
状が複雑で製作が難しくなる場合があるので、必要に応
じて複数のプリズムで構成するようにしても良い。
FIG. 5A shows an optical path changing optical system according to the present invention.
It is sectional drawing which shows the principal part of 4th Example. This example
Is that the number of reflections in the second optical member 2 is increased.
Different from the three embodiments. In this case, the second optical member 2 is
The reflection surface R compared to the third embodiment.1And RTwo
Is increasing. This is the distance from the incident optical path to the exit optical path.
This is useful when you want to take longer. In this example,
Reflective surface R1Is on the same plane as the third reflection surface 2b, and this surface
And reflective surface RTwoAre parallel, but the variation shown in FIG.
As in the example, the reflection surface RTwoIs the third reflecting surface 2b and the reflecting surface R1
May be inclined with respect to the plane on which there is. In this variant
Is the reflection surface R1And the surface on which the third reflecting surface 2b is located, and the reflecting surface R
TwoIs closer to the incident side with respect to the surface where the fourth reflection surface 2c is located.
However, in this configuration, each reflecting surface
Use this effect as the reflection angle gradually decreases
To set various angles between the incident direction and the exit direction
be able to. In this embodiment and the modification, the reflecting surface R1
And third reflecting surface 2b, reflecting surface R TwoAnd the fourth reflecting surface 2c are respectively
It is configured to be on the same plane, but one prism
If you try to construct an optical member that
The shape may be complicated and the production may be difficult.
Alternatively, a plurality of prisms may be used.

【0025】以上の説明で明らかなように、本発明によ
る光路変換光学系は、第一光学部材1の厚さ以上に厚く
なることがないから、極めて薄い光学系とすることが出
来る。従って、本発明は、硬性鏡等の内視鏡の視野方向
変換光学系のみならず、各種光学機器の光路変換光学系
として広く適用することが可能である。図6は、第一実
施例で説明した光路変換光学系を電子カメラに利用した
一例を示す概略断面図である。図中、Fはファインダー
光学系、OPは本発明に係る光路変換光学系、L1 は結
合正レンズから成る対物レンズ、ISはイメージセンサ
ーである。このように光路変換光学系OPを立てて用
い、その射出光路上にイメージセンサーISを配置し
て、これらとファインダー光学系Fとを一つのハウジン
グに収めれば、超薄型の電子カメラを得ることが出来
る。
As is clear from the above description, the optical path changing optical system according to the present invention does not become thicker than the thickness of the first optical member 1, so that it can be an extremely thin optical system. Therefore, the present invention can be widely applied not only to a viewing direction changing optical system of an endoscope such as a rigid endoscope but also to an optical path changing optical system of various optical devices. FIG. 6 is a schematic sectional view showing an example in which the optical path changing optical system described in the first embodiment is used in an electronic camera. In the figure, F represents a finder optical system, OP is the optical path conversion optical system according to the present invention, L 1 is an objective lens formed of a binding positive lens, IS is an image sensor. As described above, if the optical path conversion optical system OP is used upright, the image sensor IS is arranged on the emission optical path, and these and the finder optical system F are housed in one housing, an ultra-thin electronic camera is obtained. I can do it.

【0026】以上説明したように、本発明の光路変換光
学系は、特許請求の範囲に記載した特徴のほかに、下記
の特徴を有している。 (1)射出側から入射側に向って逆に光路を辿ったとき
に、射出光路を入射光路と逆向き斜めに反射する第一反
射面と該第一反射面で反射された光路を入射光路の方向
へ斜めに反射する第二反射面とを備えた第一光学部材
と、前記第二反射面で反射された光路を直接又は間に反
射面を介して入射光路と逆向きに斜めに反射する第三反
射面と該第三反射面で反射された光路を入射方向に向け
る第四反射面とを備えた第二光学部材とを有する、入射
方向と射出方向が異なる光路変換光学系。
As described above, the optical path conversion optical system of the present invention has the following features in addition to the features described in the claims. (1) When an optical path is traced backward from the exit side to the incident side, a first reflection surface that reflects the exit optical path obliquely in a direction opposite to the incident optical path and an optical path that is reflected by the first reflection surface is an incident optical path. A first optical member having a second reflecting surface that reflects obliquely in the direction of, and obliquely reflects the optical path reflected by the second reflecting surface directly or in the opposite direction to the incident optical path via the reflecting surface. An optical path conversion optical system having different incident and outgoing directions, comprising a second optical member having a third reflecting surface to be turned on and a fourth reflecting surface for directing the optical path reflected by the third reflecting surface to the incident direction.

