JP2000219878A - Production of fluorescent substance - Google Patents

Production of fluorescent substance

Info

Publication number
JP2000219878A
JP2000219878A JP2490399A JP2490399A JP2000219878A JP 2000219878 A JP2000219878 A JP 2000219878A JP 2490399 A JP2490399 A JP 2490399A JP 2490399 A JP2490399 A JP 2490399A JP 2000219878 A JP2000219878 A JP 2000219878A
Authority
JP
Japan
Prior art keywords
fluorescent substance
phosphor
hydroxide
producing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2490399A
Other languages
Japanese (ja)
Inventor
Junko Suda
順子 須田
Yoshitaka Sato
義孝 佐藤
Fumiaki Kataoka
文昭 片岡
Hitoshi Toki
均 土岐
Yuji Nomura
裕司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2490399A priority Critical patent/JP2000219878A/en
Publication of JP2000219878A publication Critical patent/JP2000219878A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a GalnN-based fluorescent substance having good brightness characteristics and capable of providing arbitrary light-emitting colors from blue to red. SOLUTION: Gallium nitrate is mixed with indium nitrate as aqueous solutions at a prescribed ratio. Ammonia is dropped to the solution while keeping the solution at 40 deg.C to afford hydroxide of In and Ga, which is then baked and H2O is removed therefrom and 1% ZnO is added as a dopamine thereto and these compounds are reacted in ammonia stream for 1 hr to provide Ga0.95In0.05N:Zn fluorescent substance. The particle diameter of the fluorescent substance is distributed in the range of 0.2 μm to 1 μm and has a round shape which is similar to normal fluorescent substance. GaN and InN uniformly form a solid solution at atomic level. Evaluation of crystallinity of the fluorescent substance by X ray diffraction method exhibits 0.192 integration width which is good result. When the fluorescent substance is mounted in the fluorescent display device and the relationship between the positive voltage and brightness of fluorescent substance layer is examined, the fluorescent substance exhibits excellent brightness characteristics than a fluorescent substance prepared by conventional production method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaInN系の蛍
光体の製造方法に係り、特にGaNとInNが原子レベ
ルで均一に固溶しているために輝度特性が良好で青色か
ら赤色まで任意の発光色が得られるGaInN系蛍光体
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a GaInN-based phosphor, and more particularly to a method for producing a GaInN-based phosphor, which has a good luminance characteristic because GaN and InN are uniformly dissolved at the atomic level, and has an arbitrary color from blue to red. The present invention relates to a method for producing a GaInN-based phosphor capable of obtaining an emission color.

【0002】[0002]

【従来の技術】近年、GaNの単結晶は、高輝度な青色
乃至緑色の発光を示すLED,LD用材料として知られ
ている。前記GaNを得る方法としては、Ga2 3
出発原料とする方法が知られている。この方法では得ら
れる発光色は紫色に近い青色になる。
2. Description of the Related Art In recent years, single crystals of GaN have been known as materials for LEDs and LDs that emit blue or green light with high luminance. As a method for obtaining the GaN, a method using Ga 2 O 3 as a starting material is known. In this method, the emission color obtained is a blue color close to purple.

【0003】また、Ga1-x Inx N:A,B(0<x
<1,A=Zn,Mg,B=Si,Ge)で表される材
料が、青色から赤色までの発光が可能な蛍光体として知
られている。この蛍光体を電子線で発光させる試みは過
去にあるものの、この蛍光体を粉体状にした材料で実用
域に達したものは知られていない。例えば、このGa
1-x Inx N:A,B系蛍光体の製造方法として、Ga
2 3 及びIn2 3 を用いて粉体状の蛍光体を製造す
る方法が知られているが、この方法には実用上問題があ
った。
In addition, Ga1-xInxN: A, B (0 <x
<1, A = Zn, Mg, B = Si, Ge)
Is known as a phosphor capable of emitting light from blue to red.
Have been. Attempts to cause this phosphor to emit light with an electron beam
Practical use of this phosphor in powdered form
What has reached the territory is unknown. For example, this Ga
1-xInxAs a method for producing an N: A, B-based phosphor, Ga
TwoSThreeAnd InTwoSThreeOf powdered phosphor using
However, there are practical problems with this method.
Was.

