JP2005052461A - Electric current applying device for organism - Google Patents

Electric current applying device for organism Download PDF

Info

Publication number
JP2005052461A
JP2005052461A JP2003287418A JP2003287418A JP2005052461A JP 2005052461 A JP2005052461 A JP 2005052461A JP 2003287418 A JP2003287418 A JP 2003287418A JP 2003287418 A JP2003287418 A JP 2003287418A JP 2005052461 A JP2005052461 A JP 2005052461A
Authority
JP
Japan
Prior art keywords
current
circuit
organism
applying device
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003287418A
Other languages
Japanese (ja)
Inventor
Hiromichi Watabe
廣道 渡部
Original Assignee
Pop Denshi Kk
ポップ電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pop Denshi Kk, ポップ電子株式会社 filed Critical Pop Denshi Kk
Priority to JP2003287418A priority Critical patent/JP2005052461A/en
Publication of JP2005052461A publication Critical patent/JP2005052461A/en
Application status is Pending legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safe electric current applying device for an organism. <P>SOLUTION: The electric current applying device for the organism comprises a pulse signal source 10, a differential circuit 11 for differentiating output signals from the pulse signal source, and a constant current driving circuit 12 to which the output signals from the differential circuit are inputted. When the device is normally used, currents of the same waveform as when rectangular-wave pulses are applied to the organism run. However, as excessive currents run only for a moment if two conductors are brought into contact, the device is safe and the driving capacity of the driving circuit is small. Further, it is simple to change the output because only changing of the volume of the input level is required. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、人体や動物などの生体への電流印加装置に関するものである。 The present invention relates to current application device to the organism such as human or animal.

低周波治療器等の筋肉へ電気刺激を与える装置あるいはその他の人体や動物などの生体に電流を印加する電流印加装置が提案されている。 Current applying apparatus for applying an electric current to a living body, such as device or other human or animal electrical stimulation to muscle, such as low-frequency electric therapy apparatus has been proposed. 図2は、従来の電流印加装置の構成例を示すブロック図である。 Figure 2 is a block diagram showing a configuration example of a conventional current applying device. 例えば下記特許文献に開示されているように、従来の電流印加装置は入力電圧に比例した出力電圧が発生する電圧駆動回路によって導子を駆動していた。 For example, as disclosed in Patent Document, the conventional current applying device output voltage proportional to the input voltage had driven Shirubeko by a voltage drive circuit for generating. そして、従来の電流印加装置においては、人体に過大な電流が流れないように過大電流検出回路および出力遮断回路を備えていた。 Then, in the conventional current applying device was equipped with overcurrent detection circuit and the output cutoff circuit to prevent excessive current flows through the human body.
特開平10−33695号公報 JP-10-33695 discloses

本発明者が実験した結果、皮膚の部位や導子の電極の構造、個人差等によりかなり変動はあるが、人体に矩形波パルス電圧を印加した場合の電気的な等価回路はコンデンサおよび抵抗を直列に接続したものに近く、人体にはパルスの立ち上がりおよび立ち下がり時に瞬間的に大きな電流が流れるが、その後はただちに減衰し、直流電流はごくわずかしか流れないことが判明した。 The present inventors have experimented, structural parts and Shirubeko electrode of skin, considerably varied by individual differences or the like, but an electrical equivalent circuit in a case of applying a rectangular pulse voltage to the human body is a capacitor and a resistor close to that connected in series, but instantaneous current drawn at the rise and fall of the pulse in the human body, then immediately attenuates a DC current was found not flow very little. そして、筋肉の運動を引き起こすためにはパルスの立ち上がりおよび立ち下がり時に瞬間的に大きな電流を流す必要があることも判明した。 And, also it has been found that in order to cause the muscle movement it is necessary to supply an instantaneous large current when the rise and fall of the pulse.

ところが、上記したような従来の電流印加装置においては、過大電流検出回路の設定値を小さくし過ぎると、パルスの立ち上がりおよび立ち下がり時に瞬間的に大きな電流を流すことが出来なくなってしまうので、設定値を小さくすることができなかった。 However, in the conventional current supply device as described above, too small a setting value of the overcurrent detection circuit, so that the flow instantaneously large current when rising and falling of the pulse becomes impossible, setting it was not possible to decrease the value. しかし、2つの導子を接触させてしまった場合などには継続して過大な電流が流れるので、この場合には電流を制限する必要があった。 However, since for example, when had contacted the two Shirubeko excessive current from flowing continuously, in this case it is necessary to limit the current. 従って、過大電流検出回路の電流値の設定が難しいという問題点があった。 Therefore, there is a problem that setting of the current value is difficult to overcurrent detection circuit.

