JP2000217255A - Method of stabilizing frequency of power system and device thereof - Google Patents

Method of stabilizing frequency of power system and device thereof

Info

Publication number
JP2000217255A
JP2000217255A JP11017549A JP1754999A JP2000217255A JP 2000217255 A JP2000217255 A JP 2000217255A JP 11017549 A JP11017549 A JP 11017549A JP 1754999 A JP1754999 A JP 1754999A JP 2000217255 A JP2000217255 A JP 2000217255A
Authority
JP
Japan
Prior art keywords
frequency
generators
power
generator
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11017549A
Other languages
Japanese (ja)
Other versions
JP3592565B2 (en
Inventor
Hideji Oshida
秀治 押田
Yasuhiko Terao
保彦 寺尾
Kazuhito Kibi
和仁 吉備
Hiroji Sakaguchi
広二 坂口
Kazuo Shiraishi
一雄 白石
Yoshihiro Miyamoto
喜弘 宮本
Masakazu Hirota
雅一 廣田
Shinya Nishimatsu
慎也 西松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Shikoku Research Institute Inc
Shikoku Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc, Shikoku Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Shikoku Research Institute Inc
Priority to JP01754999A priority Critical patent/JP3592565B2/en
Publication of JP2000217255A publication Critical patent/JP2000217255A/en
Application granted granted Critical
Publication of JP3592565B2 publication Critical patent/JP3592565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method of stabilizing the frequency of a power system and a device thereof capable of being more adaptable to th structure of the system and maintaining the frequency within the stabilized operation range of a generator. SOLUTION: A central processing unit 14N is provided, which calculates a leveling-out frequency after the rise of a frequency based on the tidal current value of a linked line, the speed adjusting and fixing rate of each generator 1A, 1B and the L.L. width of each generator 1A, 1B, if it is detected with a sensor 5, which detects the tidal current value of a linked line and the linkage state between a main system and another system 20 in which the tidal current value of the linked line is cut from the system, when power is transmitted from the main system to the other one 20, and limits the power generation by the generator 1A, 1B, if the leveling-out frequency deviates from the stabilized operation range of the generators 1A, 1B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統が系統
分断発生によって分離された場合に認められる周波数異
常を電源制限または負荷制限によって制御する電力系統
の周波数安定化方法およびその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frequency stabilizing method for a power system and a device for controlling a frequency anomaly which is recognized when the power system is separated by occurrence of system disconnection, by limiting a power supply or a load. .

【0002】[0002]

【従来の技術】図10は従来の電力系統の周波数安定化
装置を示す構成図であり、図において、1A,1Bは発
電機(発電所)、2A〜2Dは系統内の母線、3A〜3
Dは送電線であり、送電線3Aは本系統と接続される他
系統20との連系線となる。4Aは計測用端末、4B〜
4Eは制御端末、4Nは中央演算装置、5は連系線ルー
ト断検出用のセンサであり、送電線3Aの連系線潮流値
および連系状態を検出するものである。6A〜6Dは遮
断器、7A〜7Eはコントロール・ケーブル、8A〜8
E,8Nは情報信号伝送路、9は中央給電指令所、10
A,10Bは負荷である。
2. Description of the Related Art FIG. 10 is a block diagram showing a conventional frequency stabilizing device for an electric power system. In the figure, reference numerals 1A and 1B denote generators (power plants), 2A to 2D denote buses in the system, and 3A to 3D.
D is a transmission line, and the transmission line 3A is a connection line with another system 20 connected to this system. 4A is a measuring terminal, 4B-
4E is a control terminal, 4N is a central processing unit, 5 is a sensor for detecting disconnection of the interconnection line route, and detects the interconnection flow value and interconnection state of the transmission line 3A. 6A to 6D are circuit breakers, 7A to 7E are control cables, 8A to 8
E and 8N are information signal transmission lines, 9 is a central power supply command center, 10
A and 10B are loads.

【0003】次に動作について説明する。送電線3Aが
本系統に接続される他系統20へ向かって送り潮流時
に、連系線ルート断事故が発生した場合に、センサ5
は、その送電線3Aの連系線ルート断事故を検出して、
コントロール・ケーブル7Aを通して計測用端末4Aに
送信し、さらに、計測用端末4Aは、情報信号伝送路8
Aを通して中央演算装置4Nに送信する。連系線ルート
断事故が発生したことを認識した中央演算装置4Nは、
センサ5の検出によって今までに送られてきた連系線潮
流値と、中央給電指令所9からの情報から、以下の式
(1)によって発電機の系統定数を演算し、次いで、演
算した発電機の系統定数に基づいて、以下の式(2)に
よって上昇時の周波数ΔFを演算する。
Next, the operation will be described. When the interconnection line route breakage accident occurs when the transmission line 3A is transmitted toward another system 20 connected to the main system, the sensor 5
Detects the disconnection accident of the interconnection line route of the transmission line 3A,
The signal is transmitted to the measuring terminal 4A through the control cable 7A.
A is transmitted to the central processing unit 4N through A. The central processing unit 4N recognizing that the interconnection route disconnection accident has occurred,
The system constant of the generator is calculated by the following equation (1) from the power flow value of the interconnection line sent so far by the detection of the sensor 5 and the information from the central power supply command center 9, and then the calculated power generation Based on the system constant of the machine, the rising frequency ΔF is calculated by the following equation (2).

【0004】[0004]

【数1】 (Equation 1)

【0005】図5は周波数上昇時の安定と不安定の領域
を示す特性図であり、中央演算装置4Nは、算出された
周波数ΔFが図5に示す安定領域に入っているか否かで
各発電機の安定判別を行い、不安定となると判別した場
合に、安定となるような遮断パターンに基づいて、情報
信号伝送路8B,8Cを通して制御端末4B,4Cに指
令し、制御端末4B,4Cは、コントロール・ケーブル
7B、7Cを通して、遮断器6Aまたは6Bにトリップ
信号を出力し、過渡的な周波数上昇の最高値および落ち
着き先を制御する。尚、このような従来技術に関連した
技術文献として「プラント特性を考慮した新しい系統安
定化方式の開発と実用化」(電気学会電力技術研究会、
平成6年10月発行)がある。
FIG. 5 is a characteristic diagram showing a region of stability and instability when the frequency rises. The central processing unit 4N determines each power generation based on whether the calculated frequency ΔF falls within the stable region shown in FIG. The stability of the machine is determined, and when it is determined that the machine becomes unstable, the control terminals 4B and 4C are instructed through the information signal transmission lines 8B and 8C based on the cutoff pattern that makes the machine stable, and the control terminals 4B and 4C A trip signal is output to the circuit breaker 6A or 6B through the control cables 7B and 7C to control the maximum value of the transient frequency rise and the destination of the calm. In addition, as a technical document related to such a conventional technology, “Development and practical application of a new system stabilization method in consideration of plant characteristics” (IEEJ Power Technology Research Group,
(Issued in October 1994).