【0027】(2)前記第二反射面と第三反射面が射出
光路と実質上平行に配置されており、入射方向と射出方
向が実質上直交している、上記(1)に記載の光路変換
光学系。
(2) The optical path according to the above (1), wherein the second reflection surface and the third reflection surface are arranged substantially in parallel with the exit optical path, and the incident direction and the exit direction are substantially orthogonal. Conversion optics.

【0028】(3)前記第一及び第二光学部材が何れも
プリズムである、上記(1)又は(2)に記載の光路変
換光学系。
(3) The optical path conversion optical system according to (1) or (2), wherein the first and second optical members are both prisms.

【0029】(4)前記第二光学部材の入射面と前記第
三反射面が同一面上にある、上記(3)に記載の光路変
換光学系。
(4) The optical path changing optical system according to (3), wherein the incident surface of the second optical member and the third reflecting surface are on the same surface.

【0030】(5)前記第二光学部材の入射面と前記第
三反射面が所定の角度をなすように傾斜せしめられてい
る、上記(3)に記載の光路変換光学系。
(5) The optical path conversion optical system according to (3), wherein the incident surface of the second optical member and the third reflecting surface are inclined so as to form a predetermined angle.

【0031】(6)射出側から入射側に向って逆に光路
を辿った時に、射出光路を入射光路と逆向き斜めに反射
する第一反射面と該第1反射面で反射された光路を入射
光路の方向へ斜めに反射する第二反射面とを備えた第一
プリズムと、前記第二反射面で反射された光路を直接又
は間に反射面を介して入射光路と逆向き斜めに反射する
第三反射面と該第三反射面で反射された光路を入射方向
に向ける第四反射面とを備えた第二プリズムとから成
り、前記第一反射面と第二反射面とのなす角度が一定の
前記第一プリズムに、前記第三反射面と第四反射面との
なす角度が異なる前記第二プリズムを選択的に組み合わ
せることにより、入射方向と射出方向とのなす角度が異
なる複数の光路変換光学系を構成するようにした光路変
換光学系の構成方法。
(6) When the optical path is traced backward from the exit side to the entrance side, the first reflection surface that reflects the exit optical path obliquely in the direction opposite to the incident optical path, and the optical path that is reflected by the first reflection surface. A first prism having a second reflecting surface obliquely reflecting in the direction of the incident light path, and reflecting the light path reflected by the second reflecting surface either directly or obliquely in the opposite direction to the incident light path via the reflecting surface. And a second prism having a fourth reflecting surface for directing the optical path reflected by the third reflecting surface in the incident direction, and an angle between the first reflecting surface and the second reflecting surface. The first prism is constant, by selectively combining the second prism having a different angle between the third reflection surface and the fourth reflection surface, a plurality of different angles formed between the incident direction and the emission direction. Method of configuring optical path conversion optical system for configuring optical path conversion optical system

【0032】[0032]

【発明の効果】上述の如く本発明によれば、コンパクト
で且つ超薄型の光路変換光学系を提供することができ、
特に側視(90度)または斜視(70乃至110度)の
硬性鏡等に適用したとき極細のパイプ内にも収納可能な
視野方向変換光学系を提供することができる。
As described above, according to the present invention, a compact and ultra-thin optical path changing optical system can be provided.
In particular, it is possible to provide a viewing direction changing optical system that can be accommodated in a very fine pipe when applied to a rigid mirror or the like that is viewed from the side (90 degrees) or oblique (70 to 110 degrees).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光路変換光学系の第一実施例を視
野方向変換光学系として内蔵した硬性鏡先端部の縦断面
図である。
FIG. 1 is a longitudinal sectional view of a distal end portion of a rigid mirror in which a first embodiment of an optical path changing optical system according to the present invention is incorporated as a viewing direction changing optical system.

【図2】第一実施例に用いられた遮光板の底面図であ
る。
FIG. 2 is a bottom view of the light shielding plate used in the first embodiment.

【図3】本発明による光路変換光学系の第二実施例を視
野方向変換光学系として内蔵した硬性鏡先端部の縦断面
図である。
FIG. 3 is a longitudinal sectional view of a distal end portion of a rigid endoscope in which a second embodiment of the optical path changing optical system according to the present invention is incorporated as a viewing direction changing optical system.

【図4】本発明による光路変換光学系の第三実施例の要
部断面図である。
FIG. 4 is a sectional view of a main part of a third embodiment of the optical path changing optical system according to the present invention.

【図5】(a)は本発明による光路変換光学系の第四実
施例の要部断面図、(b)はその変形例を示す断面図で
ある。
FIG. 5A is a sectional view of a main part of a fourth embodiment of an optical path changing optical system according to the present invention, and FIG. 5B is a sectional view showing a modified example thereof.