また、導子の駆動回路はある程度の過大電流が継続して流れても破壊されないように、駆動能力の大きな素子を使用する必要があるという問題点もあった。 Further, as the drive circuit of Shirubeko is not destroyed even flow continuously a certain amount of overcurrent, there is a problem that it is necessary to use a large element of drivability. 本発明の目的は上記した従来例の問題点を解決することにある。 An object of the present invention is to solve the problems of the conventional example described above.

本発明の生体への電流印加装置は、パルス信号源と、前記パルス信号源の出力信号を微分する微分回路と、前記微分回路の出力信号が入力される定電流駆動回路とを備えたことを最も主要な特徴とする。 Current applying device to the organism of the present invention includes a pulse signal source, and a differentiating circuit for differentiating the output signal of the pulse signal source, that the output signal of the differentiating circuit and a constant-current drive circuit which is inputted the most important feature.

本発明の生体への電流印加装置においては、出力回路に定電流駆動回路を採用し、この回路に矩形パルスの微分波形を入力しているので、通常の使用時においては、生体に矩形波パルスを印加した場合と同等の波形の電流が流れるが、2つの導子を接触させた場合などには、過大な電流は一瞬しか流れないので、安全であり、駆動回路の駆動容量も小さくて済むと共に駆動回路の電源電圧を高くすることができるという効果がある。 In current applying device to the organism of the present invention, the constant current driving circuit employs an output circuit, since the input of the differential waveform of a rectangular pulse in this circuit, in normal use, the rectangular wave pulses to a living body While current flows in a waveform equivalent to the case of applying is the like when contacted two Shirubeko, since an excessive current does not flow too briefly, safe, requires only a driving capacity of the driver circuit is also small there is an effect that it is possible to increase the power supply voltage of the drive circuit with. また、出力を変化させる(電流値を調整する)には駆動回路の入力電圧の大きさを変えるだけで済むので簡単であるという効果もある。 Further, in order to change the output (to adjust the current value) it is also an effect that it is easy since only has varying the magnitude of the input voltage of the drive circuit.

図1は、本発明の生体への電流印加装置の構成を示すブロック図である。 Figure 1 is a block diagram showing a configuration of a current applied device to the organism of the present invention. パルス信号源10により発生した矩形波パルスは微分回路11において微分され、定電流駆動回路12によって入力された微分波形と相似の電流波形となるように導子の電極13が駆動される。 Rectangular pulse generated by the pulse signal source 10 is differentiated in the differentiating circuit 11, Shirubeko electrode 13 so that the current waveform of the similar to the differential waveform input by the constant current driving circuit 12 is driven.

図4は、本発明の生体への電流印加装置の実施例1の構成を示す回路図である。 Figure 4 is a circuit diagram showing the configuration of the first embodiment of the current application device to the organism of the present invention. パルス信号源10は例えばTTLレベルで周期が数十ミリ秒〜数秒程度の矩形波パルスを発生する。 Pulse signal source 10 generates a square wave pulse on the order of several tens of milliseconds to several seconds period, for example, TTL level. 図3は、本発明の生体への電流印加装置の主要部の波形を示すグラフである。 Figure 3 is a graph showing a waveform of a main part of the current application device to the organism of the present invention. 図3(a)はパルス信号源10から出力される矩形波パルス波形を示すグラフである。 3 (a) is a graph showing a rectangular pulse waveform outputted from the pulse signal source 10.

