JP2000218101A - Crystallization method - Google Patents

Crystallization method

Info

Publication number
JP2000218101A
JP2000218101A JP11024925A JP2492599A JP2000218101A JP 2000218101 A JP2000218101 A JP 2000218101A JP 11024925 A JP11024925 A JP 11024925A JP 2492599 A JP2492599 A JP 2492599A JP 2000218101 A JP2000218101 A JP 2000218101A
Authority
JP
Japan
Prior art keywords
temperature
slurry
crystallization
solute
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11024925A
Other languages
Japanese (ja)
Inventor
Hideo Narahara
英夫 楢原
Michio Yamato
道雄 大和
Yujiro Kiyoshima
裕二郎 清島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP11024925A priority Critical patent/JP2000218101A/en
Publication of JP2000218101A publication Critical patent/JP2000218101A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the liquid content of wet cake by a method in which when slurry comprising mother liquor and a solute is circulated to an original container through following containers in turn to be crystallized while the slurry is mixed with a solution of a higher temperature and a higher concentration than those of the mother liquor. SOLUTION: A crystallizer is formed by connecting a container K1, a slurry circulating pump P, and an externally circulating heat exchanger E with piping A, B, C. After the slurry of the container K1 obtained by cooling crystallization is transferred to following containers in turn while being mixed with a solution or a fusing liquid which is a solute having a higher temperature and a higher concentration than those of the mother liquor in the container K1, the slurry is circulated to the container K1. The temperature of the slurry in the following containers is made lower by 0.2-20 deg.C, preferably 0.5-5 deg.C, than that of the slurry in the container K1 in turn. In this way, the liquid content of web cake obtained by filtering the slurry obtained by crystallization is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は晶析方法に関し、詳
しくは、少なくとも2つの容器を用い、第一の容器の母
液と溶質からなるスラリーに、攪拌下、第一の容器中の
母液より高温且つ高濃度の溶質の溶液又は溶質の融解液
を添加しながら、該容器のスラリーを第二以降の容器を
経由して第一の容器に循環させて晶析する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystallization method. The present invention also relates to a method of crystallization by adding a high-concentration solute solution or a solute melt and circulating the slurry in the container to the first container via the second and subsequent containers.

【0002】[0002]

【従来の技術】晶析釜を用いる回分式の晶析方法として
は、溶質としてのピロメリット酸及び溶媒としての希硝
酸からなるスラリーを晶析釜中で100℃から40℃ま
で徐々に冷却して、ピロメリット酸の一部を結晶析出さ
せる降温工程と、母液温度が40℃になった時点で冷却
を中止し、80℃(析出した結晶が完全に溶解する前)
まで昇温する昇温工程と、80℃から20℃まで徐々に
冷却する最終の降温工程の3工程からなる晶析方法等が
公知である(特開昭62-247802号公報)。
2. Description of the Related Art In a batch crystallization method using a crystallizer, a slurry comprising pyromellitic acid as a solute and dilute nitric acid as a solvent is gradually cooled from 100 ° C. to 40 ° C. in the crystallizer. And the cooling step is stopped when the mother liquor temperature reaches 40 ° C., and the cooling is stopped at 80 ° C. (before the precipitated crystals are completely dissolved).
A crystallization method and the like are known, which include three steps of a temperature raising step of raising the temperature to 80 ° C. and a final temperature lowering step of gradually cooling the temperature from 80 ° C. to 20 ° C.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
知の方法では、結晶の成長が不十分であり、攪拌等によ
り発生した微細結晶がそのまま残存することから、この
方法で得られたスラリーを濾過して得られる湿潤ケーキ
中の含液率が増大し、該湿潤ケーキを乾燥して得られる
製品の純度が低下するという問題点があった。又、降温
工程において、冷却伝熱面にスケーリングが発生した場
合に、このスケーリングの発生に起因する総括伝熱係数
の低下に基いて所定の温度まで晶析釜等を冷却できず、
生産能力が著しく低下するという問題点があった。
However, in the above-mentioned known method, the crystal growth is insufficient, and fine crystals generated by stirring or the like remain as they are. Therefore, the slurry obtained by this method is filtered. However, there is a problem that the liquid content in the obtained wet cake increases, and the purity of the product obtained by drying the wet cake decreases. Also, in the cooling step, when scaling occurs on the cooling heat transfer surface, the crystallizing pot or the like cannot be cooled to a predetermined temperature based on a decrease in the overall heat transfer coefficient due to the occurrence of the scaling,
There is a problem that the production capacity is significantly reduced.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の問
題点を解決するべく鋭意検討した結果、少なくとも2つ
の容器を用い、第一の容器の母液と溶質からなるスラリ
ーに、攪拌下、第一の容器中の母液より高温且つ高濃度
の溶質の溶液又は溶質の融解液を添加しながら、該容器
のスラリーを第二以降の容器を経由して第一の容器に循
環させ、第二以降の容器における晶析温度を第一の容器
における晶析温度よりも順次低くすると、上記問題点を
解決できることを見出して、本発明を完成した。即ち、
本発明は、少なくとも2つの容器を用い、第一の容器の
母液と溶質からなるスラリーに、攪拌下、第一の容器中
の母液より高温且つ高濃度の溶質の溶液又は溶質の融解
液を添加しながら、該容器のスラリーを第二以降の容器
を経由して第一の容器に循環させて晶析する方法であっ
て、第二以降の容器における晶析温度を第一の容器にお
ける晶析温度よりも順次低くすることを特徴とする晶析
方法を提供するものである。以下、本発明を詳細に説明
する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, using at least two containers, a slurry comprising a mother liquor and a solute in the first container was stirred under stirring. While adding a solute solution or solute melt at a higher temperature and higher concentration than the mother liquor in the first container, the slurry in the container is circulated to the first container via the second and subsequent containers, The inventors have found that the above problem can be solved by sequentially lowering the crystallization temperature in the second and subsequent vessels than the crystallization temperature in the first vessel, and completed the present invention. That is,
The present invention uses at least two containers and adds a solution of a solute or a melt of a solute having a higher temperature and a higher concentration than the mother liquor in the first container to a slurry composed of the mother liquor and the solute in the first container while stirring. And circulating the slurry in the container to the first container via the second and subsequent containers for crystallization, wherein the crystallization temperature in the second and subsequent containers is controlled by the crystallization in the first container. It is intended to provide a crystallization method characterized by sequentially lowering the temperature. Hereinafter, the present invention will be described in detail.