【0004】[0004]

【発明が解決しようとする課題】即ち、上記の方法では
Ga2 3 とIn2 3 の分解温度が異なり、特にIn
2 3 は、Ga2 3 が窒化される温度より低温で分解
が始まるため、制御が非常に困難であるという問題があ
った。また、このため得られた蛍光体の特性も実用化す
るには改良が必要である。
That is, in the above method,
GaTwoSThreeAnd InTwoSThreeAre different in the decomposition temperature, especially In
TwoSThreeIs GaTwoSThreeDecomposes below the temperature at which it is nitrided
Is very difficult to control.
Was. In addition, the characteristics of the obtained phosphor are put to practical use.
Need to be improved.

【0005】この蛍光体を作製する別の方法として、G
2 3 とIn2 3 を用いる方法があるが、窒化反応
は気相反応であるため、結晶系の異なるGa2 3 (三
方晶系、単斜晶系)とIn2 3 (立方晶系)は固溶体
の形成が困難であるという問題がある。
As another method for producing this phosphor, G
Although there is a method using a 2 O 3 and In 2 O 3 , since the nitriding reaction is a gas phase reaction, Ga 2 O 3 (trigonal system, monoclinic system) and In 2 O 3 ( (Cubic system) has a problem that it is difficult to form a solid solution.

【0006】また、通常用いられるフラックスを用いて
合成すると窒化反応時にこれが取り込まれて発光を阻害
するという問題がある。
[0006] In addition, when synthesized using a commonly used flux, there is a problem that this is taken in at the time of nitriding reaction to inhibit light emission.

【0007】本発明は、GaInN系の蛍光体の製造方
法において、特にGaNとInNを原子レベルで均一に
固溶させることにより輝度特性が良好で青色から赤色ま
で任意の発光色が得られる蛍光体を製造できるようにす
ることを目的としている。
The present invention relates to a method for producing a GaInN-based phosphor, in which GaN and InN are uniformly dissolved at the atomic level so as to have a good luminance characteristic and to obtain an arbitrary luminescent color from blue to red. It is intended to be able to manufacture.

【0008】[0008]

【課題を解決するための手段】請求項1に記載された蛍
光体の製造方法は、Ga1-x Inx N:A,B(0<x
<1、A=Zn,Mg、B=Si,Ge)で表される蛍
光体の製造方法において、InとGaをコロイドの状態
で混在させた後に窒化させることを特徴としている。
According to a first aspect of the present invention, there is provided a method of manufacturing a phosphor, comprising the steps of: Ga 1-x In x N: A, B (0 <x
<1, A = A, Zn, Mg, B = Si, Ge) A method of manufacturing a phosphor characterized by mixing In and Ga in a colloidal state and then nitriding.

【0009】請求項2に記載された蛍光体の製造方法
は、Ga1-x Inx N:A,B(0<x<1、A=Z
n,Mg、B=Si,Ge)で表される蛍光体の製造方
法において、Inを含む物質とGaを含む物質をそれぞ
れコロイド粒子よりも小さい状態で混在させた後に窒化
させることを特徴としている。
According to a second aspect of the present invention, there is provided a method of manufacturing a phosphor, comprising the steps of Ga 1-x In x N: A, B (0 <x <1, A = Z
In a method for producing a phosphor represented by (n, Mg, B = Si, Ge), a substance containing In and a substance containing Ga are mixed in a state smaller than the colloidal particles, and then nitrided. .

【0010】請求項3に記載された蛍光体の製造方法
は、Ga1-x Inx N:A,B(0<x<1、A=Z
n,Mg、B=Si,Ge)で表される蛍光体の製造方
法において、GaとInの水溶性化合物を生成し、前記
水溶性化合物からGaとInの水酸化物を同時に生成
し、前記水酸化物を焼成した後に窒化することを特徴と
している。
In a third aspect of the present invention, there is provided a method for manufacturing a phosphor, comprising: Ga 1-x In x N: A, B (0 <x <1, A = Z
n, Mg, B = Si, Ge) a method for producing a phosphor represented by the formula: wherein a water-soluble compound of Ga and In is generated, and a hydroxide of Ga and In is simultaneously generated from the water-soluble compound; It is characterized in that the hydroxide is nitrided after firing.

【0011】請求項4に記載された蛍光体の製造方法
は、Ga1-x Inx N:A,B(0<x<1、A=Z
n,Mg、B=Si,Ge)で表される蛍光体の製造方
法において、GaとInの硝酸塩水溶液を生成し、尿素
とアンモニアからなる群から選択された物質を前記硝酸
塩水溶液に添加してGaとInの水酸化物を同時に生成
して沈殿させ、前記水酸化物を焼成した後に窒化するこ
とを特徴としている。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a phosphor, comprising: Ga 1-x In x N: A, B (0 <x <1, A = Z
n, Mg, B = Si, Ge), a method for producing a nitrate aqueous solution of Ga and In and adding a substance selected from the group consisting of urea and ammonia to the nitrate aqueous solution. It is characterized in that Ga and In hydroxides are simultaneously generated and precipitated, and the hydroxides are fired and then nitrided.