【0006】[0006]

【発明が解決しようとする課題】従来の電力系統の周波
数安定化装置は以上のように構成されているので、周波
数安定化の手法は、発電機の系統定数KHGを求める際
に、稼働発電機の慣性定数の総和MOGで正規化した制御
対象系統内の総発電量(発電機の出力整定値)POGから
求めており、発電機の稼働時における実際の周波数応動
特性に適応しておらず、また、発電機個々の周波数応動
特性の違いを考慮していないため、系統状態に適応した
最適な周波数制御が行えていないなどの課題があった。
Since the conventional power system frequency stabilizing apparatus is configured as described above, the frequency stabilizing method is performed by determining the operating power generation when calculating the system constant KHG of the generator. It is obtained from the total power generation (output setting value of the generator) P OG in the control target system normalized by the sum M OG of the inertia constants of the machine, and is adapted to the actual frequency response characteristic during the operation of the generator. In addition, since the difference in frequency response characteristics of each generator is not taken into account, there has been a problem that optimal frequency control adapted to the system state cannot be performed.

【0007】この発明は上記のような課題を解決するた
めになされたもので、より系統構成に適応させて発電機
の安定運転領域内に周波数を維持することができる電力
系統の周波数安定化方法およびその装置を得ることを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and a frequency stabilization method for a power system capable of maintaining a frequency within a stable operation region of a generator by adapting to a system configuration. And to obtain the device.

【0008】[0008]

【課題を解決するための手段】この発明に係る電力系統
の周波数安定化方法は、分離された系統において発電過
剰の不平衡が生じた場合に、需給アンバランス量、各発
電機の速度調定率、および各発電機の調速器開度と負荷
制限器開度との差に基づいて周波数上昇の落ち着き先周
波数を求め、その落ち着き先周波数に応じて電源制限を
行うものである。
SUMMARY OF THE INVENTION A frequency stabilization method for an electric power system according to the present invention is characterized in that when an unbalance of excess power generation occurs in a separated system, a supply-demand imbalance amount and a speed regulation rate of each generator are provided. , And based on the difference between the governor opening of each generator and the load limiter opening, the frequency at which the frequency rises is settled down, and the power supply is limited according to the settled frequency.

【0009】この発明に係る電力系統の周波数安定化方
法は、分離された系統において発電不足の不平衡が生じ
た場合に、需給アンバランス量、および各ガバナフリー
機の出力増加量に基づいて周波数下降の最低周波数を求
め、その最低周波数に応じて負荷制限を行うものであ
る。
A frequency stabilization method for an electric power system according to the present invention is characterized in that when an unbalance due to power generation shortage occurs in a separated system, the frequency is stabilized based on a supply / demand imbalance amount and an output increase amount of each governor-free machine. The lowest frequency of descending is obtained, and the load is limited according to the lowest frequency.

【0010】この発明に係る電力系統の周波数安定化方
法は、分離された系統において発電過剰の不平衡が生じ
た場合に、発電機の出力検出値、発電機の慣性定数、需
給アンバランス率、および発電機の定格出力に基づいて
系統定数算出定数を求め、次に、その系統定数算出定
数、および所定の定数に基づいて累乗近似した発電機の
系統定数を求め、さらに、需給アンバランス量、発電機
の出力整定値、および発電機の系統定数に基づいて周波
数上昇の落ち着き先周波数を求め、その落ち着き先周波
数に応じて電源制限を行うものである。
According to the frequency stabilization method for a power system according to the present invention, when an unbalance of excessive power generation occurs in a separated system, a detected output value of a generator, an inertia constant of the generator, a supply / demand imbalance rate, And a system constant calculation constant is obtained based on the rated output of the generator, then the system constant calculation constant, and a system constant of the generator approximated by a power based on the predetermined constant are obtained. The frequency at which the frequency rises is settled is determined based on the output set value of the generator and the system constant of the generator, and the power supply is limited according to the settled frequency.

【0011】この発明に係る電力系統の周波数安定化方
法は、分離された系統において発電過剰の不平衡が生じ
た場合に、発電機の出力検出値、発電機の慣性定数、需
給アンバランス率、および発電機の定格出力に基づいて
系統定数算出定数を求め、次に、需給アンバランス量に
よって場合分けされた定数、およびその系統定数算出定
数に基づいて線形近似した発電機の系統定数を求め、さ
らに、需給アンバランス量、発電機の出力整定値、およ
び発電機の系統定数に基づいて周波数上昇の落ち着き先
周波数を求め、その落ち着き先周波数に応じて電源制限
を行うものである。
According to the frequency stabilization method for a power system according to the present invention, when an unbalance of excessive power generation occurs in a separated system, a detected output value of the generator, an inertia constant of the generator, a supply / demand imbalance rate, And a system constant calculation constant is determined based on the rated output of the generator, and then a constant classified according to the supply and demand imbalance amount, and a system constant of the generator that is linearly approximated based on the system constant calculation constant, Further, the frequency at which the frequency rises is settled is determined based on the supply / demand imbalance amount, the output setting value of the generator, and the system constant of the generator, and the power supply is limited according to the settled frequency.

【0012】この発明に係る電力系統の周波数安定化装
置は、送電時に系統分断された場合に、連系線潮流値、
各発電機の速度調定率、および各発電機の調速器開度と
負荷制限器開度との差に基づいて周波数上昇の落ち着き
先周波数を演算し、その落ち着き先周波数に応じて電源
制限を行う演算制御手段を備えたものである。
The power system frequency stabilizing apparatus according to the present invention provides an interconnecting line power flow value when the system is disconnected during power transmission.
Based on the speed regulation rate of each generator and the difference between the governor opening and the load limiter opening of each generator, the calming destination frequency of the frequency rise is calculated, and the power source is limited according to the calming destination frequency. It is provided with operation control means for performing.

【0013】この発明に係る電力系統の周波数安定化装
置は、受電時に系統分断された場合に、連系線潮流値、
および各ガバナフリー機の出力増加量に基づいて周波数
下降の最低周波数を演算し、その最低周波数に応じて負
荷制限を行う演算制御手段を備えたものである。
A power system frequency stabilizing apparatus according to the present invention provides an interconnecting line power flow value,
And a calculation control means for calculating the lowest frequency of the frequency decrease based on the output increase amount of each governor-free machine, and performing load limitation according to the lowest frequency.