【図6】本発明の第一実施例を電子カメラに利用した一
例を示す概略断面図である。
FIG. 6 is a schematic sectional view showing an example in which the first embodiment of the present invention is applied to an electronic camera.

【図7】従来の70度斜視の視野変換光学系の代表例を
示す要部断面図である。
FIG. 7 is a cross-sectional view of a main part showing a typical example of a conventional 70-degree oblique view conversion optical system.

【図8】従来の90度側視の視野変換光学系の代表例を
示す要部断面図である。
FIG. 8 is a cross-sectional view of a main part showing a typical example of a conventional 90-degree side-view visual field conversion optical system.

【図9】従来の110度後方視の視野変換光学系の代表
例を示す要部断面図である。
FIG. 9 is a cross-sectional view of a main part showing a typical example of a conventional field-of-view conversion optical system for 110-degree rear view.

【符号の説明】[Explanation of symbols]

1 第一光学部材 1a 第一反射面 1b 第二反射面 1c 球面 1d 接合面 2 第二光学部材 2a 光導入面 2b 第三反射面 2c 第四反射面 2d 出射面 3 第三光学部材 SH 遮光板 SH1 開口 L 凹レンズ L1 対物レンズ CG カバーガラス P パイプ T ステンレスチューブ 1G ライトガイド O 射出光軸 SP スペーサー R,R1 ,R2 反射面 F ファインダー OP 光路変換光学系 IS イメージセンサーDESCRIPTION OF SYMBOLS 1 First optical member 1a First reflecting surface 1b Second reflecting surface 1c Spherical surface 1d Joining surface 2 Second optical member 2a Light introducing surface 2b Third reflecting surface 2c Fourth reflecting surface 2d Emission surface 3 Third optical member SH Light shielding plate SH 1 aperture L concave lens L 1 objective lens CG cover glass P pipe T stainless tube 1G light guide O emission optical axis SP spacer R, R 1 , R 2 reflection surface F finder OP optical path conversion optical system IS image sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 細長いハウジング内に収納されていて射
出側から入射側に向って逆に光路を辿ったときに、該ハ
ウジングの長手方向に沿った光軸を下方へ折り曲げる第
一反射面と該第一反射面により折り曲げられた光軸を前
方上方へ折り曲げる第二反射面とを有する第一光学部材
と、前記ハウジング内に収納されていて前記第一光学部
材の前方に隣接配置されていて前記第二反射面により折
り曲げられた光軸を下方へ折り曲げる第三反射面と該第
三反射面により折り曲げられた光軸を所定の上方へ折り
曲げる第四反射面とを有する第二光学部材を備えたこと
を特徴とする光路変換光学系。
A first reflecting surface which is housed in an elongated housing and bends an optical axis along a longitudinal direction of the housing downward when the optical path traces the light path from the exit side to the entrance side in reverse. A first optical member having a second reflecting surface that bends the optical axis bent by the first reflecting surface forward and upward, and is housed in the housing and is disposed adjacent to and in front of the first optical member, A second optical member having a third reflecting surface for bending the optical axis bent by the second reflecting surface downward and a fourth reflecting surface for bending the optical axis bent by the third reflecting surface upward by a predetermined amount; An optical path conversion optical system characterized by the above-mentioned.
【請求項2】 前記ハウジング内に収納されていて前記
第二光学部材の上方に配置された第三光学部材を更に備
えたことを特徴とする請求項1に記載の光路変換光学
系。
2. The optical path changing optical system according to claim 1, further comprising a third optical member housed in said housing and disposed above said second optical member.
【請求項3】 前記第二光学部材と前記第三光学部材は
僅かな空気間隔を隔てて配置されていることを特徴とす
る請求項2に記載の光路変換光学系。
3. The optical path conversion optical system according to claim 2, wherein the second optical member and the third optical member are arranged with a slight air gap.
JP11026448A 1999-02-03 1999-02-03 Optical path conversion optical system Withdrawn JP2000221416A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11026448A JP2000221416A (en) 1999-02-03 1999-02-03 Optical path conversion optical system
PCT/EP2000/000796 WO2000046626A1 (en) 1999-02-03 2000-02-01 Optical-path conversion optical system
DE10080406T DE10080406T1 (en) 1999-02-03 2000-02-01 Optical system for deflecting the optical beam path
DE20023373U DE20023373U1 (en) 1999-02-03 2000-02-01 Optical path conversion optical system in convex mirror for endoscope, has prisms with reflecting surfaces contained in long housing for sequentially bending and reflecting optical axis of observed light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11026448A JP2000221416A (en) 1999-02-03 1999-02-03 Optical path conversion optical system

