JP2000216620A - Receiver - Google Patents
ReceiverInfo
- Publication number
- JP2000216620A JP2000216620A JP2000014531A JP2000014531A JP2000216620A JP 2000216620 A JP2000216620 A JP 2000216620A JP 2000014531 A JP2000014531 A JP 2000014531A JP 2000014531 A JP2000014531 A JP 2000014531A JP 2000216620 A JP2000216620 A JP 2000216620A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- azimuth
- circuit
- designated
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Noise Elimination (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は受信装置に関し、と
くに複数の到来波の中から指定の一方向の信号波を分離
する機能を有する受信装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a receiver, and more particularly to a receiver having a function of separating a specified one-way signal wave from a plurality of incoming waves.
【0002】[0002]
【従来の技術】複数のアンテナ素子の受信信号を用い、
同一周波数の複数の到来波の到来方向を同時に測定する
超分解技術としてMUSIC(Multiple Si
gnal Classification)法が知られ
ている。このMUSIC法の詳細は、R.O.Schm
idt著の”Multiple Emitter Lo
cation and Signal Paramet
er Estimation”(IEEE Tran
s.AP−34(3),1986)に記載されている。2. Description of the Related Art Using received signals of a plurality of antenna elements,
MUSIC (Multiple Si) is a super-resolution technique for simultaneously measuring the directions of arrival of a plurality of incoming waves of the same frequency.
A general classification method is known. Details of the MUSIC method are described in O. Schm
"Multiple Emitter Lo by Idt
Cation and Signal Paramet
er Estimation ”(IEEE Tran
s. AP-34 (3), 1986).
【0003】MUSIC法は、アンテナ素子数−1の数
の到来波を同時に測定できるので、近年、方位測定装置
に適用されている。[0003] The MUSIC method has been applied to an azimuth measuring device in recent years because it can simultaneously measure the number of incoming waves equal to the number of antenna elements minus one.
【0004】一方、受信された複数の到来波の中から不
要波を抑圧し、希望波のみを分離する方法として、複数
のアンテナ素子を用いこれらの受信信号を処理して不要
波の到来方向にアンテナ素子の総合指向性の零点を形成
するアダプティブアレイ技術がある。On the other hand, as a method for suppressing unnecessary waves from among a plurality of received waves received and separating only a desired wave, a plurality of antenna elements are used to process these received signals to determine the direction of arrival of the unnecessary waves. There is an adaptive array technology for forming a zero point of the total directivity of an antenna element.
【0005】アダプティブアレイは、到来波の周波数、
変調方式が既知で、受信装置内で到来波と同期した基準
信号の生成が可能なとき、最小二乗法によって、複数の
不要波の到来方向が未知であっても、それらの方向に零
点を形成することができる。ただし、形成可能な零点は
一般にアンテナ素子数−1に制限される。[0005] The adaptive array has a frequency of an incoming wave,
When the modulation method is known and a reference signal synchronized with the arriving wave can be generated in the receiver, zero points are formed by the least squares method even if the arrival directions of a plurality of unnecessary waves are unknown. can do. However, the zeros that can be formed are generally limited to the number of antenna elements minus one.
【0006】また、所望の到来方向が既知の場合、DC
MPアルゴリズムによって基準信号がなくとも不要波に
対する零点形成が可能である。If the desired direction of arrival is known, DC
By the MP algorithm, it is possible to form a zero point for an unnecessary wave without a reference signal.
【0007】また、特開平1−142479号公報、特
開昭61−219202号公報、特開昭57−1411
02号公報および特開昭57−20001号公報に混信
分離回路および混信除去回路に関する技術が開示されて
いる。Further, Japanese Patent Application Laid-Open Nos. 1-142479, 61-219202, and 57-1411
No. 02 and Japanese Patent Laid-Open No. 57-20001 disclose techniques relating to an interference separation circuit and an interference elimination circuit.
【0008】[0008]
【発明が解決しようとする課題】しかし、従来のMUS
IC法を用いた方位測定装置は変調方式に関わらず、希
望波、不要波の到来方向の測定は可能であるが、復調さ
れた信号には不要波が混在しているため、正確な通信情
報の把握が困難であった。However, the conventional MUS
The azimuth measuring device using the IC method can measure the arrival direction of a desired wave and an unnecessary wave irrespective of the modulation method, but since the demodulated signal contains unnecessary waves, accurate communication information can be obtained. Was difficult to grasp.