【0005】[0005]

【発明の実施の形態】本発明の晶析方法は回分式で行わ
れ、第一の容器(K1)は、通常、内部に攪拌機を有
し、又、容器の外壁に冷却又は加熱用の冷媒又は熱媒を
導通するためのジャケットを有するものが好ましい。第
二以降の容器(K2、K3、・・・Ki)は、第一の容器
(K1)と同様に、内部に攪拌機を有し、又、容器の外
壁に冷却又は加熱用の冷媒又は熱媒を導通するためのジ
ャケットを有するものでもよいが、熱交換器がより好ま
しい。本発明は、例えば図2に記載のような、容器(K
1)とスラリー循環用ポンプ(P)と外部循環熱交換器
(E)が配管(A、B、C)により一巡して接続された
晶析装置で行われる。
BEST MODE FOR CARRYING OUT THE INVENTION The crystallization method of the present invention is carried out in a batch system, and the first vessel (K 1 ) usually has an agitator inside, and a cooling or heating vessel on the outer wall of the vessel. The one having a jacket for conducting the refrigerant or the heat medium is preferable. Like the first container (K 1 ), the second and subsequent containers (K 2 , K 3 ,..., K i ) have a stirrer inside, and have an outer wall of the container for cooling or heating. It may have a jacket for conducting a refrigerant or a heat medium, but a heat exchanger is more preferable. The present invention relates to a container (K) as shown in FIG.
1 ) A slurry circulating pump (P) and an external circulating heat exchanger (E) are connected in a crystallizer connected in a loop by pipes (A, B, C).

【0006】本発明の晶析法において、第一の容器(K
1)のスラリーは、通常、溶質を溶媒に完溶し、次いで
冷却晶析して得られるものである。この冷却晶析の際の
溶質及び溶媒の組合わせは特に限定されるものではな
く、有機物同士、無機物同士、並びに有機物及び無機物
の組合わせのいずれであってもよいが、第一及び第二以
降の容器の熱交換能力が比較的小さい場合は、母液の比
熱が小さい有機物同士の組合わせが好ましい。特に、第
一の容器に仕込むスラリーを、後述するような降温工程
と昇温工程を交互に繰り返す晶析法で行なう場合は、溶
質が無機物である場合は有機溶媒に溶けないことが多
く、必然的に溶媒が水性媒体(水又は水と無機物との溶
液、或いは、水と混和する有機溶媒と水との溶液)にな
って、母液の比熱が大きくなることから、昇温工程と降
温工程の切り替えが迅速に行なえる有機物同士の組合わ
せが好ましい。
In the crystallization method of the present invention, the first container (K
The slurry of 1 ) is usually obtained by completely dissolving a solute in a solvent and then cooling and crystallizing. The combination of the solute and the solvent at the time of this cooling crystallization is not particularly limited, and may be any combination of organic substances, inorganic substances, and an organic substance and an inorganic substance. When the heat exchange capacity of the container is relatively small, a combination of organic substances having a small specific heat of the mother liquor is preferable. In particular, when the slurry to be charged in the first container is subjected to a crystallization method in which a temperature lowering step and a temperature increasing step are alternately performed as described below, the solute is often insoluble in an organic solvent when the solute is an inorganic substance. The solvent becomes an aqueous medium (water or a solution of water and an inorganic substance, or a solution of an organic solvent miscible with water and water), and the specific heat of the mother liquor increases. A combination of organic substances that can be switched quickly is preferable.