【0012】請求項5に記載された蛍光体の製造方法
は、請求項3又は4記載の蛍光体の製造方法において、
前記水酸化物を共沈させた後に、前記AとBからなる群
から選択された物質を含む原料を前記水酸化物に添加
し、前記水酸化物を焼成することを特徴としている。
According to a fifth aspect of the present invention, there is provided a method for manufacturing a phosphor according to the third or fourth aspect, further comprising:
After co-precipitating the hydroxide, a raw material containing a substance selected from the group consisting of A and B is added to the hydroxide, and the hydroxide is fired.

【0013】請求項6に記載された蛍光体の製造方法
は、請求項3又は4記載の蛍光体の製造方法において、
前記AとBからなる群から選択された物質を含む原料と
ともに前記水酸化物を共沈させることを特徴としてい
る。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a phosphor according to the third or fourth aspect.
The hydroxide is coprecipitated with a raw material containing a substance selected from the group consisting of A and B.

【0014】[0014]

【作用】InとGaをコロイド状態、例えば水酸化物の
状態で共沈させた状態とした後に焼成し、さらにこれを
窒化させる。InとGaは水酸化物の状態では原子レベ
ルで十分に混合されており、これを焼成するとH2 Oが
とんで酸化物になるが、InとGaの各酸化物は結晶系
が異なるために、この状態では全体としての結晶性はよ
くない。ここで気相反応で窒化工程を行うと、ガスが物
質中をよく通過して窒化が効率的に進むので、原子レベ
ルでよく混合したGaInN系蛍光体が得られる。
After sintering, In and Ga are coprecipitated in a colloidal state, for example, a hydroxide state, and then calcined, followed by nitriding. In and Ga are sufficiently mixed at the atomic level in the state of hydroxide, and when this is fired, H 2 O is cut off to form an oxide. However, since each oxide of In and Ga has a different crystal system, In this state, the overall crystallinity is not good. Here, when the nitriding step is performed in a gas phase reaction, the gas passes through the substance well and the nitriding proceeds efficiently, so that a GaInN-based phosphor mixed well at the atomic level can be obtained.

【0015】[0015]

【発明の実施の形態】本例では、Ga2 3 とIn2
3 が固溶状態になった物質を出発原料とする。しかしな
がら、GaとInは、窒化物のレベルでは結晶構造が同
じなので均一に混合しやすいが、酸化物や硫化物の場合
には結晶構造が異なるので均一には混合しにくい。この
ため、結晶系が異なるGa2 3 とIn2 3 を高温で
焼成しても、得られる窒化物は互いに偏析してしまう。
このためGaNも組成が部分部分で異なったものにな
り、特定の組成比で原子レベルのコントロールをするこ
とができない。すなわち、きちんと発光色を制御出来な
い。また、両方の発光が各々でてしまうため色純度が悪
くなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, Ga 2 O 3 and In 2 O
The starting material is a substance in which 3 is in a solid solution state. However, although Ga and In have the same crystal structure at the nitride level, they are easily mixed uniformly, but oxides and sulfides have different crystal structures and are therefore difficult to mix uniformly. Therefore, even if Ga 2 O 3 and In 2 O 3 having different crystal systems are fired at a high temperature, the obtained nitrides segregate with each other.
For this reason, GaN also has a different composition in a part, and it is not possible to control the atomic level with a specific composition ratio. That is, the emission color cannot be properly controlled. In addition, since both light emissions are emitted, the color purity deteriorates.

【0016】このため、Ga1-x Inx N:A,B(0
<x<1、A=Zn,Mg、B=Si,Ge)で表され
る蛍光体の製造に用いられる原料としては、GaInN
という固溶状態を形成する為に、Inを含む物質とGa
を含む物質がそれぞれコロイドレベル以下の大きさであ
り、好ましくは原子レベルで混ざり合っている状態の物
質を出発原料とすることが望ましい。そこで、本例では
これらを満足すると考えられるものとして、Ga,In
原料を水酸化物の形で共沈させ、これを原料として用い
た。
For this reason, Ga 1-x In x N: A, B (0
<X <1, A = Zn, Mg, B = Si, Ge) As a raw material used for manufacturing a phosphor represented by GaInN
In order to form a solid solution state, a material containing In and Ga
It is desirable that the starting material is a material containing a compound having a size of not more than the colloid level and preferably being mixed at the atomic level. Therefore, in the present example, Ga, In
The raw material was coprecipitated in the form of a hydroxide and used as a raw material.

