JP2000218272A - Aquatic organism-contamination preventing device - Google Patents

Aquatic organism-contamination preventing device

Info

Publication number
JP2000218272A
JP2000218272A JP11019571A JP1957199A JP2000218272A JP 2000218272 A JP2000218272 A JP 2000218272A JP 11019571 A JP11019571 A JP 11019571A JP 1957199 A JP1957199 A JP 1957199A JP 2000218272 A JP2000218272 A JP 2000218272A
Authority
JP
Japan
Prior art keywords
potential
working electrode
electrode
circuit
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11019571A
Other languages
Japanese (ja)
Inventor
Hiromichi Takahashi
弘道 高橋
Hiroichi Takayanagi
博一 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP11019571A priority Critical patent/JP2000218272A/en
Publication of JP2000218272A publication Critical patent/JP2000218272A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simplify a circuit structure and to improve power efficiency in a device for electrochemically releasing an aquatic organism depositing on an underwater structure, or the like, by switching a potential exerted on a working electrode by a switch part formed by combining the circuits connecting diodes in the opposite direction to each other to the switches in parallel. SOLUTION: This contamination preventing device is so constituted that the potential of a working electrode is made positive or negative with respect to a reference electrode by using only a positive power source. A reversal- nonreversal switching circuit 7 for impressing a PWM-controlled pulse for the difference from the absolute value of a desired voltage through a voltage output circuit is provided in the controller of such a device. The output of a source voltage is turned on or off in accordance with the PWM-controlled pulse by the switching circuit 7 through an FET 9, and a switch part formed by combining the circuits connecting diodes 12 and 13 in the opposite direction to each other to the respective switches 14 and 15 through a capacitor 11 in parallel is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水中の水生生物な
どの付着を防止する防汚装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antifouling device for preventing adhesion of aquatic organisms in water.

【0002】[0002]

【従来の技術】近年、水中構造物や水に接している物の
表面などに付着する水生生物を、塩素などの有害物質を
発生させないで、電気化学的に制御する方法が提案され
ている。例えば、特開平4−341392号公報には、
ポテンショスタットにより、導電性を有する被防汚面に
+0〜+1.5V vs.SCEの正電位を印加し、付
着する水生生物を滅菌する相と、−0〜−0.4V v
s.SCEの負電位を印加し、付着する水生生物を脱離
する相からなる防汚方法が開示されている。また、特開
平4−289309号公報には、関数発生器により所定
の周期でポテンショスタットを動作させて、導電性を有
する被防汚面の電位を変化させる防汚方法が開示されて
いる。また、本願出願人の出願になる特願平10−29
2881号においては、FETブリッジを利用し、正電
源のみを用いて上と同様の動作を実現する方法が示され
ている。
2. Description of the Related Art In recent years, there has been proposed a method of electrochemically controlling aquatic organisms adhering to the surface of an underwater structure or an object in contact with water without generating harmful substances such as chlorine. For example, JP-A-4-341392 discloses that
By the potentiostat, +0 to +1.5 V vs. 1.5 is applied to the conductive antifouling surface. Applying a positive potential of SCE to sterilize the attached aquatic organisms;
s. An antifouling method comprising a phase in which a negative potential of SCE is applied to detach attached aquatic organisms is disclosed. Japanese Unexamined Patent Publication No. 4-289309 discloses an antifouling method in which a potentiostat is operated at a predetermined cycle by a function generator to change the potential of a conductive antifouling surface. Japanese Patent Application No. 10-29 filed by the applicant of the present application
No. 2881 discloses a method of realizing the same operation as above using only a positive power supply using an FET bridge.