矩形波パルスは可変抵抗器によって出力電圧が調整された後、バッファアンプ14を介してコンデンサおよび抵抗からなる微分回路11に入力される。 After the rectangular pulse is the output voltage is adjusted by the variable resistor is input to the differentiating circuit 11 comprising a capacitor and a resistor via a buffer amplifier 14. この可変抵抗器によって駆動回路の出力電流値を容易に変更可能である。 It can be readily change the output current value of the driving circuit by the variable resistor. 図3(b)は微分回路11から出力される電圧波形を示すグラフである。 3 (b) is a graph showing the voltage waveform output from the differentiating circuit 11. 矩形波を微分して得られる波形が人体に矩形波電圧を加えたときに流れる電流にほぼ等しい波形となるように微分回路の時定数を決定する。 Waveform obtained by differentiating the square wave to determine the time constant of the differentiating circuit so as to be substantially equal waveform to the current flowing when applying a rectangular wave voltage to the human body.

微分波形電圧はバッファアンプ15を介して定電流駆動回路12に入力される。 Differential waveform voltage is input via a buffer amplifier 15 to the constant current drive circuit 12. この定電流駆動回路は演算増幅器(オペアンプ)16を使用したバイラテラル回路と呼ばれる回路であり、出力側の抵抗17に流れる電流値が入力電圧に比例するように動作する。 The constant current driving circuit is a circuit called a bilateral circuit using an operational amplifier (op amp) 16, a current value flowing through the output side of the resistor 17 is operated to be proportional to the input voltage. 図3(c)は駆動回路12から出力される電流波形を示すグラフである。 3 (c) is a graph showing a current waveform output from the driving circuit 12. 入力波形が同じであれば出力に同じ電流を流すように動作するので、個人毎の電気的特性の差が吸収され、誰でも同じ効果が得られる。 Since the input waveform to operate so as to flow the same current in the output if the same, the difference in electrical characteristics of each individual is absorbed anyone same effect.

定電流駆動回路12の出力は導子の電極13を介して、コンデンサおよび抵抗の直列回路からなる人体の等価回路18に印加される。 The output of the constant current driving circuit 12 via the electrodes 13 of Shirubeko, is applied to the human body of the equivalent circuit 18 comprising a series circuit of a capacitor and a resistor. 抵抗19は、比較的大きな値の負荷抵抗であり、無くても動作する。 Resistor 19 is a load resistor of a relatively large value, to operate without. しかし、適当な値の負荷抵抗を付けることにより、駆動回路の出力電圧が高圧に維持されることを防止できる。 However, by attaching a load resistor of appropriate value can prevent the output voltage of the driving circuit is maintained at a high pressure.

即ち、入力電圧が微小な値となっても駆動回路は負荷に微小な電流を流そうとするが、負荷がほぼ完全な容量性である場合には、電流を流すために出力電圧が上がり続けて導子の電極電圧が駆動回路の電源電圧、例えば数十〜数百ボルトの高圧となってしまう。 That is, even if the input voltage is a very small value driver circuit attempts to pass a small current to the load, when the load is nearly complete capacitive continues to rise the output voltage to flow a current electrode voltage of Shirubeko becomes the power supply voltage, for example, several tens to several hundreds volts of the high voltage driver circuit Te. また、無負荷の場合においても、例えばバッファアンプ15の演算増幅器のオフセットの発生によって定電流回路がオフセット分の電流を流そうとした場合も同様に高圧となってしまう。 Further, even in the case of no load, for example, a constant current circuit by the occurrence of the offset of the operational amplifier of the buffer amplifier 15 becomes a high pressure similarly when trying to flow a current of offset. そこで、負荷抵抗を付けることによって、微小な電流を負荷抵抗に流し、出力電圧が高圧になることを防止する。 Accordingly, by attaching a load resistor, flowing a minute current to the load resistor, the output voltage is prevented from becoming high.

図5は、本発明の駆動回路の実施例2の構成を示す回路図である。 Figure 5 is a circuit diagram showing the configuration of the second embodiment of the driving circuit of the present invention. 実施例2においては、駆動回路の出力と導子の電極の間にコンデンサ32を挿入した例である。 In Example 2, an example of inserting a capacitor 32 between the output and the Shirubeko electrode driving circuit. コンデンサの容量は例えば人体の等価回路のコンデンサよりも大きな値のものを用いる。 Capacitance of the capacitor is used in higher values ​​than the capacitor of the body of the equivalent circuit, for example. このコンデンサを挿入することによって人体への駆動電流には影響はないが、直流が遮断されるので、故障時などにおいても人体に直流電流が流れ続けることを防止できる。 Not affect the driving current to the human body by inserting the capacitor, but since the direct current is cut off, can be prevented to keep the DC current flows to the human body in case of malfunction. また、導子の短絡などの場合において駆動回路がより保護される。 The driving circuit is more protected in the case of short circuit of Shirubeko. なお負荷抵抗19はコンデンサの手前に接続する。 Note the load resistor 19 is connected in front of the capacitor.