【0014】[0014]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1はこの発明の実施の形態1による電
力系統の周波数安定化装置を示す構成図であり、図にお
いて、1A,1Bは発電機(発電所)、2A〜2Dは系
統内の母線、3A〜3Dは送電線であり、送電線3Aは
本系統(第1電力系統)と接続される他系統(第2電力
系統)20との連系線となる。4Aは計測用端末、4B
〜4Eは制御端末、5は連系線ルート断検出用のセンサ
(連系検出手段)であり、送電線3Aの連系線潮流値お
よび連系状態を検出するものである。6A〜6Dは遮断
器、7A〜7Eはコントロール・ケーブル、8A〜8
E,8Nは情報信号伝送路、9は中央給電指令所、10
A,10Bは負荷である。また、14Nは中央演算装置
(演算制御手段)であり、センサ5により送電線3Aの
連系線潮流値が本系統から他系統20への送電時に系統
分断されたと検出された場合に、周波数上昇の落ち着き
先周波数を演算し、その落ち着き先周波数が発電機1
A,1Bの安定運転領域を外れる時に、発電機1A,1
Bの電源制限を行い、また、センサ5により送電線3A
の連系線潮流値が他系統20から本系統への受電時に系
統分断されたと検出された場合に、周波数下降の最低周
波数を演算し、その最低周波数が発電機1A,1Bの安
定運転領域を外れる時に、負荷10A,10Bの負荷制
限を行うものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. FIG. 1 is a configuration diagram showing a frequency stabilizing device of a power system according to Embodiment 1 of the present invention. In the drawing, 1A and 1B are generators (power plants), 2A to 2D are buses in the system, and 3A to 3D. 3D is a transmission line, and the transmission line 3A is a connection line with another system (second power system) 20 connected to the main system (first power system). 4A is a measuring terminal, 4B
Reference numerals 4E to 4E are control terminals, and 5 is a sensor (interconnection detection means) for detecting a disconnection of the interconnection line route, which detects an interconnection line power flow value and an interconnection state of the transmission line 3A. 6A to 6D are circuit breakers, 7A to 7E are control cables, 8A to 8
E and 8N are information signal transmission lines, 9 is a central power supply command center, 10
A and 10B are loads. Reference numeral 14N denotes a central processing unit (arithmetic control means), which increases the frequency when the sensor 5 detects that the power flow value of the interconnection line of the transmission line 3A is disconnected from the main system to the other system 20 when the system is disconnected. Is calculated, and the settled frequency is calculated by the generator 1
When the generators 1A and 1B are out of the stable operation range,
B, the power supply is limited, and the sensor 5 controls the transmission line 3A.
When the power flow value of the interconnecting line is detected as being disconnected from the power system from the other system 20 to the main system, the lowest frequency of the frequency decrease is calculated, and the lowest frequency determines the stable operation region of the generators 1A and 1B. When it deviates, the load of the loads 10A and 10B is limited.

【0015】次に動作について説明する。送電線3Aの
連系状態は常時センサ5で検出され、コントロール・ケ
ーブル7Aを通して計測用端末4Aに出力される。中央
演算装置14Nは、常に計測用端末4Aから連系線潮流
値および連系状態の情報を情報信号伝送路8Aを通して
取り込み、また、制御端末4B,4Cから情報信号伝送
路8B,8Cを通して発電機1A,1Bの発電情報を周
期的に取り込み、さらに、中央給電指令所9から情報信
号伝送路8Nを通して総負荷量の情報を周期的に取り込
む。また、中央演算装置14Nは、必要に応じて電源制
限信号、または負荷制限信号を情報信号伝送路8B〜8
Eを通して制御端末4B〜4Eに出力し、制御端末4B
〜4Eでは、電源制限信号あるいは負荷制限信号に応じ
て、受信した信号の内容から発電機1A,1B、または
負荷10A,10Bを選択してトリップ信号を出力す
る。例えば、送電線3Aでルート断事故が発生した場
合、センサ5からの情報からルート断事故を検出したこ
とをキックとして、中央演算装置14Nは起動状態に入
り、電源制限、または負荷制限の安定化制御を行う。
Next, the operation will be described. The interconnection state of the transmission line 3A is always detected by the sensor 5 and output to the measurement terminal 4A through the control cable 7A. The central processing unit 14N always takes in the power flow value of the interconnection line and the information of the interconnection state from the measuring terminal 4A through the information signal transmission line 8A, and the generator from the control terminals 4B and 4C through the information signal transmission lines 8B and 8C. The power generation information of 1A and 1B is periodically taken in, and further, the information of the total load is periodically taken in from the central power supply commanding station 9 through the information signal transmission line 8N. Further, the central processing unit 14N transmits the power supply limiting signal or the load limiting signal as necessary to the information signal transmission lines 8B to 8B.
E to the control terminals 4B to 4E.
In 4E, the generator 1A, 1B or the load 10A, 10B is selected from the content of the received signal and a trip signal is output according to the power supply restriction signal or the load restriction signal. For example, when a route disconnection accident occurs in the transmission line 3A, the central processing unit 14N enters a start-up state, and the detection of the route disconnection accident from the information from the sensor 5 is kicked, and the power supply limitation or the load limitation stabilization. Perform control.

【0016】図2は中央演算装置の動作を示すフローチ
ャートであり、図に基づいて詳細な動作を説明する。図
2において、センサ5によりルート断事故が検出されれ
ば中央演算装置14Nは起動状態に入り(ステップST
1)、故障発生時点を基準とする時刻リセットの処理を
行い(ステップST2)、故障除去を検出する(ステッ
プST3)。次に、センサ5により検出されていた連系
線潮流値が本系統から見て送電か受電かを判定し(ステ
ップST4)、送電であるならステップST5に、それ
以外の時はステップST11へ進む。
FIG. 2 is a flowchart showing the operation of the central processing unit, and the detailed operation will be described based on the drawing. In FIG. 2, if a route disconnection accident is detected by the sensor 5, the central processing unit 14N enters an activated state (step ST
1), a time reset process based on the point of occurrence of a failure is performed (step ST2), and removal of the failure is detected (step ST3). Next, it is determined whether the interconnection flow detected by the sensor 5 is power transmission or power reception as viewed from the main system (step ST4). If power transmission is performed, the process proceeds to step ST5. Otherwise, the process proceeds to step ST11. .

【0017】送電の場合は、センサ5により検出されて
いた連系線潮流値、各発電機1A,1Bの速度調定率、
各発電機1A,1Bの調速器開度と負荷制限器開度との
差(以下、L.L.幅と言う)を考慮して周波数上昇の
落ち着き先周波数を求める(ステップST5)。そし
て、その周波数上昇の落ち着き先周波数が電源制限の必
要な値を越えているか否かを判定し(ステップST
6)、電源制限が必要であれば、安定化制御量(電源制
限量)を予め決められたアルゴリズムによって決定する
(ステップST7)。そして、決定した電源制限量に応
じた発電機パターンが存在するか否かを判定し(ステッ
プST8)、存在すれば決定した電源制限量に対応した
遮断パターンを発電機1A,1Bから選択し(ステップ
ST9)、その決定した選択パターンに従って、情報信
号伝送路8B,8Cを通して制御端末4B,4Cに情報
を伝送し、制御端末4B,4Cから遮断器6A,6Bに
トリップ信号を出力することにより電源制限して(ステ
ップST10)、処理を終了する(ステップST1
7)。
In the case of power transmission, the power flow value of the interconnection line detected by the sensor 5, the speed regulation rate of each of the generators 1A and 1B,
The frequency at which the frequency rises is settled down is determined in consideration of the difference between the governor opening of each of the generators 1A and 1B and the load limiter opening (hereinafter referred to as the LL width) (step ST5). Then, it is determined whether or not the frequency to which the frequency rise has settled exceeds the value required for power supply restriction (step ST).
6) If power supply restriction is required, the stabilization control amount (power supply restriction amount) is determined by a predetermined algorithm (step ST7). Then, it is determined whether or not a generator pattern corresponding to the determined power supply restriction amount exists (step ST8), and if present, a cutoff pattern corresponding to the determined power supply restriction amount is selected from the generators 1A and 1B ( Step ST9) According to the selected selection pattern, information is transmitted to the control terminals 4B and 4C through the information signal transmission lines 8B and 8C, and a trip signal is output from the control terminals 4B and 4C to the circuit breakers 6A and 6B. The process is restricted (step ST10), and the process ends (step ST1).
7).

