JPH11199524A - Melt crystallization of wall surface falling type - Google Patents

Melt crystallization of wall surface falling type

Info

Publication number
JPH11199524A
JPH11199524A JP217098A JP217098A JPH11199524A JP H11199524 A JPH11199524 A JP H11199524A JP 217098 A JP217098 A JP 217098A JP 217098 A JP217098 A JP 217098A JP H11199524 A JPH11199524 A JP H11199524A
Authority
JP
Japan
Prior art keywords
crystal
wall surface
organic compound
liquid organic
butanediol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP217098A
Other languages
Japanese (ja)
Inventor
Manabu Okuyama
学 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP217098A priority Critical patent/JPH11199524A/en
Publication of JPH11199524A publication Critical patent/JPH11199524A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the purification of a crude liquid organic compound in a higher purity by reduced steps comprising depositing the thin crystal film of the highly pure liquid organic compound on a wall surface as a seed crystal and subsequently supplying the crude liquid organic compound to the wall surface to grow the crystal. SOLUTION: The thin crystal film of a highly pure liquid organic compound is preliminarily deposited on a wall surface as a seed crystal, and the crude liquid organic compound is supplied to the wall surface to grow the crystal. Concretely, for example, 1,4-butanediol having a purity of 100% and supplied into a storage tank VI is circulated to a crystallization device 1 to wet its wall surface, and the circulation is stopped. A cooling medium cooled at a temperature not higher than the freezing point of the 1,4-butanediol is supplied to crystallize the thin film on the wall surface 2. Crude 1,4-butanediol is further supplied from the storage tank VI to the crystallization device 1 to flow down and simultaneously cool the supplied crude 1,4-butanediol on the wall surface 2. The deposited crystal is subsequently melted with a heating medium obtained by heating the cooling medium at a temperature not lower than the melting point of the crystal, and recovered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、壁面降下型溶融晶
析方法に関する。詳しくは、壁面に析出させた種晶を用
いる壁面降下型溶融晶析方法の改良に関する。本発明の
方法によれば、従来法に比べてより少ない段数で効率的
に高純度の液体有機化合物を得ることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wall-fall type melt crystallization method. More specifically, the present invention relates to an improvement in a wall-fall-down type melt crystallization method using seed crystals precipitated on a wall surface. According to the method of the present invention, a high-purity liquid organic compound can be efficiently obtained with a smaller number of stages than the conventional method.

【0002】[0002]

【従来の技術】液体有機化合物の精製のために蒸留の代
りに壁面降下型の装置を用いる溶融晶析方法が従来から
いろいろ提案されている(特開平5−132441号公
報)。この場合、初期段階における結晶成長をゆっくり
と行い、且つ結晶表面を滑らかにすることにより純度を
上げることができる。
2. Description of the Related Art A variety of melt crystallization methods using a wall-fall type apparatus instead of distillation to purify a liquid organic compound have been proposed (JP-A-5-132441). In this case, the purity can be increased by slowly growing the crystal in the initial stage and smoothing the crystal surface.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記方
法の場合、実際の運転においては、操作時間や処理量の
関係から、大きめの過冷却温度と流速で操作されること
が多く、結晶成長が早くなるために表面荒れや初期の不
純物取り込み量が多くなり、目的の純度にするためには
多段化しなくてはならない為、エネルギーコストがかか
る、装置スペースを取る等の問題があった。本発明は、
粗液体有機化合物をより少ない段数でより高純度に精製
することのできる溶融晶析方法を提供することを目的と
する。
However, in the case of the above-mentioned method, in the actual operation, the operation is often performed at a relatively large supercooling temperature and a high flow rate due to the relation between the operation time and the throughput. As a result, the surface roughness and the amount of impurities taken in at the beginning are increased, and it is necessary to increase the number of stages in order to obtain the desired purity. The present invention
It is an object of the present invention to provide a melt crystallization method capable of purifying a crude liquid organic compound with a smaller number of stages and higher purity.