【0017】(1) 実施例1 硝酸Ga及び硝酸Inを所定の比率で秤量後、水溶液と
して混合した。溶液の温度を40℃に保ちながらアンモ
ニアを滴下することにより、In,Gaを含む水酸化物
を得た。
(1) Example 1 Ga nitrate and In nitrate were weighed at a predetermined ratio and mixed as an aqueous solution. By dropping ammonia while keeping the temperature of the solution at 40 ° C., a hydroxide containing In and Ga was obtained.

【0018】この水酸化物を焼成することによりH2
を抜いて得られたx=0.05の組成比の原料にドーパ
ントとしてZnOを1%添加し、アンモニア気流中で9
50℃で1時間反応させ、Ga0.95In0.05N:Zn蛍
光体を得た。図1のSEM写真に示すように、得られた
蛍光体は粒径が0.2μmから1μmの範囲に分布して
おり、その形状は通常の蛍光体と同様の丸みをおびた形
状であった。
By firing this hydroxide, H 2 O
1% of ZnO as a dopant is added to a raw material having a composition ratio of x = 0.05 obtained by removing
The reaction was carried out at 50 ° C. for 1 hour to obtain a Ga 0.95 In 0.05 N: Zn phosphor. As shown in the SEM photograph of FIG. 1, the obtained phosphor had a particle size distribution ranging from 0.2 μm to 1 μm, and the shape was a rounded shape similar to a normal phosphor. .

【0019】硫化物原料を出発物質とし、水酸化物を共
沈させる前述と同様の方法で作製を試みたが、検討の結
果同様の組成の蛍光体を得ることができた。
An attempt was made to prepare a sulfide raw material as a starting material in the same manner as described above in which a hydroxide was coprecipitated. As a result of the investigation, a phosphor having a similar composition was obtained.

【0020】これら蛍光体の結晶性をX線回折法で評価
したところ、その目安となる積分幅で水酸化物原料の
0.192に対し0.272(この値は小さいほどよ
い)と良好な結果が得られた。
When the crystallinity of these phosphors was evaluated by the X-ray diffraction method, it was found that the integrated width was 0.272 (the smaller the better) as compared with 0.192 of the hydroxide raw material. The result was obtained.

【0021】図2に示すように、本例の蛍光体を用いて
蛍光表示装置1(VFD1)を作製した。ガラス製の陽
極基板2の上にITO等からなる透明電極である陽極導
体3を設ける。本例の蛍光体を、この陽極導体3の上に
スクリーン印刷法で塗布する。これを大気中500℃で
焼成してバインダーを除去して蛍光体層4とし、陽極導
体3と蛍光体層4からなる陽極5が陽極基板2の上に形
成される。この陽極基板2に所定間隔をおいて背面基板
6を対面させ、両基板2,6の外周縁の間に側面板を設
け、外囲器7を構成する。高真空状態に封止された外囲
器7の内部には、フィラメント状の陰極8と、制御電極
9が共に設けられる。
As shown in FIG. 2, a fluorescent display device 1 (VFD1) was manufactured using the phosphor of this example. An anode conductor 3 which is a transparent electrode made of ITO or the like is provided on an anode substrate 2 made of glass. The phosphor of this example is applied on the anode conductor 3 by a screen printing method. This is fired at 500 ° C. in the air to remove the binder to form the phosphor layer 4, and the anode 5 composed of the anode conductor 3 and the phosphor layer 4 is formed on the anode substrate 2. The rear substrate 6 faces the anode substrate 2 at a predetermined interval, and a side plate is provided between the outer peripheral edges of both substrates 2, 6 to form an envelope 7. A filament-shaped cathode 8 and a control electrode 9 are both provided inside the envelope 7 sealed in a high vacuum state.

【0022】本例(本願)及び比較例(従来例)の蛍光
表示装置におけるアノード電圧(陽極電圧)と蛍光体層
の輝度の関係を図3に比較して示す。このように本願試
料の方が従来の製法で作った蛍光体よりも優れた輝度特
性を示した。また、この時の発光色は青色であった。
FIG. 3 shows the relationship between the anode voltage (anode voltage) and the luminance of the phosphor layer in the fluorescent display devices of the present example (the present application) and the comparative example (conventional example). As described above, the sample of the present application exhibited better luminance characteristics than the phosphor prepared by the conventional manufacturing method. The emission color at this time was blue.