図6は、本発明の駆動回路の実施例3の構成を示す回路図である。 Figure 6 is a circuit diagram showing a configuration of a third embodiment of the driving circuit of the present invention. この駆動回路33は図4の実施例1とは別の定電流駆動回路であり、入力電圧と抵抗35に流れる負荷電流により発生する電圧とが等しくなるように動作する。 The drive circuit 33 is another constant-current drive circuit to the first embodiment of FIG. 4, it operates so that the voltage becomes equal generated by the load current flowing to the input voltage and the resistor 35.

なお、実施例においてはパルス信号源は矩形波である例を開示したが、パルス信号源は例えばサイン波をそれより短い任意の周期でオン、オフしたような波形であってもよい。 The pulse signal source in the Examples have been disclosed example is a rectangular wave, a pulse signal source on, for example a sine wave at any period shorter may be waveform as off.

本発明の電流印加装置の構成を示すブロック図である。 It is a block diagram showing a configuration of a current application apparatus of the present invention. 従来の電流印加装置の構成例を示すブロック図である。 It is a block diagram showing a configuration example of a conventional current applying device. 本発明の電流印加装置の主要部の波形を示すグラフである。 The main part of the waveform of the current application device of the present invention is a graph showing. 本発明の電流印加装置の実施例1の構成を示す回路図である。 It is a circuit diagram showing a configuration of an embodiment 1 of the current application device of the present invention. 本発明の駆動回路の実施例2の構成を示す回路図である。 Is a circuit diagram showing the configuration of the second embodiment of the driving circuit of the present invention. 本発明の駆動回路の実施例3の構成を示す回路図である。 It is a circuit diagram showing a configuration of a third embodiment of the driving circuit of the present invention.

符号の説明 DESCRIPTION OF SYMBOLS

10 パルス信号源 11 微分回路 12 定電流駆動回路 13 電極 10 pulsed signal source 11 differentiating circuit 12 a constant current driving circuit 13 electrodes

Claims (2)

  1. パルス信号源と、 And the pulse signal source,
    前記パルス信号源の出力信号を微分する微分回路と、 A differentiating circuit for differentiating an output signal of the pulse signal source,
    前記微分回路の出力信号が入力される定電流駆動回路と を備えたことを特徴とする生体への電流印加装置。 Current applying device to the organism, characterized in that the output signal of the differentiating circuit and a constant-current driver input.
  2. 更に、低電流駆動回路の出力に接続された負荷抵抗を備えたことを特徴とする請求項1に記載の生体への電流印加装置。 Furthermore, the current applying device to the organism according to claim 1, characterized in that with the connected load resistance at the output of the low-current driving circuit.
JP2003287418A 2003-08-06 2003-08-06 Electric current applying device for organism Pending JP2005052461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287418A JP2005052461A (en) 2003-08-06 2003-08-06 Electric current applying device for organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287418A JP2005052461A (en) 2003-08-06 2003-08-06 Electric current applying device for organism

Publications (1)

Publication Number Publication Date
JP2005052461A true JP2005052461A (en) 2005-03-03

Family

ID=34366400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287418A Pending JP2005052461A (en) 2003-08-06 2003-08-06 Electric current applying device for organism

Country Status (1)