【0004】[0004]

【課題を解決するための手段】本発明者は、かかる事情
に鑑み鋭意検討した結果、高純度液体有機化合物の結晶
薄膜を種晶として壁面に析出させ、これに粗液体有機化
合物を供給して結晶を成長させることにより、不純物濃
度が高い初期の母液混入を防ぎ、過飽和度が低い領域で
も結晶析出が起き成長も遅いため、従来法よりも高純度
な精製方法を確立することが可能であること、また、粘
度が高く発汗時に分別しにくい組成の原料を晶析する場
合においても極めて有効な技術であることを見い出し、
本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies in view of the above circumstances, the present inventors have deposited a crystal thin film of a high-purity liquid organic compound as a seed crystal on a wall surface and supplied a crude liquid organic compound thereto. By growing the crystal, it is possible to prevent the mother liquor from being mixed at an early stage where the impurity concentration is high, and to cause crystal precipitation and slow growth even in a region having a low supersaturation degree. Therefore, it is possible to establish a purification method with higher purity than the conventional method. That, also found that it is a very effective technology even in the case of crystallizing raw materials having a composition that is difficult to separate during sweating with high viscosity,
The present invention has been completed.

【0005】即ち、本発明の要旨は、予め高純度液体有
機化合物の結晶薄膜を壁面に析出させた後、この壁面に
粗液体有機化合物を供給して結晶を成長させることを特
徴とする壁面降下型溶融晶析方法、にある。以下、本発
明を詳細に説明する。
That is, the gist of the present invention is that a crystal thin film of a high-purity liquid organic compound is previously deposited on a wall surface, and a crude liquid organic compound is supplied to the wall surface to grow a crystal. Mold crystallization method. Hereinafter, the present invention will be described in detail.

【0006】[0006]

【発明の実施の形態】本発明の対象となる液体有機化合
物としては、壁面降下型溶融晶析方法を適用することが
できるものであれば特に限定はされないが、具体的に
は、例えば1,4−ブタンジオール、アクリル酸、ビス
フェノールA等が挙げられる。なお、高純度液体有機化
合物とは、純度が通常99〜100重量%、好ましくは
99.5〜100重量%、更に好ましくは100重量%
のものをいう。また、粗液体有機化合物とは、純度が通
常85〜99重量%、好ましくは90〜99重量%のも
のをいう。以下、1,4−ブタンジオール、アクリル
酸、ビスフェノールAを例に採り、説明する。
DETAILED DESCRIPTION OF THE INVENTION The liquid organic compound to be used in the present invention is not particularly limited as long as it can be applied with a wall-falling-type melt crystallization method. 4-butanediol, acrylic acid, bisphenol A and the like. The high-purity liquid organic compound has a purity of usually 99 to 100% by weight, preferably 99.5 to 100% by weight, and more preferably 100% by weight.
Means The crude liquid organic compound refers to a compound having a purity of usually 85 to 99% by weight, preferably 90 to 99% by weight. Hereinafter, 1,4-butanediol, acrylic acid, and bisphenol A will be described as examples.

【0007】(1)本発明に用いられる晶析装置は、基
本的には晶析器、貯槽及び送液ポンプより構成される。
使用する装置の冷却面は平板でも管型でも、液体原料
(粗液体有機化合物)が壁面を流下できる構造であれば
いずれでもよい。壁面上部には、垂直面を介し壁板の一
面側に液体原料を薄膜状に流下させる原料供給手段をな
す原料供給器が設けられている。晶析板の他面側には液
体原料の凝固点以下の温度の冷媒を薄膜状に流下させる
冷媒供給手段をなす冷媒供給管が設けられている。この
冷媒供給管は晶析板の他面側に液体原料の凝固点以上の
温度の熱媒を供給する熱媒供給管を兼用している。
(1) The crystallization apparatus used in the present invention basically comprises a crystallizer, a storage tank and a liquid feed pump.
The cooling surface of the apparatus to be used may be any of a flat plate type and a tubular type as long as the liquid material (crude liquid organic compound) can flow down the wall surface. At the upper part of the wall surface, there is provided a raw material supply device serving as raw material supply means for causing the liquid raw material to flow down into a thin film on one surface side of the wall plate via the vertical surface. On the other side of the crystallization plate, there is provided a refrigerant supply pipe as a refrigerant supply means for causing a refrigerant having a temperature equal to or lower than the freezing point of the liquid raw material to flow down into a thin film. The refrigerant supply pipe also serves as a heat medium supply pipe for supplying a heat medium having a temperature equal to or higher than the freezing point of the liquid raw material to the other surface of the crystallization plate.