【0007】本発明の晶析法は、冷却晶析により得た第
一の容器(K1)のスラリーに、攪拌下に、第一の容器
1中の母液より高温且つ高濃度の溶質の溶液又は溶質
の融解液を添加しながら、容器K1中のスラリーを容器
2以降に移送し、この移送したスラリーを容器K1に循
環させて行なうことができる。容器K1中のスラリーの
容器K2以降への移送は、例えば、スラリー循環用ポン
プ(P)等を用いて行なうことができる。
According to the crystallization method of the present invention, the slurry in the first vessel (K 1 ) obtained by cooling crystallization is heated under stirring with a solute having a higher temperature and a higher concentration than the mother liquor in the first vessel K 1 . while adding melted liquid solution or solute, the slurry in the vessel K 1 is transferred to a vessel K 2 later, can be performed by circulating the transport slurry to the vessel K 1. Transfer to the container K slurry vessel K 2 later in 1, for example, it can be conducted using a slurry circulation pump (P) or the like.

【0008】上記融解液又は容器K1中の母液より高温
且つ高濃度の溶質の溶液の単位時間当たりの添加量は、
スラリーの攪拌及び移送中に機械的摩擦により発生した
微細結晶が容器K1中に滞留する間に溶解する程度の量
であればよく、あまり短時間に多くの量を加えると、微
細結晶以外の溶質まで溶解してしまうので好ましくな
い。容器K2以降に移送されたスラリーは、該容器中の
母液温度が容器K1中の母液温度よりも順次低く保たれ
ており、容器K2、K3、・・・Ki中に滞留する間に微
細結晶が除かれた比較的大きな結晶を核として溶質の結
晶が成長する。即ち、スラリーが容器K1、K2、K3
・・・Ki中を循環する間に、平均粒径が大きく、且
つ、粒度分布の範囲が狭い結晶を含むスラリーが得られ
る。
The amount of the solute solution having a higher temperature and a higher concentration than the melt or the mother liquor in the container K 1 per unit time is as follows:
It may be an amount enough to dissolve during the fine crystals generated by mechanical friction stir slurry and during transport from staying in the container K 1, the addition of large quantities too short, other than microcrystalline It is not preferable because the solute is dissolved. Slurry was transferred to the vessel K 2 and later, the mother liquor temperature in said vessel is kept sequentially lower than the mother liquor temperature in the vessel K 1, the container K 2, K 3, staying in · · · K i A solute crystal grows with a relatively large crystal as a nucleus from which fine crystals have been removed. That is, when the slurry is in the containers K 1 , K 2 , K 3 ,
... while circulating in K i, larger average particle diameter, and the range of particle size distribution is obtained slurry containing small crystals.

【0009】本発明の晶析法では、第一の容器K1中の
スラリーと、これに添加する溶質の融解液又は容器K1
中の母液より高温且つ高濃度の溶質の溶液の比率は、K
1中のスラリーが攪拌可能であればよく、特に制限され
るものではないが、重量比で、好ましくは1:5〜5:
1の範囲であり、より好ましくは1:4〜4:1の範囲
である。本発明の晶析法において、容器K1中のスラリ
ー温度は、該容器中におけるスラリーが完全に溶解する
温度よりも低く保たれ、好ましくはスラリー温度はスラ
リーが完全に溶解する温度よりも10℃以上低い温度であ
り、より好ましくは20℃以上低い温度である。又、容器
2以降のスラリー温度は、順次、K1中のスラリー温度
よりも、好ましくは、0.2〜20℃低い温度であり、より
好ましくは、0.5〜5℃低い温度である。
[0009] In the crystallization method of the present invention, a slurry of the first in one container K 1, melt liquid or container K 1 of solutes to be added to
The ratio of the solute solution with higher temperature and higher concentration than the mother liquor in
The slurry in 1 is not particularly limited as long as it can be stirred, but is preferably in a weight ratio of 1: 5 to 5:
1, and more preferably in the range of 1: 4 to 4: 1. In crystallization method of the present invention, the slurry temperature in the vessel K 1, the slurry is kept lower than the temperature to completely dissolve in the container, preferably slurry temperature 10 ° C. than the temperature at which the slurry is completely dissolved The temperature is lower than the above, more preferably the temperature lower than 20 ° C. Further, slurry temperature of the vessel K 2 later, sequentially, than the slurry temperature in K 1, preferably a 0.2 to 20 ° C. lower temperature, more preferably, is 0.5 to 5 ° C. lower temperature .