【0009】一方、最小二乗法によるアダプティブアレ
イは、希望波の変調信号と同期した同一変調方式の基準
信号が必要なため、様々な変調方式の到来波が存在する
実環境下での使用は困難である。On the other hand, the adaptive array based on the least squares method requires a reference signal of the same modulation scheme synchronized with a modulation signal of a desired signal, so that it is difficult to use it in an actual environment where incoming waves of various modulation schemes exist. It is.
【0010】また、DCMPアルゴリズムによるアダプ
ティブアレイは信号を保存する到来波の到来方向の情報
が必要となる。An adaptive array based on the DCMP algorithm requires information on the direction of arrival of an incoming wave for storing signals.
【0011】このように、従来の技術は、方位測定技術
と復調信号の混信除去技術とは独立して提案されてお
り、同一周波数の複数到来波の方位測定ならびに希望波
からの混信波除去の両者をなしうる受信装置は未だ提案
されていない。As described above, the conventional techniques are proposed independently of the azimuth measurement technique and the demodulated signal interference elimination technique, and are used to measure the azimuth of a plurality of arriving waves of the same frequency and to eliminate the interference wave from the desired wave. A receiving device that can do both has not yet been proposed.
【0012】また前述した4つの先行技術についても同
様である。The same applies to the above four prior arts.
【0013】そこで本発明の目的は、同一周波数の複数
到来波の方位測定ならびに希望波からの混信波除去の両
者をなしうる受信装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a receiver capable of performing both azimuth measurement of a plurality of arriving waves of the same frequency and elimination of an interference wave from a desired wave.
【0014】[0014]
【課題を解決するための手段】前記課題を解決するため
に本発明は、任意の位置に配列された複数の受信アンテ
ナと、これらの受信アンテナにより受信された高周波信
号を2分配する信号分配手段と、この信号分配手段によ
り分配された一方の系統の高周波信号を受け、前記複数
のアンテナで受信した受信信号の共分散行列を求めると
ともにこれに基づき複数の到来波の方位測定を行い、こ
の共分散行列と複数の到来波の方位情報とを出力するM
USIC法を用いた方位測定手段と、この方位測定手段
で測定の結果得られた複数の到来波の方位情報より指定
された1つの方位情報を保存する指定信号保存手段と、
前記信号分配手段により分配された他方の系統の高周波
信号を受信し、前記指定信号保存手段で保存された指定
された1つの方位以外の信号を抑圧させるための重み付
けを前記共分散行列に基づき演算する重み付け演算回路
と、前記演算回路で演算された重み付けにより前記複数
の受信アンテナで受信された高周波信号に重み付けを行
う重み付け手段と、この重み付け手段より出力される高
周波信号を合成して出力する信号合成手段とを含むこと
を特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a plurality of receiving antennas arranged at arbitrary positions, and a signal distribution means for dividing a high-frequency signal received by these receiving antennas into two. Receiving the high-frequency signal of one of the systems distributed by the signal distribution means, obtaining the covariance matrix of the received signals received by the plurality of antennas, and measuring the azimuths of a plurality of incoming waves based on the matrix. M that outputs a dispersion matrix and direction information of a plurality of incoming waves
Azimuth measuring means using the USIC method, designation signal storage means for storing one azimuth information designated from azimuth information of a plurality of arriving waves obtained as a result of measurement by the azimuth measuring means,
The high-frequency signal of the other system distributed by the signal distribution unit is received, and a weight for suppressing a signal other than one specified direction stored by the specified signal storage unit is calculated based on the covariance matrix. Weighting arithmetic circuit, weighting means for weighting the high-frequency signals received by the plurality of receiving antennas by the weights calculated by the arithmetic circuit, and a signal for synthesizing and outputting the high-frequency signals output from the weighting means And combining means.
【0015】[0015]
【発明の実施の形態】本発明によれば、受信アンテナで
受信された複数の到来波は信号分配手段にて2分配さ
れ、その一方は方位測定手段に入力され各到来波の方位
が測定される。According to the present invention, a plurality of arriving waves received by a receiving antenna are divided into two by signal distribution means, one of which is input to an azimuth measuring means to measure the azimuth of each arriving wave. You.