【0008】液体原料は、ポンプによって循環して供給
され、一方晶析板の他面側で流下した冷媒はポンプ及び
冷却器を介して冷媒供給管に循環供給される。ここで言
う冷媒とは、液体有機化合物の凝固点以下マイナス40
℃まで冷却でき、且つ凝固点以上に加温できる液体であ
る。具体的には、1,4−ブタンジオール、アクリル酸
の場合には30〜40重量%エチレングリコール、ビス
フェノールAの場合には200℃まで耐えうるシリコン
オイルである。
The liquid raw material is circulated and supplied by a pump, while the refrigerant flowing down on the other side of the crystallization plate is circulated and supplied to a refrigerant supply pipe via a pump and a cooler. The refrigerant referred to herein is a temperature below the freezing point of the liquid organic compound minus 40.
It is a liquid that can be cooled down to ° C. and heated above the freezing point. Specifically, 1,4-butanediol and acrylic acid are 30 to 40% by weight ethylene glycol, and bisphenol A is a silicone oil that can withstand up to 200 ° C.

【0009】(2)この様な晶析器に、高純度液体有機
化合物を晶析板の一面側に循環供給して薄膜状に流下さ
せる。このときの壁面温度は常温である。壁面全面が濡
れるまで循環し、全面が完全に濡れたことを確認した
後、循環を止めて静置する。
(2) A high-purity liquid organic compound is circulated and supplied to one side of the crystallization plate and flows down into a thin film in such a crystallizer. The wall temperature at this time is room temperature. Circulate until the entire surface of the wall is wet. After confirming that the entire surface is completely wet, stop the circulation and allow to stand still.

【0010】(3)静置後、壁面に高純度液体有機化合
物の薄膜がある状態で、晶析板の他面側に液体有機化合
物の凝固点以下の温度の冷媒を薄膜状に流下させる。冷
媒流量の上限は、薄膜流が得られる範囲であれば制限さ
れず、流量が多いほど伝熱係数が向上し処理速度が上が
るため、流量は可能な限り多い方が望ましい。
(3) After standing, in a state where a thin film of the high-purity liquid organic compound is present on the wall surface, a refrigerant having a temperature equal to or lower than the freezing point of the liquid organic compound is allowed to flow down into a thin film on the other surface of the crystallized plate. The upper limit of the flow rate of the refrigerant is not limited as long as the flow rate of the thin film can be obtained. The higher the flow rate, the higher the heat transfer coefficient and the higher the processing speed.

【0011】(4)高純度液体有機化合物の約100μ
mの厚さの薄膜が結晶化したことを確認した後、粗液体
有機化合物を壁面に流下させながら冷却することにより
板の一面側に液体有機化合物の結晶を析出させる。粗液
体有機化合物の供給温度は、種晶である高純度結晶存在
下で冷却温度が低すぎると結晶が一気に析出するため、
初期段階で好ましくは凝固点+5℃以内、更に好ましく
は+3℃以内である。具体的には、1,4−ブタンジオ
ールの場合、好ましくは14〜17℃、更に好ましくは
17〜19℃、アクリル酸の場合、好ましくは5〜7
℃、更に好ましくは7〜9℃、ビスフェノールAの場
合、好ましくは160〜163℃、更に好ましくは16
3〜165℃である。結晶表面は、結晶化熱や結晶厚み
による伝熱効率の低下等から初期温度を保持できないの
で、結晶面温度上昇を加味して冷却温度を徐々に低下さ
せる。結晶層の厚さが所定値に達した後、母液を循環供
給系から抜き出す。但し、結晶層が厚くなりすぎると熱
伝導度が悪くなり、晶析時間が長くなるため効率的では
ない。従って、結晶層の厚さは、3〜7mm程度が好ま
しい。
(4) About 100 μm of high-purity liquid organic compound
After confirming that the thin film having a thickness of m has crystallized, the crude liquid organic compound is cooled while flowing down the wall surface to precipitate crystals of the liquid organic compound on one surface side of the plate. The supply temperature of the crude liquid organic compound is such that if the cooling temperature is too low in the presence of a high purity crystal as a seed crystal, the crystal is precipitated at once,
In the initial stage, the freezing point is preferably within + 5 ° C, more preferably within + 3 ° C. Specifically, in the case of 1,4-butanediol, preferably 14 to 17 ° C., more preferably 17 to 19 ° C., and in the case of acrylic acid, preferably 5 to 7 ° C.
° C, more preferably 7 to 9 ° C, and in the case of bisphenol A, preferably 160 to 163 ° C, more preferably 16 to 16 ° C.
3 to 165 ° C. Since the crystal surface cannot maintain the initial temperature due to a decrease in heat transfer efficiency due to crystallization heat or crystal thickness, the cooling temperature is gradually lowered in consideration of the rise in crystal surface temperature. After the thickness of the crystal layer reaches a predetermined value, the mother liquor is extracted from the circulation supply system. However, if the crystal layer is too thick, the thermal conductivity becomes worse and the crystallization time becomes longer, which is not efficient. Therefore, the thickness of the crystal layer is preferably about 3 to 7 mm.