【0010】前述の第一の容器K1のスラリーを得るた
めの冷却晶析は、例えば特開昭62-247802号公
報に記載されているような、スラリーを晶析釜中で徐々
に冷却して、溶質の一部を結晶析出させる降温工程と、
スラリー温度がある程度下がった時点で冷却を中止し、
析出した結晶が完全に溶解する前の温度まで昇温する昇
温工程と、該温度から最終の温度まで徐々に冷却する最
終の降温工程の3工程からなる公知の方法で行なっても
よいが、好ましくは、特願平10-109255号の出
願明細書に記載されているような、冷却を開始して晶析
を終了するまでに、スラリー温度を降温して溶質の一部
を結晶析出させる降温工程と、該工程後、析出した結晶
が完全に溶解する前まで、スラリー温度を昇温する昇温
工程からなる一連の操作を複数回行ない、さらに最終の
降温工程を含み、且つ、各回と最終の降温工程における
スラリー温度の最小値及び昇温工程におけるスラリー温
度の最大値を、各々、順次低下させる回分式冷却晶析法
により行われる。この降温と昇温の工程を複数回繰り返
す晶析法で得られる、第一の容器K1のスラリーとして
は、例えば、融点が85℃以下である有機燐系化合物
(溶質)と該化合物に適度の溶解度を示す沸点が80℃
以下である酢酸低級アルキルエステル(溶媒)の組合わ
せから得られたものが好ましい。
[0010] The first cooling crystallization to obtain a slurry of the container K 1 of the foregoing, for example, as described in JP 62-247802 and JP-slowly cooled slurry in the crystallization析釜A cooling step of crystallizing a part of the solute,
Stop cooling when the slurry temperature drops to some extent,
It may be performed by a known method including a temperature raising step of raising the temperature to a temperature before the precipitated crystals are completely dissolved, and a final temperature lowering step of gradually cooling from the temperature to the final temperature, Preferably, as described in the application specification of Japanese Patent Application No. 10-109255, the temperature of the slurry is lowered and the temperature of the slurry is reduced until a part of the solute is crystallized until the crystallization is completed. Step and a series of operations including a temperature raising step of raising the slurry temperature a plurality of times until the precipitated crystals are completely dissolved after the step, further including a final temperature lowering step, and The minimum value of the slurry temperature in the temperature lowering step and the maximum value of the slurry temperature in the temperature raising step are each sequentially reduced by a batch cooling crystallization method. The resulting temperature drop and temperature rise step in multiple repeating crystallization method, as the first slurry container K 1, for example, moderate melting point organic phosphorus compound is 85 ° C. or less and (solute) to the compound Boiling point indicating the solubility of
Those obtained from the following combinations of lower alkyl acetates (solvents) are preferred.

【0011】容器K1において降温と昇温の工程を複数
回繰り返す晶析法を行なう場合、1回目の降温工程は、
溶質が溶媒に完溶している溶液(このときの溶液温度を
0℃とする)を冷却して、溶質の一部を結晶として析
出させてスラリーを得るために行われる。冷却速度は、
溶質と溶媒の組合わせに応じて適宜、設定されるが、工
業的には1時間当たり約1〜100℃の範囲が好ましい。
又、母液温度と冷媒温度との差(ΔT)は可能な限り小
さくすることが、スケーリングを回避する観点から好ま
しい。工業的にはより好ましくは5℃以下、特に好まし
くは3℃以下である。
[0011] When performing a crystallization repeated several times and then decreased and heated in steps in container K 1, 1-time cooling step,
This is performed in order to obtain a slurry by cooling a solution in which the solute is completely dissolved in the solvent (the solution temperature at this time is assumed to be T 0 ° C) to precipitate a part of the solute as crystals. The cooling rate is
The temperature is appropriately set according to the combination of the solute and the solvent, but the range of about 1 to 100 ° C. per hour is preferable industrially.
Further, it is preferable to minimize the difference (ΔT) between the mother liquor temperature and the refrigerant temperature from the viewpoint of avoiding scaling. Industrially, it is more preferably 5 ° C or lower, particularly preferably 3 ° C or lower.