【0016】そして、その各到来波の方位情報より使用
者が指定した一方向の信号が指定信号保存手段に保存さ
れる。Then, a one-way signal designated by the user is stored in the designated signal storage means from the azimuth information of each arriving wave.
【0017】一方、信号分配手段にて分配された他方の
到来波は、重み付け手段にて指定の一方向の信号以外の
信号が重み付け、すなわち零点が与えられ、その後指定
の一方向の信号を含むすべての信号が信号合成手段にて
合成され出力される。On the other hand, the other arriving wave distributed by the signal distributor is weighted by a signal other than the one-way signal specified by the weighting means, that is, a zero point is given, and thereafter the signal includes the specified one-way signal. All signals are synthesized and output by the signal synthesizing means.
【0018】以下、本発明の実施例について添付図面を
参照しながら説明する。図1は本発明に係る受信装置の
第1実施例の構成図である。Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a configuration diagram of a first embodiment of a receiving apparatus according to the present invention.
【0019】受信装置は、同一周波数の複数の到来波を
受信し高周波信号を出力する、任意方向に設定されたn
本(nは2以上の整数)のアンテナ素子で構成されるア
ンテナ素子群1と、このアンテナ素子群1で受信された
高周波信号を2分配する信号分配器2と、この信号分配
器2にて2分配された信号のうち一方の信号が入力され
る方位測定回路3と、他方の信号が入力される混信除去
回路4と、混信除去回路4の出力信号が復調される復調
回路5とからなる。The receiving apparatus receives a plurality of arriving waves of the same frequency and outputs a high-frequency signal.
An antenna element group 1 composed of a number (n is an integer of 2 or more) of antenna elements, a signal distributor 2 for dividing a high-frequency signal received by the antenna element group 1 into two, and a signal distributor 2 An azimuth measuring circuit 3 to which one of the two signals is input, an interference canceling circuit 4 to which the other signal is input, and a demodulation circuit 5 for demodulating an output signal of the interference canceling circuit 4. .
【0020】さらに、混信除去回路4は、方位測定回路
3から出力される角度情報に基づき、使用者により指定
の一方向の信号が保存される入力装置6と、この入力装
置6からの出力に基づき指定の一方向の信号以外の信号
に対する重み付け値が演算されるウエイト演算回路7
と、このウエイト演算回路7からのウエイトに基づき、
信号分配器2にて2分配された信号のうち他方の信号
の、指定の一方向の信号以外の信号に零点が形成される
ウエイト制御回路8と、このウエイト制御回路8より出
力される信号が合成されて出力される合成器9とからな
る。The interference canceling circuit 4 further includes an input device 6 for storing a signal in one direction designated by a user based on the angle information output from the azimuth measuring circuit 3 and an output from the input device 6. Weight calculation circuit 7 for calculating a weighting value for a signal other than a specified one-way signal based on the signal
And, based on the weight from the weight calculation circuit 7,
A weight control circuit 8 in which a zero point is formed in a signal other than a specified one-way signal of the other signal of the two signals divided by the signal distributor 2, and a signal output from the weight control circuit 8 And a combiner 9 for combining and outputting.
【0021】次に、方位測定回路3について説明する。
図2は方位測定回路3の動作を示すフローチャートであ
る。Next, the azimuth measuring circuit 3 will be described.
FIG. 2 is a flowchart showing the operation of the azimuth measuring circuit 3.
【0022】方位測定回路3に用いられるMUSIC法
は、複数のアンテナ素子で構成されるアンテナ素子群1
の0度から359度までの全周方位に対する受信応答
(ステアリングベクトル)を予め測定し、これを方位測
定回路3の内部に設けたメモリ(不図示)に記憶してお
き(S1)、次に各アンテナ素子群で受信した受信信号
の共分散行列の固有値を求め(S2)、次にその最小固
有値に対応する固有ベクトルを求め(S3)、最後にこ
の最小固有値に対応する固有ベクトルと、各方位のステ
アリングベクトルのユークリッド距離の2乗の逆数で表
される評価関数から到来方向を推定する(S4)もので
ある。The MUSIC method used for the azimuth measuring circuit 3 is based on an antenna element group 1 composed of a plurality of antenna elements.