【0018】一方、受電の場合は、センサ5により検出
されていた連系線潮流値、各発電機1A,1Bのうちの
ガバナフリー機の出力増加量を考慮して周波数下降の最
低周波数を求める(ステップST11)。そして、その
周波数下降の最低周波数が負荷制限の必要な値を下回っ
ているか否かを判定し(ステップST12)、負荷制限
が必要であれば、安定化制御量(負荷制限量)を予め決
められたアルゴリズムによって決定する(ステップST
13)。そして、決定した負荷制限量に応じた負荷パタ
ーンが存在するか否かを判定し(ステップST14)、
存在すれば決定した負荷制限量に対応した遮断パターン
を負荷10A,10Bから選択し(ステップST1
5)、その決定した選択パターンに従って、情報信号伝
送路8D,8Eを通して制御端末4D,4Eに情報を伝
送し、制御端末4D,4Eから遮断器6C,6Dにトリ
ップ信号を出力することにより負荷制限して(ステップ
ST16)、処理を終了する(ステップST17)。
On the other hand, in the case of power reception, the lowest frequency of the frequency decrease is determined in consideration of the interconnection flow detected by the sensor 5 and the output increase of the governor-free machine among the generators 1A and 1B. (Step ST11). Then, it is determined whether or not the lowest frequency of the frequency drop is lower than a value required for load limiting (step ST12). If load limiting is required, a stabilization control amount (load limiting amount) is determined in advance. (Step ST
13). Then, it is determined whether or not a load pattern corresponding to the determined load limit exists (step ST14).
If there is, a cutoff pattern corresponding to the determined load limiting amount is selected from the loads 10A and 10B (step ST1).
5) According to the selected selection pattern, information is transmitted to the control terminals 4D and 4E through the information signal transmission lines 8D and 8E, and a trip signal is output from the control terminals 4D and 4E to the circuit breakers 6C and 6D, thereby limiting the load. Then (step ST16), the process ends (step ST17).

【0019】以上のように、この実施の形態1によれ
ば、電力系統間の連系線ルート断時に認められる需給ア
ンバランスによる周波数異常を事故発生後の発電機1
A,1Bの個々の周波数応動特性を考慮して演算するの
で、より精度の高い安定化制御が可能となる効果があ
る。
As described above, according to the first embodiment, the frequency abnormalities due to the imbalance in supply and demand observed when the interconnection route between the electric power systems is cut off, cause the generator 1 after the occurrence of the accident.
Since the calculation is performed in consideration of the respective frequency response characteristics of A and 1B, there is an effect that more accurate stabilization control can be performed.

【0020】実施の形態2.この実施の形態2は、送電
時に連系線ルート断が発生した場合において、連系線潮
流値、各発電機1A,1Bの速度調定率、各発電機1
A,1BのL.L.幅を考慮して周波数上昇の落ち着き
先周波数を求め、さらに、必要電源制限量を求める時の
具体的な実施の形態について説明するものである。
Embodiment 2 The second embodiment is different from the first embodiment in that when the route of the interconnection line breaks during power transmission, the power flow value of the interconnection line, the speed regulation rate of each of the generators 1A and 1B, and the
A, 1B L. L. A specific embodiment will be described in which a settled frequency of a frequency rise is determined in consideration of a width, and further, a required power supply restriction amount is determined.

【0021】次に動作について説明する。図3は発電機
特性と周波数との関係を示す特性図であり、系統の周波
数は、発電機特性と負荷特性との交点で求めることがで
きる。発電機がL.L.運転の場合、周波数がある程度
変動しても発電機出力は変化しないため、発電機特性は
図3(a)のようになり、周波数は図のA点となる。連
系線潮流値が制御対象系統から見て送電であった場合
に、連系線がルート断事故を起こすと、事故後の負荷特
性が同図(b)のように変化し、系統周波数は変化して
ΔF1 (B点)に変化する。また、系統分断による発電
機の出力変化ΔPG は、以下の式(3)のようになる。
Next, the operation will be described. FIG. 3 is a characteristic diagram showing the relationship between the generator characteristics and the frequency. The frequency of the system can be obtained at the intersection of the generator characteristics and the load characteristics. If the generator is L. L. In the case of operation, since the generator output does not change even if the frequency fluctuates to some extent, the generator characteristics are as shown in FIG. 3A, and the frequency is point A in the figure. If the power flow of the interconnecting line is power transmission from the viewpoint of the control target system, and the interconnecting line causes a route disconnection accident, the load characteristics after the accident change as shown in FIG. It changes to ΔF 1 (point B). Further, the output change ΔP G of the generator due to the system disconnection is represented by the following equation (3).

【0022】[0022]

【数2】 (Equation 2)

【0023】また、周波数変動による負荷量の変化ΔP
L は、負荷の系統定数KL より以下の式(4)で表され
る。 ΔPL =KL ・PL ・ΔF1 …(4) ここに、PL :周波数変動前の負荷量 ガバナフリー機は、L=0と考えれば良いため、系統全
体として考える場合、式(3)、式(4)より系統周波
数ΔF1 は以下の式(5)で表される。
The change ΔP of the load due to the frequency fluctuation
L is expressed by the following equation from the system constant K L of the load (4). ΔP L = K L · P L · ΔF 1 (4) Here, P L : load before frequency fluctuation In the governor-free machine, it is sufficient to consider L = 0. ) And equation (4), the system frequency ΔF 1 is represented by the following equation (5).

【0024】[0024]

【数3】 (Equation 3)

【0025】しかし、式(5)は発電機、負荷の静特性
から求めたものであり、周波数上昇時にはプラント側の
応動により発電機出力を維持しようとする。図4は計算
値と実際の周波数との関係を示す特性図であり、この図
4に示すように計算値よりも実際の周波数が大きくなる
ので、プラント応動を考慮した等価的な各発電機の速度
調定率Ri および各発電機のL.L.幅Li を求めると
共に、以下の式(6)で補正する。 ΔF1Z=a・ΔF1 +b …(6) ここに、ΔF1Z:補正後の系統周波数 つまり、式(6)の定数aおよびbを予めシミュレーシ
ョンで設定しておけば、周波数上昇時の落ち着き先周波
数を、系統の状態を考慮して高精度に演算することがで
きる。さらに、演算された補正後の系統周波数ΔF1Z
が、図5に示した安定領域に入っているか否かで安定判
別を行い、不安定と判別した場合、安定となる遮断パタ
ーンで電源制限を行う。
However, equation (5) is obtained from the static characteristics of the generator and the load, and attempts to maintain the generator output by the response of the plant when the frequency increases. FIG. 4 is a characteristic diagram showing the relationship between the calculated value and the actual frequency. As shown in FIG. 4, since the actual frequency is larger than the calculated value, the equivalent of each generator considering the plant response is considered. Speed regulation rate R i and L.V. L. The width Li is obtained and corrected by the following equation (6). ΔF 1Z = a · ΔF 1 + b (6) where ΔF 1Z is the corrected system frequency. That is, if the constants a and b in the equation (6) are set in advance by simulation, a calm destination when the frequency rises The frequency can be calculated with high accuracy in consideration of the state of the system. Further, the calculated corrected system frequency ΔF 1Z
However, the stability is determined based on whether or not it is within the stable region shown in FIG. 5, and when it is determined that the power supply is unstable, the power supply is limited by a stable cutoff pattern.