【0012】(5)その後、前記温度調節用媒体を過熱
器で液体有機化合物結晶の凝固点以上の温度に加熱して
熱媒とし、この熱媒を晶析板の他面側に流下させる。そ
して熱媒の流下と共に、既に得られた液体有機化合物の
結晶融液を加熱して晶析板の一面側に流下させる。この
結果、液体有機化合物の結晶は両面から加熱され、短時
間に融解する。
(5) Thereafter, the temperature control medium is heated by a superheater to a temperature higher than the freezing point of the liquid organic compound crystal to form a heat medium, and the heat medium flows down to the other surface of the crystallizing plate. Then, along with the flow of the heat medium, the crystal melt of the liquid organic compound already obtained is heated to flow down to one surface side of the crystallization plate. As a result, the crystal of the liquid organic compound is heated from both sides and melts in a short time.

【0013】(6)以上の晶析操作を行う場合、結晶を
融解する前に部分融解を行うには発汗操作を行うことが
好ましい。発汗操作とは。析出した結晶間に取り込まれ
た又は結晶表面中に付着している不純物濃度が高い液体
を融解除去するものであって、結晶の不純物濃度を更に
低くするために行われるものである。具体的には、晶析
板の他面側に結晶の凝固点以上の熱媒を流下させる前
に、目的とする純物質の融点に近い温度の熱媒を板の他
面側に薄膜状に流下させて結晶を部分融解させることに
より行われる。従って、加熱器により結晶を部分融解さ
せる際には、熱媒を融解温度より低い温度に加熱するよ
うにすれば発汗操作を行うことができるので、融液中の
不純物濃度を更に低くすることができる。
(6) In performing the above crystallization operation, it is preferable to perform a sweating operation in order to perform partial melting before melting the crystal. What is a sweating operation? This is for melting and removing a liquid having a high impurity concentration taken in between the precipitated crystals or adhering to the crystal surface, and is performed to further lower the impurity concentration of the crystals. Specifically, before a heat medium having a temperature higher than the freezing point of the crystal flows down to the other surface of the crystallized plate, a heat medium having a temperature close to the melting point of the target pure substance flows down in a thin film form to the other surface of the plate. This is done by partially melting the crystal. Therefore, when the crystal is partially melted by the heater, the sweating operation can be performed by heating the heat medium to a temperature lower than the melting temperature, so that the impurity concentration in the melt can be further reduced. it can.

【0014】[0014]

【実施例】次に、実施例により本発明を更に具体的に説
明するが、本発明は、その要旨を超えない限り実施例に
限定されるものではない。 実施例1 (1)実験装置として図1に示す晶析装置を用い、高純
度液体有機化合物のうち1,4−ブタンジオールを原料
として晶析を行った。晶析器としては、垂直プレート型
を用いた。晶析板の大きさは幅10mm、高さ600m
mであり、晶析器の側面、全面には透明アクリル板を設
置して目視可能とした。冷媒は、30〜40重量%のエ
チレングリコール水溶液を使用した。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist. Example 1 (1) The crystallization apparatus shown in FIG. 1 was used as an experimental apparatus, and crystallization was performed using 1,4-butanediol as a raw material among high-purity liquid organic compounds. A vertical plate type was used as a crystallizer. The size of the crystallization plate is 10mm wide and 600m high
m, and a transparent acrylic plate was installed on the side surface and the entire surface of the crystallizer to make it visible. As the refrigerant, a 30 to 40% by weight aqueous solution of ethylene glycol was used.

【0015】(2)1,4−ブタンジオール100重量
%溶液100gは、貯槽V1に供給される。貯槽V1に
送られた原料は、更に晶析器1に送られる。原料を循環
させて壁面を濡らす。 (3)壁面が濡れたのを確認した後、循環を止め静置す
る。そして、貯槽V1から1,4−ブタンジオール10
0重量%溶液を抜き出す。
(2) 100 g of a 100% by weight solution of 1,4-butanediol is supplied to the storage tank V1. The raw material sent to the storage tank V1 is further sent to the crystallizer 1. Circulate the raw materials and wet the wall. (3) After confirming that the wall surface is wet, stop the circulation and allow to stand still. And, from the storage tank V1, 1,4-butanediol 10
Withdraw 0% by weight solution.