The reception response (steering vector) for all directions from 0 degrees to 359 degrees is previously measured and stored in a memory (not shown) provided inside the direction measurement circuit 3 (S1). The eigenvalue of the covariance matrix of the received signal received by each antenna element group is obtained (S2), the eigenvector corresponding to the minimum eigenvalue is obtained (S3), and finally the eigenvector corresponding to this minimum eigenvalue and The direction of arrival is estimated from an evaluation function represented by the reciprocal of the square of the Euclidean distance of the steering vector (S4).
【0023】次に、この方位測定回路3の動作の詳細に
ついて説明する。最初に、信号分波器1で分岐された各
アンテナ素子の受信信号x1,x2,…,xn(nは正
の整数)の共分散行列Sを計算する。Next, the operation of the azimuth measuring circuit 3 will be described in detail. First, a covariance matrix S of received signals x1, x2,..., Xn (n is a positive integer) of each antenna element branched by the signal splitter 1 is calculated.
【0024】各アンテナ素子の受信信号x1,x2,
…,xnをn行1列の行列Xで表すと、共分散行列S
は、Received signals x1, x2 of each antenna element
, Xn are represented by a matrix X of n rows and 1 column, a covariance matrix S
Is
【0025】[0025]
【数1】 (Equation 1)
【0026】で表される。ここに、バー(−)は受信信
号のサンプル値の平均、HはXの共役転置を示す。## EQU2 ## Here, the bar (-) indicates the average of the sample values of the received signal, and H indicates the conjugate transpose of X.
【0027】いま、i番目の素子の受信信号をxi
(t)とすると(tは時間)、これを時系列的にΔt秒
ごとに標本化すると標本値は、xi(0),xi(Δ
t),xi(2Δt),…,xi((N−1)Δt)で
表される。Nはサンプル数である。Now, let the received signal of the i-th element be xi
If (t) is (t is time), when this is sampled in time series at every Δt seconds, the sampled values are xi (0), xi (Δ
t), xi (2Δt),..., xi ((N−1) Δt). N is the number of samples.
【0028】t=0,n素子アレイの受信信号のサンプ
ル値をベクトル表記すると、When the sample value of the received signal of the t = 0, n-element array is represented by a vector,
【0029】[0029]
【数2】 (Equation 2)
【0030】で表される。これを転置行列XTで表す
と、## EQU2 ## Expressing this as a transposed matrix X T ,
【0031】[0031]
【数3】 (Equation 3)
【0032】となる。すると、共分散行列Sは、## EQU1 ## Then, the covariance matrix S is
【0033】[0033]
【数4】 (Equation 4)
【0034】となる。すなわち、## EQU1 ## That is,
【0035】[0035]
【数5】 (Equation 5)
【0036】となる。ここに、*は複素共役を示す。## EQU1 ## Here, * indicates a complex conjugate.
【0037】次に、共分散行列Sの最小固有値および最
小固有値に対応する固有ベクトルE N を計算する。Next, the minimum eigenvalue and the maximum
Eigenvector E corresponding to small eigenvalue N Is calculated.
【0038】次に、各方位ごとに、Next, for each direction,
【0039】[0039]
【数6】 (Equation 6)
【0040】にて表される評価関数E(θ)を計算す
る。なお、アンテナ素子群1の各方位に対応する受信応
答(ステアリングベクトルа(θ);θは方位)は、前
述したように予め方位測定回路3内のメモリに記憶され
ている。The evaluation function E (θ) represented by The reception response (steering vector ((θ); θ is the azimuth) corresponding to each azimuth of the antenna element group 1 is stored in the memory in the azimuth measuring circuit 3 in advance as described above.
【0041】図3は評価関数の計算結果を示す波形図で
ある。たとえば、到来波が2波の場合、評価関数E
(θ)は同図に示すように到来方向に対応する角度、す
なわち角度θ1に到来波1のピーク点P1が現れ、角度
θ2に到来波2のピーク点P2が現れる。したがって、
ピーク点に対応する角度を読み取ることによって到来波
の到来方向を推定することができる。FIG. 3 is a waveform diagram showing the calculation result of the evaluation function. For example, when the number of incoming waves is two, the evaluation function E
(Θ) indicates an angle corresponding to the arrival direction, that is, a peak point P1 of the arriving wave 1 appears at an angle θ1, and a peak point P2 of the arriving wave 2 appears at an angle θ2, as shown in FIG. Therefore,
By reading the angle corresponding to the peak point, the arrival direction of the incoming wave can be estimated.