【0012】該降温工程から1回目の昇温工程への切り
替えは、好ましくは、溶質の一部が結晶として析出しは
じめたスラリー温度(T1℃)よりも約10℃低い母液温
度に達した時点、より好ましくは、T1℃よりも約7℃
低いスラリー温度に達した時点、特に好ましくは、T1
℃よりも1〜5℃低いスラリー温度に達した時点を目安
とすることができる。この1回目の降温工程から1回目
の昇温工程への切り替え時のスラリー温度を、T2℃と
する。1回目の昇温工程における最高のスラリー温度
(T3℃という)は前記T0℃よりも低い温度であり、好
ましくはT1℃である。母液温度がT3℃に達したら、必
要に応じて、同温度における保温工程を入れてもよい。
該工程における保温時間は、好ましくは5〜30分、よ
り好ましくは15〜30分である。該工程の終了後、1回目
の一連の操作が終了する。
The switching from the cooling step to the first heating step preferably reaches a mother liquor temperature about 10 ° C. lower than the slurry temperature (T 1 ° C.) at which part of the solute began to precipitate as crystals. Time point, more preferably about 7 ° C. above T 1 ° C.
When a low slurry temperature is reached, particularly preferably T 1
The point in time when the slurry temperature reaches 1 to 5 ° C lower than 0 ° C can be used as a standard. The slurry temperature at the time of switching from the first temperature lowering step to the first temperature raising step is set to T 2 ° C. The highest slurry temperature (referred to as T 3 ° C) in the first heating step is lower than the above-mentioned T 0 ° C, preferably T 1 ° C. When the mother liquor temperature reaches T 3 ° C, a heat-retaining step at the same temperature may be added if necessary.
The heat retention time in this step is preferably 5 to 30 minutes, more preferably 15 to 30 minutes. After the end of this step, the first series of operations ends.

【0013】1回目の一連の操作が終了した時点で冷却
を開始する。この2回目の降温工程における冷却速度
も、1回目の降温工程のときと同様である。2回目の降
温工程における最低のスラリー温度(T4℃とする)
は、前記T2℃よりも低い温度であり、好ましくは、T4
℃はT2℃よりも2〜8℃低い温度である。
[0013] When the first series of operations is completed, cooling is started. The cooling rate in the second cooling step is the same as that in the first cooling step. Lowest slurry temperature in the second cooling process (T 4 ° C)
Is a temperature lower than the above T 2 ° C, and preferably T 4
° C. is 2 to 8 ° C. temperature lower than T 2 ° C..

【0014】スラリー温度がT4℃に達したら、2回目
の昇温工程が行われる。このときの最高のスラリー温度
5℃は、前記T3℃よりも低い温度であり、好ましくは
3℃よりも1〜8℃低い温度である。2回目の昇温工
程後、必要に応じて、T5℃での保温工程を入れてもよ
い。保温時間は、1回目の一連の操作における場合と同
様である。
When the slurry temperature reaches T 4 ° C, a second heating step is performed. Best slurry temperature T 5 ° C. At this time, the a temperature lower than T 3 ° C., preferably from 1 to 8 ° C. lower temperature than T 3 ° C.. After the second temperature raising step, a temperature keeping step at T 5 ° C may be inserted as necessary. The warming time is the same as in the first series of operations.

【0015】2回目の一連の操作が終了後、好ましく
は、3回目の一連の操作が行われる。なお、3回目の降
温工程から3回目の昇温工程への切り替え時のスラリー
温度を仮にT6℃とすると、前記T6℃は前記T4℃より
も低い温度であり、好ましくは、T6℃はT4℃よりも2
〜8℃低い温度である。又、3回目の昇温工程における
最高のスラリー温度を仮にT7℃とすると、T7℃は、前
記T5℃よりも低い温度であり、好ましくはT7℃はT5
℃よりも1〜8℃低い温度である。3回目の一連の操作
においても、必要に応じて、T7℃での保温工程を入れ
てもよい。該保温時間は、1回目及び2回目の場合と同
様である。4回目以降の一連の操作を行なう場合、該操
作は、2回〜3回目の一連の操作に準じて行われる。
After the end of the second series of operations, a third series of operations is preferably performed. Note that if the assumed T 6 ° C. The slurry temperature at the time of switching from the third cooling step to the third heating step, the T 6 ° C. is the temperature lower than the T 4 ° C., preferably, T 6 ° C is 2 more than T 4 ° C
88 ° C. lower temperature. Assuming that the highest slurry temperature in the third heating step is T 7 ° C, T 7 ° C is lower than T 5 ° C, and preferably T 7 ° C is T 5 ° C.
The temperature is 1 to 8C lower than C. In the third series of operations, if necessary, a step of keeping the temperature at T 7 ° C may be included. The heat retention time is the same as in the first and second times. When performing the fourth and subsequent series of operations, the operations are performed according to the second to third series of operations.

【0016】そして、最終の降温工程が行われる。この
ときの最低のスラリー温度をTi℃とする。
Then, a final temperature lowering step is performed. The minimum slurry temperature at this time is defined as T i ° C.

【0017】[0017]

【発明の効果】本発明によれば、晶析で得たスラリーを
濾過して得られる湿潤ケーキの含液率が小さく、製品の
純度を向上させることができる。又、晶析時のスケーリ
ングを容易に除去することができ、冷却伝熱面の総括伝
熱係数が増大し、生産能力を大幅に向上させることがで
きる。
According to the present invention, the wet cake obtained by filtering the slurry obtained by crystallization has a small liquid content, and the purity of the product can be improved. In addition, scaling during crystallization can be easily removed, the overall heat transfer coefficient of the cooling heat transfer surface increases, and the production capacity can be greatly improved.