Country Link
JP (1) JP2005052461A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542838A (en) * 2010-11-16 2013-11-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー System and method for treating dry eye
US9265956B2 (en) 2013-03-08 2016-02-23 Oculeve, Inc. Devices and methods for treating dry eye in animals
US9440065B2 (en) 2013-04-19 2016-09-13 Oculeve, Inc. Nasal stimulation devices and methods
US9687652B2 (en) 2014-07-25 2017-06-27 Oculeve, Inc. Stimulation patterns for treating dry eye
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
US9737712B2 (en) 2014-10-22 2017-08-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US9764150B2 (en) 2014-10-22 2017-09-19 Oculeve, Inc. Contact lens for increasing tear production
US9770583B2 (en) 2014-02-25 2017-09-26 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821159B2 (en) 2010-11-16 2017-11-21 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10328262B2 (en) 2010-11-16 2019-06-25 The Board Of Trustees Of The Leland Stanford Junior University Stimulation devices and methods
US10143846B2 (en) 2010-11-16 2018-12-04 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for treatment of dry eye
JP2013542838A (en) * 2010-11-16 2013-11-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー System and method for treating dry eye
US9265956B2 (en) 2013-03-08 2016-02-23 Oculeve, Inc. Devices and methods for treating dry eye in animals
US9717627B2 (en) 2013-03-12 2017-08-01 Oculeve, Inc. Implant delivery devices, systems, and methods
US10155108B2 (en) 2013-04-19 2018-12-18 Oculeve, Inc. Nasal stimulation devices and methods
US9737702B2 (en) 2013-04-19 2017-08-22 Oculeve, Inc. Nasal stimulation devices and methods
US10238861B2 (en) 2013-04-19 2019-03-26 Oculeve, Inc. Nasal stimulation devices and methods for treating dry eye
US9440065B2 (en) 2013-04-19 2016-09-13 Oculeve, Inc. Nasal stimulation devices and methods
US9770583B2 (en) 2014-02-25 2017-09-26 Oculeve, Inc. Polymer formulations for nasolacrimal stimulation
US9956397B2 (en) 2014-02-25 2018-05-01 Oculeve, Inc. Polymer Formulations for nasolacrimal stimulation
US9687652B2 (en) 2014-07-25 2017-06-27 Oculeve, Inc. Stimulation patterns for treating dry eye
US10112048B2 (en) 2014-10-22 2018-10-30 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10207108B2 (en) 2014-10-22 2019-02-19 Oculeve, Inc. Implantable nasal stimulator systems and methods
US9764150B2 (en) 2014-10-22 2017-09-19 Oculeve, Inc. Contact lens for increasing tear production
US9737712B2 (en) 2014-10-22 2017-08-22 Oculeve, Inc. Stimulation devices and methods for treating dry eye
US10426958B2 (en) 2015-12-04 2019-10-01 Oculeve, Inc. Intranasal stimulation for enhanced release of ocular mucins and other tear proteins
US10252048B2 (en) 2016-02-19 2019-04-09 Oculeve, Inc. Nasal stimulation for rhinitis, nasal congestion, and ocular allergies

Similar Documents

Publication Publication Date Title
USRE35987E (en) Output pulse compensation for therapeutic-type electronic devices
US5628317A (en) Ultrasonic techniques for neurostimulator control
AU696916B2 (en) A multichannel cochlear prosthesis with flexible control of stimulus waveforms
KR100188560B1 (en) Method and apparatus for reviving an electrode of a biosensor
US4153059A (en) Urinary incontinence stimulator system
US4541432A (en) Electric nerve stimulator device
US4515158A (en) Speech processing method and apparatus
US7450987B2 (en) Systems and methods for precharging circuitry for pulse generation
US4308868A (en) Implantable electrical device
Nozaki et al. Effects of colored noise on stochastic resonance in sensory neurons
US4495384A (en) Real time cochlear implant processor
Prescott et al. Spike-rate coding and spike-time coding are affected oppositely by different adaptation mechanisms
US5318563A (en) Bipolar RF generator
US4014347A (en) Transcutaneous nerve stimulator device and method
CA1103316A (en) Means and method of current application to bulk resistance
AU780293B2 (en) Stimulus output monitor and control circuit for electrical tissue stimulator
US20080318193A1 (en) Medical training aid device for training a user in recognition of the user&#39;s bodily fluid analyte concentration and concentration trends via user-perceived sensations
US20080319284A1 (en) Method for training a user in recognition of the user&#39;s bodily fluid analyte concentration and concentration trends via user-perceived sensations
US3885569A (en) Electrosurgical unit
US5549656A (en) Combination neuromuscular stimulator and electromyograph system
McKay et al. Place and temporal cues in pitch perception: Are they truly independent?
US4763656A (en) Transcutaneous electrical nerve stimulation device and method
US4754759A (en) Neural conduction accelerator and method of application
EP1479410B1 (en) Living body stimulating apparatus
WO1997022380A1 (en) Real-time and adaptive method and system for suppressing a pathological non-chaotic rhythm