【0042】次に、アダプティブアレイのアルゴリズム
を用いた混信除去回路4の動作を説明する。本発明で
は、方位測定回路3により到来波の到来方向が既知であ
り、MUSIC法の使用により各アンテナ素子の受信信
号の共分散行列が方位測定の途中段階(図2のS2)に
て計算されることから、DCMPアルゴリズムの使用が
適当である。Next, the operation of the interference removal circuit 4 using the adaptive array algorithm will be described. In the present invention, the direction of arrival of the arriving wave is known by the azimuth measuring circuit 3, and the covariance matrix of the received signal of each antenna element is calculated during the azimuth measurement (S2 in FIG. 2) by using the MUSIC method. Therefore, the use of the DCMP algorithm is appropriate.
【0043】DCMP法はアレイの出力電力の最小化を
指導原理とし、所望波は拘束条件を付けて保護するもの
である。DCMP法の詳細は、K.Takano著”A
nAdaptive Array under Dir
ectional Constraint”(IEEE
Trans.AP−24(5),1976)による。The DCMP method is based on the principle of minimizing the output power of the array, and protects the desired wave by applying a constraint. For details of the DCMP method, see K.K. "A" by Takano
nAdaptive Array under Dir
electronic Constraint "(IEEE
Trans. AP-24 (5), 1976).
【0044】DCMP法によって得られる最適ウエイト
Woptは1方位の方位拘束(この方位が保存される到
来波となり、他の到来波は零点により抑圧される。)の
場合、The optimum weight Wopt obtained by the DCMP method is an azimuth constraint in one direction (an incoming wave in which this direction is preserved, and other arriving waves are suppressed by the zero point).
【0045】[0045]
【数7】 (Equation 7)
【0046】[0046]
【数8】 (Equation 8)
【0047】で与えられる。ここで、Cは拘束行列、M
は拘束応答である。拘束行列Cは、たとえば無指向性素
子の等間隔直線アレーの場合、拘束方向をθc,素子間
隔をd,波数をkとすれば、Is given by Where C is a constraint matrix, M
Is the restraint response. For example, in the case of an equally-spaced linear array of omni-directional elements, the constraint matrix C is as follows: if the constraint direction is θc, the element interval is d, and the wave number is k.
【0048】[0048]
【数9】 (Equation 9)
【0049】[0049]
【数10】 (Equation 10)
【0050】で表される。また、θcからの到来波につ
いてアレー出力で振幅A,位相φの信号の応答を希望す
るとき、拘束応答Mは、Is represented by When a response of a signal having an amplitude A and a phase φ is desired in an array output with respect to an incoming wave from θc, the constraint response M is
【0051】[0051]
【数11】 [Equation 11]
【0052】で表される。Is represented by
【0053】また、半径Dの円周配列アレイの拘束ベク
トルCの要素Ψi(θc)は、The element Ψi (θc) of the constraint vector C of the circumferential array of radius D is
【0054】[0054]
【数12】 (Equation 12)
【0055】で表される。Is represented by
【0056】入力装置6には方位測定回路3から受信信
号の共分散行列Sが読み込まれるとともに、方位測定回
路3によって得られた到来方位の内、保存したい方位
(拘束方向θc)の信号が使用者(オペレータ)によっ
て選択され、この保存したい方位の信号が手動で入力装
置6に入力される。The input device 6 reads the covariance matrix S of the received signal from the azimuth measuring circuit 3 and uses the signal of the azimuth (constraint direction θc) to be preserved among the arriving azimuths obtained by the azimuth measuring circuit 3. The signal of the direction desired to be stored is manually input to the input device 6 by the operator (operator).
【0057】なお、使用者は数6の評価関数E(θ)よ
り到来方向を選択する。この評価関数E(θ)はアレイ
としての評価関数であり、各素子ごとに出力されるもの
ではない。The user selects the direction of arrival from the evaluation function E (θ) of Equation 6. The evaluation function E (θ) is an evaluation function as an array, and is not output for each element.
【0058】次に、ウエイト演算回路7が共分散行列S
および拘束方向θcを用いて数7により最適ウエイトW
optを計算する。Next, the weight calculation circuit 7 calculates the covariance matrix S
And the constraint weight θc to obtain the optimum weight W according to Equation 7.
Calculate opt.