【0018】[0018]

【実施例】次に、本発明を実施例を挙げてさらに詳細に
説明するが、本発明は、この実施例によって何ら限定さ
れるものではない。なお、例中の部及び%は、各々、重
量部及び重量%である。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples, parts and% are parts by weight and% by weight, respectively.

【0019】参考例1 図1に示すガラスライニング製晶析釜、循環用ポンプ及
びステンレス製の外部循環熱交換器を備えた晶析装置を
用いて、下記条件で晶析した。 溶質:N−アセチル O,S−ジメチルホスホロアミド
チオエート 100部 溶媒:酢酸エチル 185部 溶液温度T0:40℃ スラリー容量/晶析釜容量:0.83 ΔT(スラリー温度と冷媒温度の差):2〜3℃(晶析
操作中、一定) 結晶析出温度T1:35℃ 一連の操作回数:4回 スラリー温度T2:32℃(1回目の降温工程における最
低温度) スラリー温度T3:35℃(2回目の昇温工程における最
高温度) スラリー温度T4:29℃(2回目の降温工程における最
低温度) スラリー温度T5:33℃(2回目の昇温工程における最
高温度) スラリー温度T6:26℃(3回目の降温工程における最
低温度) スラリー温度T7:28℃(3回目の昇温工程における最
高温度) スラリー温度T8:20℃(4回目の降温工程における最
低温度) スラリー温度T9:22℃(4回目の昇温工程における最
高温度) スラリー温度Ti:12〜13℃(最終の降温工程における
最低温度)
Reference Example 1 Crystallization was carried out under the following conditions using a crystallizer equipped with a crystallizer made of glass lining, a circulation pump and an external heat exchanger made of stainless steel as shown in FIG. Solute: N-acetyl O, S-dimethylphosphoramidothioate 100 parts Solvent: ethyl acetate 185 parts Solution temperature T 0 : 40 ° C Slurry capacity / crystallizer capacity: 0.83 ΔT (difference between slurry temperature and refrigerant temperature ): 2 to 3 ° C. (constant during the crystallization operation) Crystal precipitation temperature T 1 : 35 ° C. Number of series of operations: 4 times Slurry temperature T 2 : 32 ° C. (minimum temperature in the first cooling step) Slurry temperature T 3 : 35 ° C (the highest temperature in the second heating step) Slurry temperature T 4 : 29 ° C (the lowest temperature in the second cooling step) Slurry temperature T 5 : 33 ° C (the highest temperature in the second heating step) Slurry Temperature T 6 : 26 ° C. (minimum temperature in the third cooling step) Slurry temperature T 7 : 28 ° C. (maximum temperature in the third heating step) Slurry temperature T 8 : 20 ° C. (minimum temperature in the fourth cooling step) ) slurry temperature T 9: 22 Slurry temperature T i (the maximum temperature in the fourth heating step): 12 to 13 ° C. (lowest temperature in the final cooling step)

【0020】得られたスラリーの一部を小型遠心濾過器
(6インチ:遠心効果は350G)で固液分離し、湿潤ケ
ーキの含液率及び平均粒径を求めたところ、各々、6.0
%及び450μmであった。又、外部循環熱交換器の冷却
面における総括伝熱係数は、460Kcal/m2・Hr・℃
であった。同様にして、一連の操作回数を3回にした時
の湿潤ケーキの含液率及び平均粒径を求めたところ、各
々、6.2%及び430μmであり、操作回数を2回にした
時の含液率及び平均粒径を求めたところ、各々、約7%
及び370μmであった。又、外部循環熱交換器の冷却面
における総括伝熱係数は、一連の操作回数を3回にした
時が380Kcal/m2・Hr・℃、操作回数を2回にした
ときが170Kcal/m2・Hr・℃であった。
A part of the obtained slurry was subjected to solid-liquid separation with a small centrifugal filter (6 inches; centrifugal effect was 350 G), and the liquid content and average particle size of the wet cake were determined.
% And 450 μm. The overall heat transfer coefficient on the cooling surface of the external circulation heat exchanger is 460 Kcal / m 2 · Hr · ° C.
Met. Similarly, when the liquid content and the average particle size of the wet cake were determined when the number of operations in the series was set to three times, they were 6.2% and 430 μm, respectively. When the liquid content and the average particle size were determined, each was about 7%.
And 370 μm. The overall heat transfer coefficient on the cooling surface of the external circulating heat exchanger is 380 Kcal / m 2 · Hr · ° C. when the number of operations is three, and 170 Kcal / m 2 when the number of operations is two.・ Hr · ° C.