【0016】(4)1,4−ブタンジオールの凝固点以
下の温度に設定した冷媒を供給し、壁面の液膜を結晶化
させる。 (5)晶析原料の純度94.35重量%の粗1,4−ブ
タンジオール250gを貯槽V1に供給する。貯槽V1
に送られた原料は所定の温度に冷却された後、更に晶析
器1に送られる。所定の条件で原料を晶析器に循環して
50gを結晶化する。残り200gの母液を貯槽V1に
送った後、底部より抜き出す。次に10gを発汗させ発
汗液を貯槽V1に送り、発汗後母液と同様に抜き出す。
(4) A coolant set at a temperature below the freezing point of 1,4-butanediol is supplied to crystallize the liquid film on the wall surface. (5) 250 g of crude 1,4-butanediol having a purity of 94.35% by weight of the crystallization raw material is supplied to the storage tank V1. Storage tank V1
Is cooled to a predetermined temperature and then sent to the crystallizer 1. The raw material is circulated to the crystallizer under predetermined conditions to crystallize 50 g. After the remaining 200 g of mother liquor is sent to the storage tank V1, it is extracted from the bottom. Next, 10 g of the perspiration is perspired, and the perspiration liquid is sent to the storage tank V1, and the perspiration is extracted in the same manner as the mother liquor.

【0017】(6)次に、壁面の精製結晶を融点以上の
冷却液を供給することにより融解し、貯槽V1に回収す
る。 (7)この時の貯槽V1中の精製融液は一段晶析にも拘
らず、1,4−ブタンジオール組成は約98重量%以上
である。
(6) Next, the purified crystal on the wall surface is melted by supplying a cooling liquid having a melting point or higher, and is recovered in the storage tank V1. (7) Despite the single-stage crystallization of the purified melt in the storage tank V1, the 1,4-butanediol composition is about 98% by weight or more.

【0018】比較例1 純度94.35重量%の粗1,4−ブタンジオールを直
接一段晶析すると純度95.6重量%の1,4−ブタン
ジオールしか得られなかった。
Comparative Example 1 Crude 1,4-butanediol having a purity of 94.35% by weight was directly crystallized in one step, and only 1,4-butanediol having a purity of 95.6% by weight was obtained.

【0019】[0019]

【発明の効果】本発明によれば、壁面に種晶を析出させ
る溶融晶析精製法を用いることにより、より少ない段数
で効率的に高純度液体有機化合物を回収することが可能
である。
According to the present invention, it is possible to efficiently recover a high-purity liquid organic compound with a smaller number of stages by using a melt crystallization purification method in which a seed crystal is precipitated on a wall surface.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に用いられる壁面降下型溶融晶析装
置の一例を示す説明図。
FIG. 1 is an explanatory view showing one example of a wall-fall type melt crystallization apparatus used in the method of the present invention.

【符号の説明】[Explanation of symbols]

1 晶析器 2 アクリル板 V1 貯槽 3 攪拌翼 4 ポンプ DESCRIPTION OF SYMBOLS 1 Crystallizer 2 Acrylic plate V1 Storage tank 3 Stirrer blade 4 Pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 57/07 C07C 57/07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07C 57/07 C07C 57/07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 予め高純度液体有機化合物の結晶薄膜を
壁面に析出させた後、この壁面に粗液体有機化合物を供
給して結晶を成長させることを特徴とする壁面降下型溶
融晶析方法。
1. A wall-falling-type melt crystallization method, wherein a crystal thin film of a high-purity liquid organic compound is previously deposited on a wall surface, and a crude liquid organic compound is supplied to the wall surface to grow a crystal.
【請求項2】 液体有機化合物が1,4−ブタンジオー
ル、アクリル酸又はビスフェノールAである請求項1に
記載の方法。
2. The method according to claim 1, wherein the liquid organic compound is 1,4-butanediol, acrylic acid or bisphenol A.
【請求項3】 液体有機化合物が1,4−ブタンジオー
ルである請求項1に記載の方法。
3. The method according to claim 1, wherein the liquid organic compound is 1,4-butanediol.
JP217098A 1998-01-08 1998-01-08 Melt crystallization of wall surface falling type Pending JPH11199524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP217098A JPH11199524A (en) 1998-01-08 1998-01-08 Melt crystallization of wall surface falling type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP217098A JPH11199524A (en) 1998-01-08 1998-01-08 Melt crystallization of wall surface falling type