【0003】[0003]

【発明が解決しようとする課題】前述の特開平4−34
1392号公報、特開平4−289309号公報では、
電気化学測定法の公知の技術である3電極方式によるポ
テンショスタットを用いて、水生生物の細胞を滅菌した
り、付着した細胞やその分解物を被防汚面である導電性
基材(3電極方式の作用極)表面から脱離させることが
できる。しかし、作用極と参照極の電位が1.5V〜−
0.4Vの範囲になるように作用極と対極に電位を印加
するためには、作用極と対極に供給する電源として、正
の電源と負の電源が両方とも必要であった。また、本願
出願人の出願である特願平10−292881号におい
ても、FETブリッジを用いているため回路がやや複雑
であった上、電源は正のみでよいが、電源部と電圧の正
負反転部が別個であるため電力効率があまりよくなかっ
た。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 4-34 is disclosed.
No. 1392, Japanese Unexamined Patent Publication No. 4-289309,
Using a three-electrode potentiostat, which is a well-known technique of electrochemical measurement, cells of aquatic organisms are sterilized, and adhered cells and their decomposed products are treated with a conductive substrate (three-electrode) that is an antifouling surface. Working electrode) can be desorbed from the surface. However, when the potentials of the working electrode and the reference electrode are 1.5V-
In order to apply a potential to the working electrode and the counter electrode so as to be in the range of 0.4 V, both a positive power supply and a negative power supply were required as power supplies to the working electrode and the counter electrode. Also, in Japanese Patent Application No. 10-292881 filed by the applicant of the present application, the circuit is slightly complicated because an FET bridge is used, and the power supply may be only positive. The power efficiency was not very good due to the separate parts.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題に鑑
みなされたものであり、作用極と対極間に正および負の
電位を与えて、作用極と対極の間に配置された参照極の
電位と作用極の電位を計測し、計測した作用極の電位か
ら参照極の電位を差し引く演算をし、演算の結果より作
用極と対極間に与える電位を変更する手段を有する水生
生物の防汚装置において、パルス幅変調によって前記作
用極に与える電位の大きさを制御し、互いに逆向きのダ
イオードとスイッチを接続した回路を並列に組み合わせ
たスイッチを用いて前記作用極に与える電位の正負極性
を切り換える手段を有する水生生物の防汚装置を提案す
るものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a positive electrode and a negative potential between a working electrode and a counter electrode to provide a reference electrode disposed between the working electrode and the counter electrode. The potential of the working electrode is measured by subtracting the potential of the reference electrode from the measured potential of the working electrode, and a means for preventing aquatic organisms having means for changing the potential applied between the working electrode and the counter electrode based on the result of the calculation. In the fouling device, the magnitude of the potential applied to the working electrode is controlled by pulse width modulation, and the polarity of the potential applied to the working electrode is controlled by using a switch in which a circuit in which diodes and switches connected in opposite directions are connected in parallel is used. The present invention proposes an aquatic organism antifouling device having means for switching between the two.

【0005】[0005]

【発明の実施の形態】本発明による水生生物の防汚装置
は、付着する水生生物を滅菌する相および滅菌した水生
生物を脱離する相とを繰り返して、水生生物の付着を防
止する。付着する水生生物を滅菌する相では、対極をグ
ランド極として、互いに逆向きのダイオードをそれぞれ
スイッチと接続した回路を並列に組み合わせたスイッチ
部とPWM(パルス幅変調)によって正電源を制御する
ことにより、作用極に正電位を印加し、作用極と対極の
間に配置した参照極の電位と作用極の電位を測定して、
参照極に対する作用極の電位を+0〜+1.5Vの間の
目的の電位になるように作用極の電位を制御する。一
方、滅菌した水生生物を脱離する相では、同様の制御に
より、作用極に負電位を印加し、参照極に対する作用極
の電位を−0〜−0.4Vの間の目的の電位になるよう
に作用極の電位を制御する。
BEST MODE FOR CARRYING OUT THE INVENTION The aquatic organism antifouling device according to the present invention prevents the adherence of aquatic organisms by repeating a phase for sterilizing the attached aquatic organisms and a phase for removing the sterilized aquatic organisms. In the phase that sterilizes the aquatic organisms that adhere to it, the positive electrode is controlled by PWM (pulse width modulation) and a switch unit in which circuits in which opposite diodes are connected to switches are connected in parallel with the counter electrode as a ground electrode. , Applying a positive potential to the working electrode, measuring the potential of the reference electrode and the potential of the working electrode disposed between the working electrode and the counter electrode,
The potential of the working electrode is controlled so that the potential of the working electrode with respect to the reference electrode becomes a target potential between +0 and +1.5 V. On the other hand, in the phase for desorbing the sterilized aquatic organism, a negative potential is applied to the working electrode by the same control, and the potential of the working electrode with respect to the reference electrode becomes the target potential between -0 to -0.4 V. The potential of the working electrode is controlled as described above.