【0059】次に、ウエイト制御回路8は最適ウエイト
Woptの計算結果に基づき、信号分配器2から入力し
た受信信号の振幅と位相とを制御する。Next, the weight control circuit 8 controls the amplitude and phase of the received signal input from the signal distributor 2 based on the calculation result of the optimum weight Wopt.
【0060】図4はウエイト制御後の指向特性図であ
る。同図は所望方向(θc)に利得を有し、その他の不
要方向には零点が形成されることを示している。FIG. 4 is a directional characteristic diagram after weight control. The figure shows that a gain is provided in the desired direction (θc) and zeros are formed in other unnecessary directions.
【0061】そして、振幅と位相の制御された受信信号
は合成器9により合成され、復調器5に入力される。こ
の復調器5への入力信号は不要波の到来方向に零点が形
成されるため、不要波が抑圧され、復調器9の出力信号
は指定の一方向の信号のみとなる。The received signals whose amplitude and phase are controlled are combined by the combiner 9 and input to the demodulator 5. Since the zero point is formed in the input signal to the demodulator 5 in the arrival direction of the unnecessary wave, the unnecessary wave is suppressed, and the output signal of the demodulator 9 is a signal in a designated one direction only.
【0062】次に、本発明の第2実施例について説明す
る。図5は第2実施例の構成図である。なお、第1実施
例(図1)と同様の構成部分には同一番号を付し、その
説明を省略する。Next, a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram of the second embodiment. The same components as those in the first embodiment (FIG. 1) are denoted by the same reference numerals, and description thereof will be omitted.
【0063】第1実施例ではアンテナ素子群1で受信さ
れた高周波信号に直接ウエイトをかけていたが、受信す
る信号の周波数範囲が広い場合、広帯域のウエイト制御
回路の実現は困難である。In the first embodiment, the weight is directly applied to the high-frequency signal received by the antenna element group 1. However, if the frequency range of the signal to be received is wide, it is difficult to realize a wide-band weight control circuit.
【0064】そこで、第2実施例は、予めアンテナ素子
群1で受信された高周波信号を夫々中間周波数に変換す
るための受信機10(10−1〜10−n)を各アンテ
ナ素子ごとに設け、中間周波数に変換後の信号をウエイ
ト制御するようにしたものである。Therefore, in the second embodiment, a receiver 10 (10-1 to 10-n) for converting a high-frequency signal received by the antenna element group 1 in advance into an intermediate frequency is provided for each antenna element. , The weight of the signal converted to the intermediate frequency is controlled.
【0065】なお、第1実施例では方位測定回路3およ
び復調回路5が中間周波数変換機能を有するが、第2実
施例の方位測定回路3および復調回路5からはこの中間
周波数変換機能が除かれている。In the first embodiment, the azimuth measurement circuit 3 and the demodulation circuit 5 have an intermediate frequency conversion function. However, the azimuth measurement circuit 3 and the demodulation circuit 5 in the second embodiment are excluded from the intermediate frequency conversion function. ing.
【0066】中間周波数に変換後の信号は信号分配器3
を介して方位測定回路3と位相検波回路11とに2分配
される。方位測定回路3での動作は第1実施例と同様な
ため省略する。The signal converted to the intermediate frequency is supplied to the signal distributor 3
Are distributed to the azimuth measurement circuit 3 and the phase detection circuit 11. The operation of the azimuth measuring circuit 3 is the same as that of the first embodiment, and will not be described.
【0067】位相検波回路11では、信号分配器3から
の中間周波数信号が直交検波され、I,Qビデオ信号
(NTSC方式カラーテレビにおける2つの色差信号)
に変換される。In the phase detection circuit 11, the intermediate frequency signal from the signal distributor 3 is subjected to quadrature detection, and I and Q video signals (two color difference signals in an NTSC color television).
Is converted to
【0068】そして、このI,Qビデオ信号はウエイト
制御回路8に入力され、最適ウエイトWoptの演算結
果に基づき、I,Qビデオ信号の位相と振幅が制御され
る。The I and Q video signals are input to the weight control circuit 8, and the phases and amplitudes of the I and Q video signals are controlled based on the calculation result of the optimum weight Wopt.
【0069】なお、最適ウエイトWoptの演算は第1
実施例と同様なためその説明を省略する。The calculation of the optimum weight Wopt is the first
The description is omitted because it is similar to the embodiment.