【0023】(2) 実施例2 同様にGa,In硝酸塩を用い、この水溶液に尿素を添
加し攪拌しながら水溶液の温度を80℃で20時間保持
した。この方法でもIn,Gaを含む水酸化物沈殿物を
得ることができた。
(2) Example 2 Similarly, Ga, In nitrate was used, urea was added to the aqueous solution, and the temperature of the aqueous solution was maintained at 80 ° C. for 20 hours while stirring. Also with this method, a hydroxide precipitate containing In and Ga could be obtained.

【0024】この水酸化物を焼成することによりH2
を抜いて得られたx=0.3の組成比の原料にドーパン
トしてMgCl2 を0.5%添加し、またSi原料とし
て商品名ポリシラザンを0.1%添加し、アンモニア気
流中で1000℃で2時間反応させ、Ga0.7 In0.3
N:Mg,Si蛍光体を得た。得られた蛍光体は粒径が
0.2μmから4μmの範囲に分布しており、その形状
はSEM観察の結果、通常の蛍光体と同様の丸みをおび
た形状であった。
By firing this hydroxide, H 2 O
Was added as a dopant to a raw material having a composition ratio of x = 0.3, and 0.5% of MgCl 2 was added as a dopant. 0.1% of polysilazane (trade name) was added as a Si raw material. ℃ in 2 hours of reaction, Ga 0.7 in 0.3
N: Mg, Si phosphor was obtained. The obtained phosphor had a particle size distribution in the range of 0.2 μm to 4 μm, and as a result of SEM observation, it had a rounded shape similar to a normal phosphor.

【0025】比較のため、酸化物原料を混合して行う従
来の製法で蛍光体の作製を試みた。
For comparison, an attempt was made to produce a phosphor by a conventional production method in which an oxide raw material was mixed.

【0026】得られた試料のX線回折の結果は、本例試
料は積分幅が0.202であった。これに対し、比較品
は0.354であり、また、GaNの単独のピークが確
認された。
As a result of X-ray diffraction of the obtained sample, the sample of this example had an integral width of 0.202. On the other hand, the comparative product was 0.354, and a single peak of GaN was confirmed.

【0027】図4に示すように、本例の蛍光体試料を用
いて電界放出形発光素子10を製造した。まず、陽極基
板11の内面にITO等からなる透光性の陽極導体12
を形成する。この陽極導体12にスラリー法で蛍光面を
作製し、520℃で焼成してバインダーを除去して蛍光
体層13を形成し、陽極基板11の内面に陽極導体12
と蛍光体層13からなる陽極14を形成した。電界放出
形陰極15を有する陰極基板16を前記陽極基板11に
対面させ、両基板11,16の外周縁部の間を封着材で
封着して外囲器17を構成し、外囲器17の内部を真空
排気して封止し、電界放出形発光素子10とした。前記
電界放出形陰極15は、陰極基板16に形成された陰極
導体18と、陰極導体18の上に形成された絶縁層19
と、絶縁層19の上に形成されたゲート電極20と、ゲ
ート電極20と絶縁層19に共通して形成された空孔2
1と、空孔21内の陰極導体18上に形成されたコーン
形状のエミッタ22とを有している。
As shown in FIG. 4, a field emission light emitting device 10 was manufactured using the phosphor sample of this example. First, a light-transmitting anode conductor 12 made of ITO or the like is provided on the inner surface of the anode substrate 11.
To form A phosphor screen is formed on the anode conductor 12 by a slurry method, and the mixture is baked at 520 ° C. to remove a binder to form a phosphor layer 13.
And an anode 14 composed of the phosphor layer 13. A cathode substrate 16 having a field emission cathode 15 is opposed to the anode substrate 11, and an outer peripheral portion of both substrates 11, 16 is sealed with a sealing material to form an envelope 17. The inside of 17 was evacuated and sealed to obtain a field emission light-emitting device 10. The field emission cathode 15 includes a cathode conductor 18 formed on a cathode substrate 16 and an insulating layer 19 formed on the cathode conductor 18.
A gate electrode 20 formed on the insulating layer 19; and a hole 2 formed in the gate electrode 20 and the insulating layer 19 in common.
1 and a cone-shaped emitter 22 formed on the cathode conductor 18 in the hole 21.