【0026】以上のように、この実施の形態2によれ
ば、電力系統間の連系線ルート断時に周波数が上昇する
場合に、発電機1A,1Bの個々の速度調定率Ri 、お
よびL.L.幅Li を考慮して落ち着き先周波数と必要
電源制限量を求めることができ、その結果、系統状態に
適応した最適な周波数制御が可能となる効果がある。
As described above, according to the second embodiment, when the frequency rises when the interconnection line route between the electric power systems is cut off, the individual speed regulation rates R i and L of the generators 1A and 1B are increased. . L. Width L i can be determined in consideration with restless-to frequency and the required power limit amount, so that the effect of the possible optimum frequency control adapted to the system state.

【0027】実施の形態3.この実施の形態3は、受電
時に連系線ルート断が発生した場合において、連系線潮
流値、周波数下降の場合に認められるガバナフリー機の
出力増加量を考慮して周波数下降の最低周波数を求め、
さらに、必要負荷制限量を求める時の具体的な実施の形
態について説明するものである。
Embodiment 3 In the third embodiment, when the interconnection line route breaks during power reception, the lowest frequency of the frequency decrease is considered in consideration of the interconnection line power flow value and the increase in the output of the governor-free machine that is recognized in the case of a frequency decrease. Asked,
Further, a specific embodiment for obtaining the required load limiting amount will be described.

【0028】次に動作について説明する。図6は連系線
ルート断時の周波数を示す特性図であり、連系線潮流が
制御対象系統から見て受電であった場合に連系線がルー
ト断事故を起こすと、系統周波数は図6(b)のように
推移し、その最低値ΔF2 は以下のようにして演算する
ことができる。図7は発電機特性と周波数との関係を示
す特性図であり、発電機の出力はガバナフリー機の場合
にこの図7のようになり、系統分断により発電機の出力
はPU増加し、出力増加量を考慮した場合の需給アンバ
ランス率RU は以下の式(7)のようになる。
Next, the operation will be described. FIG. 6 is a characteristic diagram showing the frequency at the time of disconnection of the interconnection line route. If the interconnection line causes a route disconnection accident when the interconnection line power flow is received from the control target system, the system frequency is shown in FIG. 6 (b), and the minimum value ΔF 2 can be calculated as follows. Figure 7 is a characteristic diagram showing the relationship between the generator characteristics and the frequency, the output of the generator is as shown in FIG. 7 in the case of the governor free machine, the output of the generator by line cutting increases P U, supply and demand imbalance rate R U in the case of considering the output increment is represented by the following formula (7).

【0029】[0029]

【数4】 (Equation 4)

【0030】ここで、ガバナフリー機の出力増加量PU
は概ねガバナフリー容量の数十%であるが、プラントに
より異なるため、予めシミュレーションで設定してお
く。図8は需給アンバランス率と周波数との関係を示す
特性図であり、この図8に示すように、需給アンバラン
ス率RU と周波数の関係は以下の式(8)で示す一次関
数で近似できる。 ΔF2 =a・RU +b …(8) また、負荷制限後の目標周波数をΔFLsetとすると、必
要負荷制限量PL は以下の式(9)で演算できる。
Here, the output increase amount P U of the governor-free machine
Is approximately several tens of the governor-free capacity, but differs depending on the plant, and is set in advance by simulation. FIG. 8 is a characteristic diagram showing the relationship between the supply and demand unbalance rate and the frequency. As shown in FIG. 8, the relationship between the supply and demand unbalance rate RU and the frequency is approximated by a linear function expressed by the following equation (8). it can. ΔF 2 = a · R U + b ... (8) Furthermore, when the target frequency after load limiting and [Delta] F Lset, necessary load shedding amount P L can be calculated by the following equation (9).

【0031】[0031]

【数5】 (Equation 5)

【0032】つまり、式(7)のガバナフリー機の出力
増加量PU と式(8)の定数aおよびbを予め設定して
おけば、周波数下降時の過渡的な最低値を系統の状態を
考慮して演算することができ、式(9)から必要負荷制
限量を容易に演算することができる。
That is, if the output increase amount P U of the governor-free machine in the equation (7) and the constants a and b in the equation (8) are set in advance, the transitional minimum value at the time of the frequency drop is determined by the state of the system. Is calculated, and the required load limiting amount can be easily calculated from Expression (9).

【0033】以上のように、この実施の形態3によれ
ば、電力系統間の連系線ルート断時に各ガバナフリー機
の出力増加量を考慮して周波数下降時の過渡的な最低値
と必要負荷制限量を求めることができ、その結果、系統
状態に適応した最適な周波数制御が可能となる効果があ
る。
As described above, according to the third embodiment, when the interconnection line route between the power systems is cut off, the transitional minimum value at the time of the frequency drop is necessary in consideration of the output increase of each governor-free machine. The load limiting amount can be obtained, and as a result, there is an effect that optimal frequency control adapted to the system state can be performed.

【0034】実施の形態4.この実施の形態4は、送電
時に連系線ルート断が発生した場合において、発電機の
出力検出値に基づいて演算された発電機の系統定数を用
いて周波数上昇の落ち着き先周波数を求め、さらに、必
要電源制限量を求める時の実施の形態について説明する
ものである。
Embodiment 4 In the fourth embodiment, when the interconnection line route breaks during power transmission, the settled frequency of the frequency rise is obtained using the system constant of the generator calculated based on the output detection value of the generator, and further, An embodiment for obtaining a required power supply restriction amount will be described.

【0035】次に動作について説明する。連系線潮流値
が制御対象系統からみて送電であった場合に連系線がル
ート断事故を起こすと、系統周波数は図6(a)のよう
な波形を示し、その落ち着き先周波数ΔF1 は以下の式
(10)より演算することができる。
Next, the operation will be described. If the interconnecting line causes a route disconnection accident when the interconnecting line power flow value is transmission from the viewpoint of the control target system, the system frequency shows a waveform as shown in FIG. 6 (a), and the settled frequency ΔF 1 becomes It can be calculated from the following equation (10).

【0036】[0036]

【数6】 (Equation 6)

【0037】ここで、負荷の系統定数KL は、従来技術
と同様に予め適当な手段によって求めておくこととし、
発電機の系統定数KH は以下のように求める。発電機の
系統定数KH は、制御対象内の発電機の稼動状態によっ
て左右されるため、図9(a)に示すように、以下の式
(11)で表される系統定数算出定数Xで発電機の系統
定数を表すと、以下の式(12)で累乗近似できる。
Here, the load system constant K L is determined in advance by appropriate means as in the prior art.
The system constant K H of the generator is obtained as follows. Since the system constant K H of the generator depends on the operating state of the generator in the control target, as shown in FIG. 9A, the system constant K H is represented by a system constant calculation constant X represented by the following equation (11). Expressing the system constant of the generator, power approximation can be obtained by the following equation (12).