【0070】次に、合成器9にて位相および振幅の制御
されたI,Qビデオ信号は合成され、指定の一方位の到
来波のビデオ信号が出力される。Next, the I and Q video signals whose phases and amplitudes have been controlled by the combiner 9 are combined, and a video signal of an incoming wave in a designated one direction is output.
【0071】最後に、このビデオ信号は復調回路5にて
復調される。Finally, the video signal is demodulated by the demodulation circuit 5.
【0072】[0072]
【発明の効果】本発明によれば、複数の受信アンテナで
受信された高周波信号を信号分配手段で2分配し、分配
された一方の信号を方位測定手段で方位測定し、その方
位情報に基づき、分配された他方の信号を重み付け手段
にて重み付けするよう構成したため、同一周波数の複数
到来波の方位測定ならびに希望波からの混信波除去の両
者を1台の受信装置でなしうるという効果がある。According to the present invention, a high frequency signal received by a plurality of receiving antennas is divided into two by signal distribution means, one of the divided signals is measured by a direction measurement means, and the direction is measured based on the direction information. Since the other distributed signal is weighted by the weighting means, there is an effect that both the azimuth measurement of a plurality of incoming waves of the same frequency and the interference wave removal from the desired wave can be performed by one receiver. .
【図1】本発明に係る受信装置の第1実施例の構成図で
ある。FIG. 1 is a configuration diagram of a first embodiment of a receiving device according to the present invention.
【図2】第1実施例の方位測定回路の動作を示すフロー
チャートである。FIG. 2 is a flowchart illustrating an operation of the azimuth measuring circuit according to the first embodiment.
【図3】第1実施例の評価関数の計算結果を示す波形図
である。FIG. 3 is a waveform chart showing a calculation result of an evaluation function according to the first embodiment.
【図4】第1実施例のウエイト制御後の指向特性図であ
る。FIG. 4 is a directional characteristic diagram after weight control of the first embodiment.
【図5】第2実施例の構成図である。FIG. 5 is a configuration diagram of a second embodiment.
1 アンテナ素子群 2 信号分配器 3 方位測定回路 4 混信除去回路 5 復調回路 6 入力装置 7 ウエイト演算回路 8 ウエイト制御回路 9 合成器 10 受信機 11 位相検波回路 REFERENCE SIGNS LIST 1 antenna element group 2 signal distributor 3 azimuth measuring circuit 4 interference elimination circuit 5 demodulation circuit 6 input device 7 weight calculation circuit 8 weight control circuit 9 combiner 10 receiver 11 phase detection circuit
Claims (3)
テナと、これらの受信アンテナにより受信された高周波
信号を2分配する信号分配手段と、この信号分配手段に
より分配された一方の系統の高周波信号を受け、前記複
数のアンテナで受信した受信信号の共分散行列を求める
とともにこれに基づき複数の到来波の方位測定を行い、
この共分散行列と複数の到来波の方位情報とを出力する
MUSIC法を用いた方位測定手段と、この方位測定手
段で測定の結果得られた複数の到来波の方位情報より指
定された1つの方位情報を保存する指定信号保存手段
と、前記信号分配手段により分配された他方の系統の高
周波信号を受信し、前記指定信号保存手段で保存された
指定された1つの方位以外の信号を抑圧させるための重
み付けを前記共分散行列及び前記指定された1つの方位
情報に基づき演算する重み付け演算回路と、前記演算回
路で演算された重み付けにより前記複数の受信アンテナ
で受信された高周波信号に重み付けを行う重み付け手段
と、この重み付け手段より出力される高周波信号を合成
して出力する信号合成手段とを含むことを特徴とする受
信装置。1. A plurality of receiving antennas arranged at arbitrary positions, signal distribution means for dividing a high-frequency signal received by these receiving antennas into two, and high-frequency signals of one system distributed by the signal distribution means. Receive the signal, determine the covariance matrix of the received signals received by the plurality of antennas and measure the direction of a plurality of incoming waves based on this,
Azimuth measuring means using the MUSIC method for outputting this covariance matrix and azimuth information of a plurality of arriving waves, and one azimuth designated by azimuth information of a plurality of arriving waves obtained as a result of measurement by the azimuth measuring means. A designation signal storage unit for storing orientation information; and a high-frequency signal of the other system distributed by the signal distribution unit is received, and signals other than the designated one orientation saved by the designation signal storage unit are suppressed. Weighting circuit for calculating a weight for the calculation based on the covariance matrix and the one specified azimuth information, and weighting the high-frequency signals received by the plurality of receiving antennas by the weight calculated by the calculation circuit A receiving apparatus comprising: a weighting unit; and a signal combining unit that combines and outputs a high-frequency signal output from the weighting unit.