【0028】実施例1の蛍光表示装置と同様に評価し
た。本例の蛍光体は緑色発光を示し、図5に示すように
従来例(比較例)に比べて優れた特性を示すことが分か
った。
Evaluation was performed in the same manner as in the fluorescent display device of Example 1. The phosphor of this example emitted green light, and as shown in FIG. 5, it was found that the phosphor exhibited better characteristics than the conventional example (comparative example).

【0029】(3) 実施例3 実施例1と略同様に行う。X=0.8の組成比の母体材
料の原料に、ドナーとなるGeを含む物質としてしてG
eを0.1%添加し、母体材料とともに水酸化物として
共沈させる。この原料に、さらにアクセプタとなるMg
を含む物質としてMgOを0.2%添加し、アンモニア
気流中で950℃で2時間反応させ、Ga0.2 In0.8
N:Mg,Ge蛍光体を得た。得られた蛍光体は粒径が
0.2μmから4μmの範囲に分布しており、その形状
はSEM観察の結果、通常の蛍光体と同様の丸みをおび
た形状であった。
(3) Embodiment 3 The operation is performed in substantially the same manner as in Embodiment 1. As a raw material of a base material having a composition ratio of X = 0.8, G is used as a substance containing Ge as a donor.
e is added by 0.1% and coprecipitated as a hydroxide together with the base material. Mg as an acceptor is added to this raw material.
MgO is added as a substance containing 0.2%, and reacted at 950 ° C. for 2 hours in an ammonia stream to obtain Ga 0.2 In 0.8
An N: Mg, Ge phosphor was obtained. The obtained phosphor had a particle size distribution in the range of 0.2 μm to 4 μm, and as a result of SEM observation, it had a rounded shape similar to a normal phosphor.

【0030】前記実施例2と同様の構造のFEDに実装
して評価したところ、赤橙色で図6に示すような発光特
性が得られた。また、比較のため、酸化物混合原料を用
いて従来の方法で蛍光体を製造したところ、組成の偏析
を生じ目的の発光色は得られなかった。
When mounted on an FED having the same structure as in Example 2 and evaluated, red-orange light emission characteristics as shown in FIG. 6 were obtained. Further, for comparison, when a phosphor was produced by a conventional method using an oxide mixed raw material, the composition was segregated, and a desired emission color was not obtained.

【0031】本発明の製造方法においては、アクセプタ
ーやドナーとなるドーパントの原料は、共沈の前に添加
して水酸化物とともに共沈させてもよいし、水酸化物が
沈殿した後に加えて水酸化物とともに焼成してもよい
し、水酸化物を焼成してから窒化の前に加えてもよい。
In the production method of the present invention, the dopant raw material serving as an acceptor or a donor may be added before co-precipitation and co-precipitated with the hydroxide, or may be added after the hydroxide is precipitated. It may be fired together with the hydroxide, or may be added after the hydroxide is fired and before nitriding.

【0032】[0032]

【発明の効果】本発明に係る蛍光体の製造方法によれ
ば、GaInN系蛍光体の製造において、InとGaを
コロイド状態、例えば水酸化物の状態で共沈させた状態
とした後に焼成し、さらにこれを窒化させている。
According to the method for producing a phosphor according to the present invention, in the production of a GaInN-based phosphor, In and Ga are co-precipitated in a colloidal state, for example, a hydroxide state, and then fired. This is further nitrided.

【0033】InとGaは水酸化物の状態では原子レベ
ルで十分に混合されており、これを焼成するとH2 Oが
とんで酸化物になるが、InとGaの各酸化物は結晶系
が異なるために、この状態では全体としての結晶性はよ
くない。このため、気相反応で行う窒化工程においては
ガスが物質中をよく通過して窒化が効率的に進み、原子
レベルでよく混合したGaInN系蛍光体が得られる。
Indium and Ga are sufficiently mixed at the atomic level in a hydroxide state, and when this is fired, H 2 O is cut off to form an oxide, but each of In and Ga oxides has a crystal system. Due to the difference, the crystallinity as a whole is not good in this state. For this reason, in the nitriding step performed by the gas phase reaction, the gas passes through the substance well and the nitriding proceeds efficiently, and a GaInN-based phosphor that is well mixed at the atomic level can be obtained.

【0034】このため、容易な製法により、従来よりも
輝度特性の良好な青色から赤色までの任意の色彩を選択
して良質の蛍光体を製造することができる。
For this reason, by a simple manufacturing method, a high quality phosphor can be manufactured by selecting an arbitrary color from blue to red having better luminance characteristics than before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の蛍光体のSEM写真を示す
図である。
FIG. 1 is a view showing an SEM photograph of a phosphor of Example 1 of the present invention.