【0006】[0006]

【実施例】以下、本発明の詳細を添付図面を参照して説
明する。図1は全体の電気的ブロック図、図2はタイミ
ングチャート、図3は出力電圧の非反転・反転の切り換
え回路の電気的内部ブロック図、図4は正および負に制
御したパルスである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is an overall electric block diagram, FIG. 2 is a timing chart, FIG. 3 is an electric internal block diagram of a switching circuit for non-inversion / inversion of an output voltage, and FIG. 4 shows pulses controlled positively and negatively.

【0007】図1に示すデータ処理部1は、参照極2に
対する作用極3の電位の設定値のタイミングチャートを
決め、そのタイミングチャートに従って、その時点の参
照極2に対する作用極3の電位の設定値をCPU4に送
信する。CPU4は、参照極2に対する作用極3の電位
が受信した電位になるよう、作用極3に印加する電位を
制御する。
The data processor 1 shown in FIG. 1 determines a timing chart of the set value of the potential of the working electrode 3 with respect to the reference electrode 2 and sets the potential of the working electrode 3 with respect to the reference electrode 2 at that time according to the timing chart. The value is transmitted to the CPU 4. The CPU 4 controls the potential applied to the working electrode 3 so that the potential of the working electrode 3 with respect to the reference electrode 2 becomes the received potential.

【0008】次に、図2に示すタイミングチャートを詳
細に説明する。横軸は時間を、縦軸は参照極2に対して
作用極3がとるべき電位を表す。タイミングチャート
は、時間軸上の順番に次の4つの相からなっている。T
1相では参照極2に対して作用極3に正電位を印加し、
作用極3に付着する水生生物を滅菌する。T2相では滅
菌を停止する。T3相では参照極2に対して作用極3に
負電位を印加し、作用極3に付着する滅菌した水生生物
を脱離する。T4相では脱離を停止する。これらの4つ
の相を順番に実施し、そのサイクルを繰り返すことで、
水生生物の付着を防止する。
Next, the timing chart shown in FIG. 2 will be described in detail. The horizontal axis represents time, and the vertical axis represents the potential that the working electrode 3 should take with respect to the reference electrode 2. The timing chart has the following four phases in order on the time axis. T
In one phase, a positive potential is applied to the working electrode 3 with respect to the reference electrode 2,
The aquatic organisms attached to the working electrode 3 are sterilized. In the T2 phase, the sterilization is stopped. In the T3 phase, a negative potential is applied to the working electrode 3 with respect to the reference electrode 2, and sterilized aquatic organisms attached to the working electrode 3 are eliminated. In the T4 phase, desorption is stopped. By performing these four phases in order and repeating the cycle,
Prevents aquatic organisms from attaching.

【0009】CPU4はプログラム、データ、ワークな
どの内容を保持するROM5とRAM6を接続してお
り、ROM5に内蔵しているプログラムに従って動作す
る。CPU4はデータ処理部1から参照極2に対して作
用極3がとるべき電位の設定値を受信し、電位の設定値
が正であれば滅菌を行うT1相であると判断する。一方
受信した電位の設定値が負であれば、脱離を行うT3相
であると判断する。また受信した電位の設定値が0であ
れば、T2相もしくはT4相であると判断する。そし
て、T1相かT3相であれば、それに応じて参照極2に
対する作用極3の電位が設定値になるように、作用極3
に印加する電位を制御する。
The CPU 4 is connected to a ROM 5 and a RAM 6 for holding programs, data, works and the like, and operates in accordance with programs stored in the ROM 5. The CPU 4 receives the set value of the potential to be taken by the working electrode 3 with respect to the reference electrode 2 from the data processing unit 1, and if the set value of the potential is positive, determines that it is the T1 phase for performing sterilization. On the other hand, if the received set value of the potential is negative, it is determined that the phase is the T3 phase for desorption. If the set value of the received potential is 0, it is determined that the potential is the T2 phase or the T4 phase. In the case of the T1 phase or the T3 phase, the working electrode 3 is set so that the potential of the working electrode 3 with respect to the reference electrode 2 becomes a set value accordingly.
Is controlled.