Publications (1)

Publication Number Publication Date
JP2000221416A true JP2000221416A (en) 2000-08-11

Family

ID=12193794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11026448A Withdrawn JP2000221416A (en) 1999-02-03 1999-02-03 Optical path conversion optical system

Country Status (3)

Country Link
JP (1) JP2000221416A (en)
DE (1) DE10080406T1 (en)
WO (1) WO2000046626A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105626A (en) * 2004-09-30 2006-04-20 Sunx Ltd Optical fiber sensor head
JP2007503922A (en) * 2003-09-05 2007-03-01 インフレアデックス, インク. Optical catheter with two-stage beam redirector
JP2018200468A (en) * 2013-09-01 2018-12-20 ベンカテサン, ヴァルン アクールVENKATESAN, Varun Akur Optical system for light collection
WO2020067385A1 (en) * 2018-09-28 2020-04-02 パナソニックi-PROセンシングソリューションズ株式会社 Endoscope
CN111246788A (en) * 2017-10-20 2020-06-05 奥林匹斯冬季和Ibe有限公司 Deflection prism assembly for endoscope with side view direction, endoscope and deflection prism assembly assembling method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845686B2 (en) * 1976-03-03 1983-10-12 オリンパス光学工業株式会社 Single-lens reflex optical system for endoscopes
JPS6064320A (en) * 1983-09-20 1985-04-12 Olympus Optical Co Ltd Visual field conversion optical system for endoscope
US4746203A (en) * 1984-08-15 1988-05-24 Olympus Optical Co., Ltd. Optical system for endoscope
US4917457A (en) * 1987-06-08 1990-04-17 Asahi Kogaku Kogyo Kabushiki Kaisha Beam separating prism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503922A (en) * 2003-09-05 2007-03-01 インフレアデックス, インク. Optical catheter with two-stage beam redirector
JP2006105626A (en) * 2004-09-30 2006-04-20 Sunx Ltd Optical fiber sensor head
JP2018200468A (en) * 2013-09-01 2018-12-20 ベンカテサン, ヴァルン アクールVENKATESAN, Varun Akur Optical system for light collection
CN111246788A (en) * 2017-10-20 2020-06-05 奥林匹斯冬季和Ibe有限公司 Deflection prism assembly for endoscope with side view direction, endoscope and deflection prism assembly assembling method
US11672411B2 (en) 2017-10-20 2023-06-13 Olympus Winter & Ibe Gmbh Deflection prism assembly for an endoscope having a lateral viewing direction, endoscope, and method for assembling a deflection prism assembly
WO2020067385A1 (en) * 2018-09-28 2020-04-02 パナソニックi-PROセンシングソリューションズ株式会社 Endoscope
JPWO2020067385A1 (en) * 2018-09-28 2021-09-02 パナソニックi−PROセンシングソリューションズ株式会社 Endoscope
JP7208253B2 (en) 2018-09-28 2023-01-18 i-PRO株式会社 Endoscope

Also Published As

Publication number Publication date
WO2000046626A1 (en) 2000-08-10
DE10080406T1 (en) 2001-08-30

Similar Documents

Publication Publication Date Title
US6560013B1 (en) Endoscope with variable direction of view
US4783156A (en) Optical system for altering the direction of the visual field in endoscopes
US6635010B1 (en) Endoscope objective
US6433910B2 (en) Confocal optical system
JP3355270B2 (en) Light emitting module
US6483626B2 (en) Direct-view-type confocal point optical system
JPH04253B2 (en)
JP4331501B2 (en) Compact optical unit
JPS6064320A (en) Visual field conversion optical system for endoscope
JP2000221416A (en) Optical path conversion optical system
US10627615B2 (en) Endoscope distal end portion, endoscope, and optical adaptor
US4113354A (en) Single-lens reflex optical system for an endoscope
JPH0511196A (en) Visual field direction conversion optical system for endoscope
US6659942B2 (en) Endoscope with a deflection system
JP2008206624A (en) Tip part for ultrafine diameter electronic endoscope
JP3187064B2 (en) Side-view type endoscope for in-tube observation
JPH10123411A (en) Optical system for fiberscope
JP2002182126A (en) Illuminating optical system for light guide and endoscope
JPH09288240A (en) Visual field direction changing optical system for endoscope
JP3317451B2 (en) Endoscope objective optical system
JP2006301586A (en) Lighting system
JPH10151105A (en) Endoscope optical system
JP3477314B2 (en) Endoscope lighting system
JPH05113541A (en) Endoscope illuminating device
JPS6066224A (en) Endoscope using solid-state image pickup device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404