【図2】本発明の実施例1における蛍光発光装置の断面
図である。
FIG. 2 is a cross-sectional view of the fluorescent light emitting device according to the first embodiment of the present invention.

【図3】実施例1のVFD(本願)と比較例のVFD
(従来例)の陽極電圧(アノード電圧)−輝度特性を示
す図である。
FIG. 3 shows a VFD of the first embodiment (the present application) and a VFD of a comparative example.
It is a figure which shows the anode voltage (anode voltage) -luminance characteristic of a (conventional example).

【図4】本発明の実施例2のFEDの断面図である。FIG. 4 is a sectional view of an FED according to a second embodiment of the present invention.

【図5】実施例2のFED(本願)と比較例のFED
(従来例)の陽極電圧(アノード電圧)−輝度特性を示
す図である。
FIG. 5 shows the FED of Example 2 (the present application) and the FED of Comparative Example.
It is a figure which shows the anode voltage (anode voltage) -luminance characteristic of a (conventional example).

【図6】実施例3のFED(本願)と比較例のFED
(従来例)の陽極電圧(アノード電圧)−輝度特性を示
す図である。
FIG. 6 shows an FED of Example 3 (the present application) and an FED of Comparative Example.
It is a figure which shows the anode voltage (anode voltage) -luminance characteristic of a (conventional example).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片岡 文昭 千葉県茂原市大芝629 双葉電子工業株式 会社内 (72)発明者 土岐 均 千葉県茂原市大芝629 双葉電子工業株式 会社内 (72)発明者 野村 裕司 千葉県茂原市大芝629 双葉電子工業株式 会社内 Fターム(参考) 4H001 XA07 XA31 XA49 YA12 YA14 YA30 YA32  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Fumiaki Kataoka 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Co., Ltd. (72) Inventor Hitoshi Toki 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Co., Ltd. (72) Inventor Yuji Nomura 629 Oshiba, Mobara-shi, Chiba Futaba Electronics Co., Ltd. F-term (reference) 4H001 XA07 XA31 XA49 YA12 YA14 YA30 YA32

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Ga1-x Inx N:A,B(0<x<
1、A=Zn,Mg、B=Si,Ge)で表される蛍光
体の製造方法において、 InとGaをコロイドの状態で混在させた後に窒化させ
ることを特徴とする蛍光体の製造方法。
1. Ga 1-x In x N: A, B (0 <x <
1. A method for producing a phosphor represented by the formula (A = Zn, Mg, B = Si, Ge), wherein In and Ga are mixed in a colloidal state and then nitrided.
【請求項2】 Ga1-x Inx N:A,B(0<x<
1、A=Zn,Mg、B=Si,Ge)で表される蛍光
体の製造方法において、 Inを含む物質とGaを含む物質をそれぞれコロイド粒
子よりも小さい状態で混在させた後に窒化させることを
特徴とする蛍光体の製造方法。
2. Ga 1-x In x N: A, B (0 <x <
1. A method for producing a phosphor represented by the formula (A = Zn, Mg, B = Si, Ge), wherein a substance containing In and a substance containing Ga are mixed together in a state smaller than the colloidal particles and then nitrided. A method for producing a phosphor, comprising:
【請求項3】 Ga1-x Inx N:A,B(0<x<
1、A=Zn,Mg、B=Si,Ge)で表される蛍光
体の製造方法において、 GaとInの水溶性化合物を生成し、前記水溶性化合物
からGaとInの水酸化物を同時に生成し、前記水酸化
物を焼成した後に窒化することを特徴とする蛍光体の製
造方法。
3. Ga 1-x In x N: A, B (0 <x <
1. A method for producing a phosphor represented by the formula (A = Zn, Mg, B = Si, Ge), wherein a water-soluble compound of Ga and In is generated, and a hydroxide of Ga and In is simultaneously produced from the water-soluble compound. A method for producing a phosphor, which comprises producing, sintering, and nitriding the hydroxide.
【請求項4】 Ga1-x Inx N:A,B(0<x<
1、A=Zn,Mg、B=Si,Ge)で表される蛍光
体の製造方法において、 GaとInの硝酸塩水溶液を生成し、尿素とアンモニア
からなる群から選択された物質を前記硝酸塩水溶液に添
加してGaとInの水酸化物を同時に生成して沈殿さ
せ、前記水酸化物を焼成した後に窒化することを特徴と
する蛍光体の製造方法。
4. Ga 1 -x In x N: A, B (0 <x <
1. A method for producing a phosphor represented by the following formula: A = Zn, Mg, B = Si, Ge), wherein a nitrate aqueous solution of Ga and In is generated, and a substance selected from the group consisting of urea and ammonia is converted to the nitrate aqueous solution. A method for producing a phosphor, characterized in that Ga and In hydroxides are simultaneously produced and precipitated by adding to the above, and the hydroxides are fired and then nitrided.
【請求項5】 前記水酸化物を共沈させた後に、前記A
とBからなる群から選択された物質を含む原料を前記水
酸化物に添加し、前記水酸化物を焼成することを特徴と
する請求項3又は4記載の蛍光体の製造方法。
5. The method according to claim 1, wherein said hydroxide is coprecipitated.
5. The method for producing a phosphor according to claim 3, wherein a raw material containing a substance selected from the group consisting of B and B is added to the hydroxide, and the hydroxide is fired.
【請求項6】 前記AとBからなる群から選択された物
質を含む原料とともに前記水酸化物を共沈させることを
特徴とする請求項3又は4記載の蛍光体の製造方法。
6. The method according to claim 3, wherein the hydroxide is co-precipitated with a raw material containing a substance selected from the group consisting of A and B.
JP2490399A 1999-02-02 1999-02-02 Production of fluorescent substance Pending JP2000219878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2490399A JP2000219878A (en) 1999-02-02 1999-02-02 Production of fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2490399A JP2000219878A (en) 1999-02-02 1999-02-02 Production of fluorescent substance