【0038】[0038]

【数7】 (Equation 7)

【0039】ここで、発電機の出力検出値POGは、制御
端末4B,4Cから情報信号伝送路8B,8Cを通して
発電機1A,1Bの発電情報として周期的に取り込むこ
とによって得られるものである。また、図9(b)に示
すように、系統定数算出定数Xを需給アンバランス率に
応じて場合分けを行うことによって、発電機の系統定数
H は以下の式(13)で線形近似できる。 KH =a2 ・X+b2 (0≦X<C1 ) KH =a3 ・X+b3 (C1 ≦X<C2 ) KH =a4 ・X+b4 (X≧C2 ) …(13) ここに、a2 〜a4 ,b2 〜b4 ,C1 ,C2 :定数 つまり、式(12)の係数a1 およびb1 、または式
(13)のa2 〜a4 、b2 〜b4 、およびC1 ,C2
を予めシミュレーションで設定しておけば、発電機の系
統定数KH は演算することができ、さらに、式(10)
から容易に落ち着き先周波数ΔF1 を演算することがで
きる。また、演算されたΔF1 が図5に示す安定領域に
入っているか否かで安定判別を行い、不安定と判別した
場合、安定となる遮断パターンで電源制限を行う。
[0039] Here, the output detection value P OG of the generator is obtained control terminal 4B, information signal transmission path through 8B 4C, the generator 1A through 8C, by incorporating periodically as a generator information 1B . Further, as shown in FIG. 9B, by dividing the system constant calculation constant X into cases according to the supply and demand unbalance rate, the system constant K H of the generator can be linearly approximated by the following equation (13). . K H = a 2 · X + b 2 (0 ≦ X <C 1 ) K H = a 3 · X + b 3 (C 1 ≦ X <C 2 ) K H = a 4 · X + b 4 (X ≧ C 2 ) (13) Here, a 2 to a 4 , b 2 to b 4 , C 1 , C 2 : constants, that is, coefficients a 1 and b 1 in equation (12) or a 2 to a 4 , b in equation (13) 2 to b 4 , and C 1 and C 2
Is set in advance by simulation, the system constant K H of the generator can be calculated.
Can easily calculate the destination frequency ΔF 1 . The stability is determined based on whether or not the calculated ΔF 1 is in the stable region shown in FIG. 5. If it is determined that the calculated ΔF 1 is unstable, the power supply is limited in a stable cutoff pattern.

【0040】以上のように、この実施の形態4によれ
ば、電力系統間の連系線ルート断時に周波数が上昇する
場合に、発電機の出力検出値POGに基づいて演算された
発電機の系統定数KH を用いて落ち着き先周波数と必要
電源制限量を求めることができ、その結果、系統状態に
適応した最適な周波数制御が可能となる効果がある。
As described above, according to the fourth embodiment, when the frequency rises when the interconnection line route between the electric power systems is broken, the generator calculated based on the output detection value PG of the generator The calm destination frequency and the required power supply restriction amount can be obtained by using the system constant K H of this example, and as a result, there is an effect that optimal frequency control adapted to the system state can be performed.

【0041】[0041]

【発明の効果】以上のように、この発明によれば、各発
電機の速度調定率、および各発電機の調速器開度と負荷
制限器開度との差に基づいて周波数上昇の落ち着き先周
波数を求めるように構成したので、その求められた落ち
着き先周波数に応じて電源制限を行えば、系統状態に適
応した最適な周波数制御が可能となる効果がある。
As described above, according to the present invention, the frequency rise is stabilized based on the speed regulation rate of each generator and the difference between the governor opening and the load limiter opening of each generator. Since the configuration is such that the destination frequency is obtained, if the power supply is limited in accordance with the obtained destination frequency, there is an effect that optimal frequency control suitable for the system state can be performed.

【0042】この発明によれば、各ガバナフリー機の出
力増加量に基づいて周波数下降の最低周波数を求めるよ
うに構成したので、その求められた最低周波数に応じて
負荷制限を行えば、系統状態に適応した最適な周波数制
御が可能となる効果がある。
According to the present invention, since the lowest frequency of the frequency decrease is determined based on the output increase of each governor-free machine, if the load is limited according to the determined minimum frequency, the system status There is an effect that optimal frequency control adapted to the above can be performed.

【0043】この発明によれば、発電機の出力検出値に
基づいて系統定数算出定数を求め、その系統定数算出定
数、および所定の定数に基づいて累乗近似した発電機の
系統定数を求め、さらに、需給アンバランス量、発電機
の出力整定値、および発電機の系統定数に基づいて周波
数上昇の落ち着き先周波数を求めるように構成したの
で、その求められた落ち着き先周波数に応じて電源制限
を行えば、系統状態に適応した最適な周波数制御が可能
となる効果がある。
According to the present invention, the system constant calculation constant is obtained based on the output detection value of the generator, and the system constant of the generator approximated to the power is obtained based on the system constant calculation constant and the predetermined constant. Since the target frequency of the frequency increase is calculated based on the supply and demand imbalance, the generator output set value, and the generator system constant, the power supply is limited according to the calculated target frequency. For example, there is an effect that optimal frequency control adapted to a system state can be performed.

【0044】この発明によれば、発電機の出力検出値に
基づいて系統定数算出定数を求め、需給アンバランス量
によって場合分けされた定数、およびその系統定数算出
定数に基づいて線形近似した発電機の系統定数を求め、
さらに、需給アンバランス量、発電機の出力整定値、お
よび発電機の系統定数に基づいて周波数上昇の落ち着き
先周波数を求めるように構成したので、その求められた
落ち着き先周波数に応じて電源制限を行えば、系統状態
に適応した最適な周波数制御が可能となる効果がある。
According to the present invention, the system constant calculation constant is determined based on the output detection value of the generator, the constant classified according to the supply and demand imbalance amount, and the generator linearly approximated based on the system constant calculation constant Find the system constant of
Furthermore, since the settled frequency of the frequency rise is calculated based on the supply and demand imbalance amount, the output setting value of the generator, and the system constant of the generator, the power supply restriction is set according to the calculated settled frequency. If performed, there is an effect that optimal frequency control adapted to the system state can be performed.

【0045】この発明によれば、各発電機の速度調定
率、および各発電機の調速器開度と負荷制限器開度との
差に基づいて周波数上昇の落ち着き先周波数を演算し、
その落ち着き先周波数に応じて電源制限を行う演算制御
手段を備えるように構成したので、送電時に系統分断さ
れたと検出された場合において、系統状態に適応した最
適な周波数制御が可能となる効果がある。
According to the present invention, the settled frequency of the frequency rise is calculated based on the speed regulation rate of each generator and the difference between the governor opening and the load limiter opening of each generator.
Since it is configured to include the arithmetic control means for limiting the power supply according to the settled frequency, there is an effect that, when it is detected that the system is disconnected at the time of power transmission, it is possible to perform optimal frequency control adapted to the system state. .

【0046】この発明によれば、各ガバナフリー機の出
力増加量に基づいて周波数下降の最低周波数を演算し、
その最低周波数に応じて負荷制限を行う演算制御手段を
備えるように構成したので、受電時に系統分断されたと
検出された場合において、系統状態に適応した最適な周
波数制御が可能となる効果がある。
According to the present invention, the lowest frequency of the frequency drop is calculated based on the output increase amount of each governor-free machine,
Since the arithmetic control means for limiting the load in accordance with the lowest frequency is provided, there is an effect that, when it is detected that the system has been disconnected at the time of receiving power, optimal frequency control adapted to the state of the system can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による電力系統の周
波数安定化装置を示す構成図である。
FIG. 1 is a configuration diagram illustrating a power system frequency stabilization device according to a first embodiment of the present invention.

【図2】 中央演算装置の動作を示すフローチャートで
ある。
FIG. 2 is a flowchart illustrating an operation of the central processing unit.

【図3】 発電機特性と周波数との関係を示す特性図で
ある。
FIG. 3 is a characteristic diagram showing a relationship between a generator characteristic and a frequency.