【0010】次に、参照極2に対する作用極3の電位
を、正電源のみを用いて、正または負の電位になるよう
に作用極3に電位を印加する方法を図3および図4を用
いて説明する。図3は反転・非反転切り替え回路7の電
気的ブロック図である。電圧出力回路8は後述するよう
に、目的とする電圧の絶対値との差違分に対応する。P
WM制御したパルスを反転・非反転切り替え回路7に出
力する。電圧出力回路8からの出力は、FET9を通し
て電源10に接続されており、電源電圧の出力をPWM
制御されたパルスに従ってオン/オフする。PWM制御
された電源出力は、コンデンサ11を介して、互いに逆
向きのダイオード12および13をそれぞれスイッチ1
4および15に接続した回路を並列に組み合わせたスイ
ッチ部に接続されている。コンデンサ16の値として
は、PWM制御の周波数に対して要求負荷電流を流しう
る十分小さいインピーダンスになるようなものを選択す
る。CPU4は、参照極2に対する作用極3の電位を正
にする場合にはスイッチ14をオンにし、スイッチ15
をオフにする。するとそこで得られるパルスは、図4
(a)に示すようにグランド電位に対して正側に寄った
ものになる。電位を負にする場合には、逆にスイッチ1
4をオフにし、スイッチ15をオンにする。すると得ら
れるパルスは、図4(b)に示すようにグランド電位に
対して負側に寄ったものになる。これらのパルスをコイ
ル17およびコンデンサ16からなる積分回路を通して
積分すると、正の出力電圧または負の出力電圧を得るこ
とができる。
Next, a method of applying a potential to the working electrode 3 so that the potential of the working electrode 3 with respect to the reference electrode 2 becomes a positive or negative potential using only a positive power supply will be described with reference to FIGS. 3 and 4. Will be explained. FIG. 3 is an electrical block diagram of the inversion / non-inversion switching circuit 7. As will be described later, the voltage output circuit 8 responds to a difference between the target voltage and the absolute value of the voltage. P
The WM-controlled pulse is output to the inversion / non-inversion switching circuit 7. The output from the voltage output circuit 8 is connected to the power supply 10 through the FET 9 and the output of the power supply voltage is
Turn on / off according to controlled pulse. The power supply output controlled by PWM is connected to diodes 12 and 13, which are opposite to each other, via a capacitor 1 via a switch 1.
The circuits connected to 4 and 15 are connected to a switch unit in which the circuits are combined in parallel. The value of the capacitor 16 is selected so as to have a sufficiently small impedance to allow a required load current to flow with respect to the frequency of the PWM control. When making the potential of the working electrode 3 positive with respect to the reference electrode 2, the CPU 4 turns on the switch 14 and turns on the switch 15
Turn off. Then, the pulse obtained there is shown in FIG.
As shown in (a), the voltage is shifted to the positive side with respect to the ground potential. To make the potential negative, switch 1
4 is turned off and the switch 15 is turned on. Then, the obtained pulse is shifted toward the negative side with respect to the ground potential as shown in FIG. When these pulses are integrated through an integrating circuit including the coil 17 and the capacitor 16, a positive output voltage or a negative output voltage can be obtained.

【0011】参照極2に対する作用極3の電位を目的の
電位にするように、作用極3に印加する電位を制御する
方法を図1を参照して説明する。演算回路18は参照極
2および作用極3の電位を入力し、作用極3の電位から
参照極2の電位を差し引いて参照極2に対する作用極3
の電位を反転・非反転切り替え回路19に入力する。反
転・非反転切り替え回路19は、CPU4からの信号に
より、入力した電位をそのまま出力するか、もしくは正
負を逆転して出力する。CPU4は、T1相において
は、入力した電位をそのまま出力するように、またT3
相においては、入力した電位の正負を逆転して出力する
ように反転・非反転切り替え回路19を制御する。これ
によって、演算回路20に入力する。
A method of controlling the potential applied to the working electrode 3 so that the potential of the working electrode 3 with respect to the reference electrode 2 becomes the target potential will be described with reference to FIG. The arithmetic circuit 18 receives the potentials of the reference electrode 2 and the working electrode 3 and subtracts the potential of the reference electrode 2 from the potential of the working electrode 3 to obtain a working electrode 3 for the reference electrode 2.
Is input to the inversion / non-inversion switching circuit 19. The inverting / non-inverting switching circuit 19 outputs the input potential as it is, or reverses the positive / negative output according to the signal from the CPU 4. In the T1 phase, the CPU 4 outputs the input potential as it is.
In the phase, the inversion / non-inversion switching circuit 19 is controlled so that the polarity of the input potential is inverted and output. Thereby, it is input to the arithmetic circuit 20.