Publications (1)

Publication Number Publication Date
JPH11199524A true JPH11199524A (en) 1999-07-27

Family

ID=11521899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP217098A Pending JPH11199524A (en) 1998-01-08 1998-01-08 Melt crystallization of wall surface falling type

Country Status (1)

Country Link
JP (1) JPH11199524A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018403A1 (en) * 2002-08-23 2004-03-04 Mitsubishi Chemical Corporation Method of vapor phase catalytic oxidation using multitubular reactor
WO2005085165A1 (en) * 2004-03-03 2005-09-15 Mitsubishi Chemical Corporation (meth)acrylic acid composition and process for producing the same
JP5581316B2 (en) * 2009-05-19 2014-08-27 株式会社日本触媒 Method for producing (meth) acrylic acid
EP2857113A1 (en) 2013-10-02 2015-04-08 4JET Technologies GmbH Method for cleaning a surface of a cavity
CN115304453A (en) * 2022-09-14 2022-11-08 上海赛斯格恩化学技术有限公司 Refining method of 1, 4-butanediol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004018403A1 (en) * 2002-08-23 2004-03-04 Mitsubishi Chemical Corporation Method of vapor phase catalytic oxidation using multitubular reactor
US7067695B2 (en) 2002-08-23 2006-06-27 Mitsubishi Chemical Corporation Method of vapor phase catalytic oxidation using multitubular reactor
WO2005085165A1 (en) * 2004-03-03 2005-09-15 Mitsubishi Chemical Corporation (meth)acrylic acid composition and process for producing the same
CN1309697C (en) * 2004-03-03 2007-04-11 三菱化学株式会社 (Meth)acrylic acid composition and process for producing the same
JP5581316B2 (en) * 2009-05-19 2014-08-27 株式会社日本触媒 Method for producing (meth) acrylic acid
EP2857113A1 (en) 2013-10-02 2015-04-08 4JET Technologies GmbH Method for cleaning a surface of a cavity
CN115304453A (en) * 2022-09-14 2022-11-08 上海赛斯格恩化学技术有限公司 Refining method of 1, 4-butanediol
CN115304453B (en) * 2022-09-14 2024-04-26 上海赛斯格恩化学技术有限公司 Refining method of 1, 4-butanediol

Similar Documents

Publication Publication Date Title
KR100333458B1 (en) Crystallization Method
JP5814118B2 (en) Crystallizer for acrylic acid and method for crystallizing acrylic acid using the same
JP5112898B2 (en) Crystallization method and system for (meth) acrylic acid
JPH11199524A (en) Melt crystallization of wall surface falling type
JPH09103603A (en) Method and apparatus for separating liquid eutectic mixture
JP5929480B2 (en) Method for purifying methacrylic acid
JP4873894B2 (en) Method for producing high purity purified phosphoric acid
JP4092738B2 (en) Method for separating a substance from a liquid mixture by crystallization
CN103590102B (en) Improve the polycrystalline cast ingot technique of polysilicon chip efficiency of conversion
JP5566585B2 (en) Method and apparatus for purifying phosphoric acid by fractional crystallization
JP2008273933A (en) Method for producing bisphenol a
CN217367229U (en) Device of layer type integral crystallization purification silver nitrate
KR100659217B1 (en) Improved continuous crystallization method
JP5569108B2 (en) (Meth) acrylic acid purification method
JP3639858B2 (en) Method and apparatus for producing raffinose crystals
JP2006305450A (en) Method and system for crystallizing sterols
EP0976762A1 (en) Crystallization of Alpha-L-aspartyl-L-phenylalanine methyl ester
JP3449602B2 (en) Purification method of carbazole ester precursor of 6-chloro-α-methyl-carbazole-2-acetic acid
JPH0515701A (en) Continuous crystallization method and device
US6100422A (en) Crystallization of alpha-L-aspartyl-L-phenylalanine methyl esther
JPS59110645A (en) Production of pure crotonic acid
JPH05178889A (en) Method for crystallizing alpha-l-aspartyl-l-phenylalanine methyl ester
US6090972A (en) Crystallization of α-L-aspartyl-L-phenylalanine methyl ester
JPS5945739B2 (en) Aluminum refining method
CN114797157A (en) Method and device for purifying silver nitrate by layer type integral crystallization