Publications (1)

Publication Number Publication Date
JP2000219878A true JP2000219878A (en) 2000-08-08

Family

ID=12151146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2490399A Pending JP2000219878A (en) 1999-02-02 1999-02-02 Production of fluorescent substance

Country Status (1)

Country Link
JP (1) JP2000219878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059949A1 (en) * 2003-12-17 2005-06-30 Nihon University Field emission spot light source lamp
CN109589408A (en) * 2018-12-04 2019-04-09 江苏省原子医学研究所 A kind of meter of shape liquid metal nanoparticle and its synthetic method and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059949A1 (en) * 2003-12-17 2005-06-30 Nihon University Field emission spot light source lamp
CN109589408A (en) * 2018-12-04 2019-04-09 江苏省原子医学研究所 A kind of meter of shape liquid metal nanoparticle and its synthetic method and application
CN109589408B (en) * 2018-12-04 2021-04-09 江苏省原子医学研究所 Rice-shaped liquid metal nano particle and synthetic method and application thereof

Similar Documents

Publication Publication Date Title
JP2947156B2 (en) Phosphor manufacturing method
KR100417386B1 (en) Phosphor
US6373184B1 (en) Red phosphor for fluorescent display and preparation method thereof
US20080259251A1 (en) Green emitting phosphor, light emitting device including the same, and liquid crystal display device including light emission device as backlight unit
JP2007224148A (en) Mixed crystal phosphor and display
JP2000219878A (en) Production of fluorescent substance
KR100502877B1 (en) Image-display device
US7892451B2 (en) Phosphor
KR100397577B1 (en) Phosphor and method for preparing same
KR101496959B1 (en) Red-emitting phosphors with highly enhanced luminescent efficiency and their preparation methods
JP4978846B2 (en) Light emitting device
KR100572796B1 (en) Phosphor, phosphor layer manufacturing method and fluorescent display tube
JP3873507B2 (en) GaN phosphor manufacturing method and GaN phosphor
KR100315226B1 (en) A blue phosphor with high brightness for low-voltage applications
JP2002080845A (en) Fluorescent substance by low-energy electron beam excitation and fluorescent display tube
JP2897716B2 (en) Phosphor
KR20090119181A (en) Method for preparing oxide based nanophosphors
JP2008285527A (en) Phosphor for low-energy electron ray, method for producing the same and fluorescent indicator tube
KR100449582B1 (en) Phosphors and their preparation method for field emission display
KR900008472B1 (en) Process for the preparation of green fluorescent substance
JP3937622B2 (en) Phosphor production container
TWI297552B (en) The process fo white-light led by zinc sulfur doped dysprosium thin film
KR20100133565A (en) The transpatent conductive phosphors thin film and the manufacturing method thereof
JPH11307020A (en) Field emission type display element
JP2004107451A (en) Phosphor and fluorescent display device