【0012】参照極2に対する作用極3の電位の測定値
は、その絶対値になる。CPU4は目的の電位の絶対値
をD/A変換器21を介して演算回路20に出力する。
演算回路20は測定値と目的値との差を求め、電圧出力
回路8に出力する。電圧出力回路8は入力した電位を三
角波によってPWM波形に変換して出力するが、CPU
4は反転・非反転切り替え回路19を制御するのと同
様、T1相においてはPWM波形をそのまま出力するよ
うに、またT3相においてはPWM波形を反転して出力
するように制御する。電圧出力回路8はこのようにして
生成されたPWM波形を反転・非反転切り替え回路7に
出力する。
The measured value of the potential of the working electrode 3 with respect to the reference electrode 2 becomes its absolute value. The CPU 4 outputs the absolute value of the target potential to the arithmetic circuit 20 via the D / A converter 21.
The arithmetic circuit 20 calculates the difference between the measured value and the target value, and outputs the difference to the voltage output circuit 8. The voltage output circuit 8 converts the input potential into a PWM waveform by using a triangular wave and outputs the converted waveform.
Similarly to the control of the inverting / non-inverting switching circuit 19, the control is performed such that the PWM waveform is output as it is in the T1 phase, and the PWM waveform is inverted and output in the T3 phase. The voltage output circuit 8 outputs the PWM waveform generated in this way to the inversion / non-inversion switching circuit 7.

【0013】[0013]

【発明の効果】本発明によれば、正電源のみを用い、対
極には常にグランド電位を与え、互いに逆向きのダイオ
ードをそれぞれスイッチに接続した回路を並列に組み合
わせたスイッチ部のオン/オフを切り換えることによ
り、作用極に与える電位を正負切り換え、またその電位
の大きさを、入力が矩形波であることを利用して、PW
M制御により、1.5V〜ー0.4Vの間の目的の電位
に制御することができる。また反転・非反転切り替え部
の回路が簡単になり、電力効率も向上する。
According to the present invention, only a positive power supply is used, a ground potential is always applied to the counter electrode, and a switch section in which circuits in which diodes opposite to each other are connected to the switches in parallel is turned on / off. By switching, the potential applied to the working electrode is switched between positive and negative, and the magnitude of the potential is changed to PW by utilizing the fact that the input is a rectangular wave.
By the M control, it can be controlled to a target potential between 1.5 V and -0.4 V. Further, the circuit of the inverting / non-inverting switching unit is simplified, and the power efficiency is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 全体の電気的ブロック図FIG. 1 is an overall electrical block diagram

【図2】 出力電位と出力時間のタイミングチャートFIG. 2 is a timing chart of output potential and output time.

【図3】 出力電圧の反転・非反転切り換え回路の電気
的内部ブロック図
FIG. 3 is an electrical internal block diagram of an output voltage inversion / non-inversion switching circuit.

【図4】 正負に切り換えた電圧出力の図FIG. 4 is a diagram of voltage output switched between positive and negative.

【符号の説明】[Explanation of symbols]