【図4】 計算値と実際の周波数との関係を示す特性図
である。
FIG. 4 is a characteristic diagram showing a relationship between a calculated value and an actual frequency.

【図5】 周波数上昇時の安定と不安定の領域を示す特
性図である。
FIG. 5 is a characteristic diagram showing regions of stability and instability when the frequency rises.

【図6】 連系線ルート断時の周波数を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing a frequency when the interconnection line route is disconnected.

【図7】 発電機特性と周波数との関係を示す特性図で
ある。
FIG. 7 is a characteristic diagram showing a relationship between a generator characteristic and a frequency.

【図8】 需給アンバランス率と周波数との関係を示す
特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a supply and demand unbalance rate and a frequency.

【図9】 系統定数算出定数と系統定数との関係を示す
特性図である。
FIG. 9 is a characteristic diagram showing a relationship between a system constant calculation constant and a system constant.

【図10】 従来の電力系統の周波数安定化装置を示す
構成図である。
FIG. 10 is a configuration diagram showing a conventional power system frequency stabilization device.

【符号の説明】[Explanation of symbols]

1A,1B 発電機、5 センサ(連系検出手段)、1
0A,10B 負荷、14N 中央演算装置(演算制御
手段)、20 他系統(第2電力系統)。
1A, 1B generator, 5 sensors (interconnection detection means), 1
0A, 10B load, 14N central processing unit (operation control means), 20 other systems (second power system).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 押田 秀治 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 寺尾 保彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 吉備 和仁 東京都千代田区大手町二丁目6番2号 三 菱電機エンジニアリング株式会社内 (72)発明者 坂口 広二 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 メルコパワーシステムズ株式会社内 (72)発明者 白石 一雄 香川県高松市丸の内2番5号 四国電力株 式会社内 (72)発明者 宮本 喜弘 香川県高松市丸の内2番5号 四国電力株 式会社内 (72)発明者 廣田 雅一 香川県高松市丸の内2番5号 四国電力株 式会社内 (72)発明者 西松 慎也 香川県高松市屋島西町2109番地8 株式会 社四国総合研究所内 Fターム(参考) 5G066 AA05 AD04 AD09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideharu Oshida 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanbishi Electric Co., Ltd. (72) Inventor Yasuhiko Terao 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 Inside Ryo Denki Co., Ltd. (72) Kazuhito Kibi 2-5-2, Otemachi, Chiyoda-ku, Tokyo Mitsui Electric Engineering Co., Ltd. (72) Koji Sakaguchi 1, Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo No. 1-2 Inside Melco Power Systems Co., Ltd. (72) Kazuo Shiraishi 2-5 Marunouchi, Takamatsu-shi, Kagawa Prefecture Inside Shikoku Electric Power Company (72) Yoshihiro Miyamoto 2-5 Marunouchi, Takamatsu-shi, Kagawa Prefecture Shikoku Electric Power (72) Inventor Masakazu Hirota 2-5 Marunouchi, Takamatsu City, Kagawa Prefecture Inside Shikoku Electric Power Company (72) Inventor Shinya Nishimatsu 2109-8 Yashima Nishimachi, Takamatsu City, Kagawa Prefecture F-term in Shikoku Research Institute, Ltd. (reference) 5G066 AA05 AD04 AD09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電力系統に系統分断が生じて、分離され
た系統における複数の発電機の発電量と負荷量との間に
発電機の発電過剰の不平衡が生じた場合に、それら複数
の発電機の発電量と負荷量との需給アンバランス量、そ
れら各発電機の速度調定率、およびそれら各発電機の調
速器開度と負荷制限器開度との差に基づいて周波数上昇
の落ち着き先周波数を求め、その落ち着き先周波数がそ
れら複数の発電機の安定運転領域を外れる時に、それら
複数の発電機の電源制限を行う電力系統の周波数安定化
方法。
When a power supply system is disconnected from a power system and an unbalance of excess power generation of the generators is generated between a power generation amount and a load amount of the plurality of generators in the separated system, the plurality of power generation amounts are unbalanced. The frequency rise and fall are based on the imbalance between the power generation and the load of the generator, the speed regulation rate of each generator, and the difference between the governor opening and the load limiter opening of each generator. A frequency stabilization method for a power system for obtaining a destination frequency and, when the destination frequency deviates from a stable operation region of the plurality of generators, restricting a power source of the plurality of generators.
【請求項2】 電力系統に系統分断が生じて、分離され
た系統における複数の発電機の発電量と負荷量との間に
発電機の発電不足の不平衡が生じた場合に、それら複数
の発電機の発電量と負荷量との需給アンバランス量、お
よびそれら複数の発電機のうちの各ガバナフリー機の出
力増加量に基づいて周波数下降の最低周波数を求め、そ
の最低周波数がそれら複数の発電機の安定運転領域を外
れる時に、負荷の負荷制限を行う電力系統の周波数安定
化方法。
2. When the power system is disconnected from the power system and an unbalance of the power generation shortage of the generators is generated between the power generation amounts and the load amounts of the plurality of generators in the separated system, the plurality of power generation units are disconnected from each other. The lowest frequency of the frequency drop is obtained based on the supply and demand imbalance between the power generation amount and the load amount of the generator, and the output increase amount of each governor-free machine among the plurality of generators. A method for stabilizing the frequency of a power system in which a load is limited when the generator is out of a stable operation range.
【請求項3】 電力系統に系統分断が生じて、分離され
た系統における複数の発電機の発電量と負荷量との間に
発電機の発電過剰の不平衡が生じた場合に、それら複数
の発電機の出力検出値、それら複数の発電機の慣性定
数、それら複数の発電機の発電量と負荷量との需給アン
バランス率、およびそれら複数の発電機の定格出力に基
づいて系統定数算出定数を求め、次に、その系統定数算
出定数、および所定の定数に基づいて累乗近似した発電
機の系統定数を求め、さらに、それら複数の発電機の発
電量と負荷量との需給アンバランス量、それら複数の発
電機の出力整定値、およびその発電機の系統定数に基づ
いて周波数上昇の落ち着き先周波数を求め、その落ち着
き先周波数がそれら複数の発電機の安定運転領域を外れ
る時に、それら複数の発電機の電源制限を行う電力系統
の周波数安定化方法。
3. When the power system is disconnected from the power system and an unbalance of excess power generation of the generators is generated between the power generation amounts and the load amounts of the plurality of generators in the separated system, the plurality of power generation systems are disconnected. Generator constants based on the detected output of the generators, the inertia constants of the multiple generators, the imbalance between the power generation and the load of the multiple generators, and the rated output of the multiple generators Then, the system constant calculation constant, and the system constant of the generator approximated to the power based on the predetermined constant, the system constant of the generator, furthermore, the supply and demand imbalance between the power generation amount and the load amount of the plurality of generators, Based on the output set values of the plurality of generators and the system constants of the generators, a settled frequency of the frequency increase is obtained, and when the settled frequency is out of the stable operation region of the plurality of generators, the plurality of settled frequencies are determined. A frequency stabilization method for a power system that limits the power supply of a generator.
【請求項4】 電力系統に系統分断が生じて、分離され
た系統における複数の発電機の発電量と負荷量との間に
発電機の発電過剰の不平衡が生じた場合に、それら複数
の発電機の出力検出値、それら複数の発電機の慣性定
数、それら複数の発電機の発電量と負荷量との需給アン
バランス率、およびそれら複数の発電機の定格出力に基
づいて系統定数算出定数を求め、次に、それら複数の発
電機の発電量と負荷量との需給アンバランス量によって
場合分けされた定数、およびその系統定数算出定数に基
づいて線形近似した発電機の系統定数を求め、さらに、
その需給アンバランス量、それら複数の発電機の出力整
定値、およびその発電機の系統定数に基づいて周波数上
昇の落ち着き先周波数を求め、その落ち着き先周波数が
それら複数の発電機の安定運転領域を外れる時に、それ
ら複数の発電機の電源制限を行う電力系統の周波数安定
化方法。
4. When a power supply system is disconnected from the power system and an unbalance of excess power generation of the generators occurs between the power generation amounts and the load amounts of the plurality of generators in the separated system, the plurality of power generation systems are disconnected from each other. Generator constants based on the detected output of the generators, the inertia constants of the multiple generators, the imbalance between the power generation and the load of the multiple generators, and the rated output of the multiple generators Then, the constants divided by the supply and demand imbalance between the power generation amount and the load amount of the plurality of generators, and the system constant of the generator linearly approximated based on the system constant calculation constant, further,
Based on the supply-demand imbalance amount, the output set values of the plurality of generators, and the system constants of the generators, a settled frequency of the frequency rise is obtained, and the settled frequency determines a stable operation region of the plurality of generators. A method for stabilizing the frequency of a power system that limits the power of the plurality of generators when the power goes off.
【請求項5】 複数の発電機および負荷が接続された第
1電力系統とその第1電力系統以外の第2電力系統との
間の連系線潮流値および連系状態を検出する連系検出手
段と、上記連系検出手段により連系線潮流値が上記第1
電力系統から上記第2電力系統への送電時に系統分断さ
れたと検出された場合に、その連系線潮流値、上記各発
電機の速度調定率、および上記各発電機の調速器開度と
負荷制限器開度との差に基づいて周波数上昇の落ち着き
先周波数を演算し、その落ち着き先周波数が上記複数の
発電機の安定運転領域を外れる時に、上記複数の発電機
の電源制限を行う演算制御手段とを備えた電力系統の周
波数安定化装置。
5. An interconnection detection for detecting an interconnection power flow value and an interconnection state between a first electric power system to which a plurality of generators and loads are connected and a second electric power system other than the first electric power system. Means, and the interconnection line power flow value is determined by the interconnection detection means.
When it is detected that the power system has been disconnected during power transmission from the power system to the second power system, the power flow value of the interconnection line, the speed regulation rate of each of the generators, and the governor opening of each of the generators Calculates the settled frequency of the frequency increase based on the difference with the load limiter opening, and when the settled frequency is out of the stable operation region of the plurality of generators, calculates the power supply of the plurality of generators. A power system frequency stabilizing device comprising a control unit.
【請求項6】 複数の発電機および負荷が接続された第
1電力系統とその第1電力系統以外の第2電力系統との
間の連系線潮流値および連系状態を検出する連系検出手
段と、上記連系検出手段により連系線潮流値が第2電力
系統から第1電力系統への受電時に系統分断されたと検
出された場合に、その連系線潮流値、および上記複数の
発電機のうちの各ガバナフリー機の出力増加量に基づい
て周波数下降の最低周波数を演算し、その最低周波数が
発電機の安定運転領域を外れる時に、上記負荷の負荷制
限を行う演算制御手段とを備えた電力系統の周波数安定
化装置。
6. An interconnection detection for detecting an interconnection power flow value and an interconnection state between a first electric power system to which a plurality of generators and loads are connected and a second electric power system other than the first electric power system. Means for detecting the power flow value of the interconnection line when the interconnection detection means detects that the interconnection line has been disconnected at the time of receiving power from the second electric power system to the first electric power system. Calculation control means for calculating the lowest frequency of the frequency decrease based on the output increase amount of each governor-free machine of the machine, and when the lowest frequency is out of the stable operation region of the generator, the load control of the load. Power system frequency stabilization equipment equipped.
JP01754999A 1999-01-26 1999-01-26 Frequency stabilization method and device for power system Expired - Lifetime JP3592565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01754999A JP3592565B2 (en) 1999-01-26 1999-01-26 Frequency stabilization method and device for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01754999A JP3592565B2 (en) 1999-01-26 1999-01-26 Frequency stabilization method and device for power system