【0021】実施例1 N−アセチル O,S−ジメチルホスホロアミドチオエ
ート84部及び酢酸エチル440部を用い、前記晶析法に準
じて晶析を行なって得たスラリーを、図1の装置の晶析
釜K0から、図2の装置の容器K1中に移した。このとき
のスラリー温度は14℃であった。又、このスラリーの一
部を小型遠心濾過器(4インチ、回転数は毎分2500)で
固液分離し、湿潤ケーキの含液率を求めたところ、5.9
%であった。
Example 1 A slurry obtained by crystallization according to the above-mentioned crystallization method using 84 parts of N-acetyl O, S-dimethylphosphoramidothioate and 440 parts of ethyl acetate was applied to the apparatus shown in FIG. from crystallization析釜K 0, was transferred into the vessel K 1 of the apparatus of FIG. The slurry temperature at this time was 14 ° C. A part of the slurry was subjected to solid-liquid separation with a small centrifugal filter (4 inches, rotation speed 2500 per minute), and the liquid content of the wet cake was determined to be 5.9.
%Met.

【0022】次いで、容器(晶析釜)K1中の母液より
も高温且つ高濃度の溶液の貯留タンクMから配管Hを経
由して、晶析釜K1へ、攪拌下に、50℃に保温したN−
アセチル O,S−ジメチルホスホロアミドチオエート
1150部と酢酸エチル1920部からなる溶液を晶析釜K1
のスラリー温度が13〜16℃を保つように2時間を要して
滴下し、滴下開始と同時に、循環用ポンプによりスラリ
ーを循環させた。定常状態になったときの晶析釜K1
の温度は、14℃であった。溶液の滴下終了後に、スラリ
ーの一部を上記の小型遠心濾過器で固液分離し、湿潤ケ
ーキの含液率を求めたところ、4.8%であった。
Next, from the storage tank M of a solution having a higher temperature and a higher concentration than the mother liquor in the container (crystallizer) K 1 , to the crystallizer K 1 via the pipe H, to 50 ° C. with stirring. Warm N-
Acetyl O, S-dimethyl phosphoramidothioate
A solution of 1150 parts of ethyl acetate 1920 parts slurry temperature of crystallization析釜K in 1 was added dropwise over a period of 2 hours so as to maintain the 13 to 16 ° C., added dropwise simultaneously with the start of the circulating slurry by circulation pump I let it. Temperature of crystallization析釜K in 1 when the steady state was 14 ° C.. After the completion of the dropping of the solution, a part of the slurry was subjected to solid-liquid separation using the small centrifugal filter, and the liquid content of the wet cake was determined to be 4.8%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参考例1で用いた装置FIG. 1 shows an apparatus used in Reference Example 1.

【図2】実施例1で用いた装置FIG. 2 shows an apparatus used in Example 1.

【符号の説明】[Explanation of symbols]

1 第一の容器、 K2、K3、・・、Ki 第二以降の容器、 M 融解液の貯留タンク、 A、B、C、H 配管、 P 循環用ポンプ E 外部熱交換器 K0 晶析釜K 1 first container, K 2, K 3, · ·, K i containers of the second and subsequent, storage tanks M melting solution, A, B, C, H piping, pump P circulates E external heat exchanger K 0 Crystallization pot

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清島 裕二郎 大分県大分市大字鶴崎2200番 住友化学工 業株式会社内 Fターム(参考) 4H050 AA02 AD15 BB17 BC50 BC51 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yujiro Kiyoshima 2200 Tsuruzaki, Oita-shi, Oita F-term in Sumitomo Chemical Co., Ltd. (Reference) 4H050 AA02 AD15 BB17 BC50 BC51