1 データ処理部 2 参照極 3 作用極 4 CPU 5 ROM 6 RAM 7 反転・非反転切り換え回路 8 電圧出力回路 9 FET 10 電源 11 コンデンサ 12 逆向きダイオード 13 逆向きダイオード 14 スイッチ 15 スイッチ 16 コンデンサ 17 コイル 18 演算回路 19 反転・非反転切り換え回路 20 演算回路 21 D/A変換器 Reference Signs List 1 data processing unit 2 reference electrode 3 working electrode 4 CPU 5 ROM 6 RAM 7 inversion / non-inversion switching circuit 8 voltage output circuit 9 FET 10 power supply 11 capacitor 12 reverse diode 13 reverse diode 14 switch 15 switch 16 capacitor 17 coil 18 Arithmetic circuit 19 Inverting / non-inverting switching circuit 20 Arithmetic circuit 21 D / A converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 作用極と対極間に正および負の電位を与
えて、該作用極と対極の間に配置された参照極の電位と
作用極の電位を計測し、該計測した作用極の電位から参
照極の電位を差し引く演算をし、該演算の結果より作用
極と対極間に与える電位を変更する手段を有する水生生
物の防汚装置において、パルス幅変調によって前記作用
極に与える電位の大きさを制御し、互いに逆向きのダイ
オードとスイッチを接続した回路を並列に組み合わせた
スイッチを用いて前記作用極に与える電位の正負極性を
切り換える手段を有することを特徴とする水生生物の防
汚装置。
A positive and negative potential is applied between a working electrode and a counter electrode to measure a potential of a reference electrode and a potential of a working electrode disposed between the working electrode and the counter electrode, and the measured working electrode An operation of subtracting the potential of the reference electrode from the potential, and an anti-fouling device for aquatic organisms having means for changing the potential applied between the working electrode and the counter electrode from the result of the operation, the pulse width modulation of the potential applied to the working electrode An antifouling system for aquatic organisms, comprising means for controlling the size and switching the polarity of the potential applied to the working electrode by using a switch in which a circuit in which diodes and switches connected in opposite directions are connected in parallel is provided. apparatus.
JP11019571A 1999-01-28 1999-01-28 Aquatic organism-contamination preventing device Withdrawn JP2000218272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11019571A JP2000218272A (en) 1999-01-28 1999-01-28 Aquatic organism-contamination preventing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11019571A JP2000218272A (en) 1999-01-28 1999-01-28 Aquatic organism-contamination preventing device

Publications (1)

Publication Number Publication Date
JP2000218272A true JP2000218272A (en) 2000-08-08

Family

ID=12002980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11019571A Withdrawn JP2000218272A (en) 1999-01-28 1999-01-28 Aquatic organism-contamination preventing device

Country Status (1)

Country Link
JP (1) JP2000218272A (en)

Similar Documents

Publication Publication Date Title
EP1136097B1 (en) Living body stimulating apparatus
US7191014B2 (en) Living body stimulating apparatus
EP1551004A3 (en) Reference voltage generation circuit, display drive circuit, and display device
ATE480648T1 (en) HYDROGEN-OXYGEN GAS GENERATOR AND METHOD FOR GENERATING HYDROGEN-OXYGEN GAS USING THE GENERATOR
ATE338732T1 (en) WASTEWATER TREATMENT USING SOLID-LIQUID SEPARATION AND PULSED ELECTRICAL FIELDS
JP2010057805A (en) Living body stimulating apparatus
JP2005052461A (en) Electric current applying device for organism
JP2000218272A (en) Aquatic organism-contamination preventing device
JP4228434B2 (en) Aquatic antifouling equipment
JP2001038356A (en) Antifouling device for aquatic life
WO2018134886A1 (en) Power supply
WO2006121509A3 (en) Method and device for electrochemical rejuvenation of skin and underlying tissue, and muscle building
CN111225713B (en) Multifunctional body beautifying instrument system for generating sine wave vibration
RU2414800C1 (en) Method of scalar control of (3×3)-phase matrix frequency converter
JP2000248525A (en) Stainproofing device of aquatic organism
JP2001064932A (en) Antifouling device for aquatic organism
RU2004133341A (en) MEASURING DEVICE FOR PROCESS CONTROL TECHNIQUE WITH A CENTRALIZED ELECTRICAL SUPPLY DEVICE
WO2019130715A1 (en) Living body stimulation device
JPH05237479A (en) Sterilization of legionellaceae
JP2004183018A (en) Antifouling device
RU2005116821A (en) ELECTROSURGICAL OSCILLATING DEVICE
Must et al. Pulse-width-modulated charging of ionic and capacitive actuators
JP3539458B2 (en) Power supply for electrolyzed water generator
WO2001048728A3 (en) Driving circuit for scan electrodes in an active matrix lcd
JP2002013116A (en) Underwater structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061011