Publications (2)

Publication Number Publication Date
JP2000217255A true JP2000217255A (en) 2000-08-04
JP3592565B2 JP3592565B2 (en) 2004-11-24

Family

ID=11947007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01754999A Expired - Lifetime JP3592565B2 (en) 1999-01-26 1999-01-26 Frequency stabilization method and device for power system

Country Status (1)

Country Link
JP (1) JP3592565B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271625A (en) * 2007-04-16 2008-11-06 Chugoku Electric Power Co Inc:The Electric power system shutdown system, method, and program
JP2009213186A (en) * 2008-02-29 2009-09-17 Toshiba Corp Power system linkage device between different systems
JP7515354B2 (en) 2020-09-16 2024-07-12 三菱電機株式会社 Power system stabilization system and power system stabilization method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271625A (en) * 2007-04-16 2008-11-06 Chugoku Electric Power Co Inc:The Electric power system shutdown system, method, and program
JP2009213186A (en) * 2008-02-29 2009-09-17 Toshiba Corp Power system linkage device between different systems
JP7515354B2 (en) 2020-09-16 2024-07-12 三菱電機株式会社 Power system stabilization system and power system stabilization method

Also Published As

Publication number Publication date
JP3592565B2 (en) 2004-11-24

Similar Documents

Publication Publication Date Title
EP2721705B1 (en) A method for controlling power flow within a wind park system, controller, computer program and computer program products
WO2011018549A2 (en) A protection arrangement of an electric power system
JP2001352678A (en) Power system stabilizer
CN108808701A (en) A kind of system inertia real-time computing technique based on response
JP4119077B2 (en) Frequency stabilizer for power system
US20200356128A1 (en) Load shedding system for both active and reactive power based on system perturbation
JP2000217255A (en) Method of stabilizing frequency of power system and device thereof
RU2754351C1 (en) Method and apparatus for improved automatic frequency load shedding in electrical power systems
US11555839B2 (en) Rate of change of power element and enter service supervision method
JP3447549B2 (en) Frequency stabilization method for power system
JP2869320B2 (en) Frequency stabilization method
JP7128132B2 (en) Power system stabilization system
JPH1146447A (en) Frequency maintenance system for power system
JP3476630B2 (en) Frequency stabilization method
JPS61106027A (en) System stabilizer
JP2000358331A (en) Individual operation detector for synchronous generator
JPH04275029A (en) Load interrupting device at time of parallel off fault
JPS6117222B2 (en)
KR100389450B1 (en) Method for detecting and preventing individual operation of distributed power source
JPH11215710A (en) Power system frequency stabilizer
JP2603929B2 (en) Power system preventive control device
JP2004072884A (en) Method of stabilizing singly separated system, and system for stabilizing same
JPS60255019A (en) System stabilizer
JP2004120918A (en) Frequency stabilizer
JP2005261070A (en) Distributed power supply control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term