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2つの容器を用い、第一の容器
の母液と溶質からなるスラリーに、攪拌下、第一の容器
中の母液より高温且つ高濃度の溶質の溶液又は溶質の融
解液を添加しながら、該容器のスラリーを第二以降の容
器を経由して第一の容器に循環させて晶析する方法であ
って、第二以降の容器における晶析温度を第一の容器に
おける晶析温度よりも順次低くすることを特徴とする晶
析方法。
1. Using at least two containers, a solution of a solute or a molten solution of a solute having a higher temperature and a higher concentration than the mother liquor in the first container is added to a slurry comprising the mother liquor and the solute in the first container under stirring. A method in which the slurry in the vessel is circulated to the first vessel via the second and subsequent vessels while adding, and the crystallization temperature in the second and subsequent vessels is reduced by the crystallization temperature in the first vessel. A crystallization method characterized by sequentially lowering the crystallization temperature.
【請求項2】第二以降の容器が、熱交換器である請求項
1に記載の方法。
2. The method according to claim 1, wherein the second and subsequent vessels are heat exchangers.
【請求項3】第一及び第二以降の容器における晶析温度
の差が、0.2〜20℃の範囲である請求項1又は2に記
載の方法。
3. The method according to claim 1, wherein the difference between the crystallization temperatures in the first and second and subsequent vessels is in the range of 0.2 to 20 ° C.
【請求項4】第一及び第二以降の容器における晶析温度
の差が、0.5〜5℃の範囲である請求項3に記載の方
法。
4. The method according to claim 3, wherein the difference between the crystallization temperatures in the first and second and subsequent vessels is in the range of 0.5 to 5 ° C.
【請求項5】第一の容器の母液と溶質からなるスラリー
が、冷却を開始して晶析を終了するまでに、スラリー温
度を降温して溶質の一部を結晶析出させる降温工程と、
該工程後、析出した結晶が完全に溶解する前まで、スラ
リー温度を昇温する昇温工程からなる一連の操作を複数
回行ない、さらに最終の降温工程を含み、且つ、各回と
最終の降温工程におけるスラリー温度の最小値及び昇温
工程におけるスラリー温度の最大値を、各々、順次低下
させる回分式冷却晶析法により得られるものである請求
項1〜4のいずれかに記載の方法。
5. A temperature decreasing step of lowering the temperature of the slurry and causing a part of the solute to crystallize before the slurry comprising the mother liquor and the solute in the first container starts cooling and completes crystallization;
After this step, a series of operations including a temperature raising step of raising the slurry temperature is performed a plurality of times until the precipitated crystals are completely dissolved, and further includes a final temperature lowering step, and each time and a final temperature lowering step The method according to any one of claims 1 to 4, wherein the minimum value of the slurry temperature and the maximum value of the slurry temperature in the temperature raising step are obtained by a batch cooling crystallization method in which the respective values are sequentially decreased.
【請求項6】降温工程及び昇温工程からなる一連の操作
を3回以上行なう、請求項5に記載の方法。
6. The method according to claim 5, wherein a series of operations including a temperature lowering step and a temperature raising step is performed three times or more.
【請求項7】溶質が有機燐系化合物であり、溶媒が酢酸
低級アルキルエステルである請求項1〜6のいずれかに
記載の方法。
7. The method according to claim 1, wherein the solute is an organic phosphorus compound and the solvent is a lower alkyl acetate.
JP11024925A 1999-02-02 1999-02-02 Crystallization method Pending JP2000218101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024925A JP2000218101A (en) 1999-02-02 1999-02-02 Crystallization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024925A JP2000218101A (en) 1999-02-02 1999-02-02 Crystallization method

Publications (1)

Publication Number Publication Date
JP2000218101A true JP2000218101A (en) 2000-08-08

Family

ID=12151713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024925A Pending JP2000218101A (en) 1999-02-02 1999-02-02 Crystallization method

Country Status (1)

Country Link
JP (1) JP2000218101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108905262A (en) * 2018-06-12 2018-11-30 崇义章源钨业股份有限公司 The system and method for ammonium para-tungstate crystal automation control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108905262A (en) * 2018-06-12 2018-11-30 崇义章源钨业股份有限公司 The system and method for ammonium para-tungstate crystal automation control

Similar Documents

Publication Publication Date Title
JPS60118200A (en) Continuous crystallizing method and apparatus of anhydrous crystalline fructose
JP2000218101A (en) Crystallization method
JPS6230606A (en) Seed crystal manufacture for phosphoric acid crystallization
JP4259819B2 (en) Crystallization method and crystallizer
RU2112771C1 (en) Method of crystallizing aspartame
JP5513621B2 (en) Method for separating racemate-forming chiral substances by circulating crystallization processes and crystallization devices
JP2004358351A (en) Crystallizing method
JP4419492B2 (en) Improved continuous crystallization method
JP3266395B2 (en) Crystallization method of organic chemicals
JPS6230608A (en) Phosphoric acid crystallization
JP4731980B2 (en) Method and system for crystallizing sterols
EP1077216B1 (en) Crystallization of alpha-L-aspartyl-L-phenylalanine methyl ester from supersaturated solution
JP7035636B2 (en) Crystallization equipment and crystallization method
JPH11300102A (en) Crystallizing method
KR100342148B1 (en) Method of Purifying Carbazole Ester Precursors of 6-Chloro-α-Methyl-Carbazole-2-Acetic Acid
JP3639858B2 (en) Method and apparatus for producing raffinose crystals
CN215462124U (en) Continuous crystallization equipment
CN220989730U (en) Parafluoronitrobenzene continuous crystallization device
JPH11199524A (en) Melt crystallization of wall surface falling type
US6657073B1 (en) Crystallization of α-L-aspartyl-L-phenylalanine methyl ester
CN113457201A (en) Continuous crystallization equipment and continuous crystallization process
US6100422A (en) Crystallization of alpha-L-aspartyl-L-phenylalanine methyl esther
JP2004216370A (en) Method and apparatus for crystallization
CN114797157A (en) Method and device for purifying silver nitrate by layer type integral crystallization
CN115970323A (en) High salt waste water does not have evaporation and falls salt device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829