手段で保存された指定された1つの方位以外の信号に零
点を与える手段であることを特徴とする請求項1記載の
受信装置。2. The receiving apparatus according to claim 1, wherein said weighting means is means for giving a zero point to a signal other than one designated azimuth stored in said designated signal storing means.
イ・アルゴリズムを用いた係数ベクトル演算手段を備え
ることを特徴とする請求項1〜2いずれかに記載の受信
装置。3. The receiving apparatus according to claim 1, wherein said weighting means includes a coefficient vector calculating means using an adaptive array algorithm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000014531A JP3324591B2 (en) | 1996-01-24 | 2000-01-24 | Receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000014531A JP3324591B2 (en) | 1996-01-24 | 2000-01-24 | Receiver |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00984196A Division JP3192076B2 (en) | 1996-01-24 | 1996-01-24 | Receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000216620A true JP2000216620A (en) | 2000-08-04 |
JP3324591B2 JP3324591B2 (en) | 2002-09-17 |
Family
ID=18541981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000014531A Expired - Fee Related JP3324591B2 (en) | 1996-01-24 | 2000-01-24 | Receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3324591B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267728A (en) * | 2001-03-12 | 2002-09-18 | Mitsubishi Electric Corp | Method and device for detecting azimuth |
JP2005315811A (en) * | 2004-04-30 | 2005-11-10 | Furuno Electric Co Ltd | Characteristic optimization method for adaptive array |
-
2000
- 2000-01-24 JP JP2000014531A patent/JP3324591B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267728A (en) * | 2001-03-12 | 2002-09-18 | Mitsubishi Electric Corp | Method and device for detecting azimuth |
JP4536281B2 (en) * | 2001-03-12 | 2010-09-01 | 三菱電機株式会社 | Direction detection method and direction detection device |
JP2005315811A (en) * | 2004-04-30 | 2005-11-10 | Furuno Electric Co Ltd | Characteristic optimization method for adaptive array |
JP4500098B2 (en) * | 2004-04-30 | 2010-07-14 | 古野電気株式会社 | Adaptive array characteristic optimization method |
Also Published As
Publication number | Publication date |
---|---|
JP3324591B2 (en) | 2002-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3490453B2 (en) | Method and receiver for reconstruction of signals disturbed by multipath propagation | |
JP4086574B2 (en) | Path search circuit, radio reception device, and radio transmission device | |
Lemma et al. | Joint angle-frequency estimation using multi-resolution ESPRIT | |
JP3738705B2 (en) | Adaptive antenna device | |
JP4401526B2 (en) | Radio wave arrival direction estimation device and directivity variable transmission / reception device | |
JP2007529000A (en) | Direction detection | |
JPH06245291A (en) | Method for reducing directional noise in voice, and device for executing the method | |
JPH11271415A (en) | Direction finding device and measurement result processing device therefor | |
JP2010096575A (en) | Signal wave arrival angle measuring device | |
JP2630200B2 (en) | Orientation measuring method and apparatus | |
JP2002243826A (en) | Device and method for estimating arrival direction of radio wave and directivity variable transmitter/ receiver | |
JP5022943B2 (en) | Direction measuring device | |
CN108828586A (en) | A kind of bistatic MIMO radar angle measurement optimization method based on Beam Domain | |
JP3766006B2 (en) | Receiver | |
Lee et al. | Direction-finding methods for cyclostationary signals in the presence of coherent sources | |
JP3192076B2 (en) | Receiver | |
JP4187985B2 (en) | Angle measuring device, angle measuring method and program | |
JPH11166965A (en) | Angle measurement signal processing device and angle measurement signal processing method in it | |
JP3324591B2 (en) | Receiver | |
JP2002048853A (en) | Radio wave arrival direction estimator and directivity variable transmitter-receiver | |
JP3867069B2 (en) | Radio wave arrival direction detection method and apparatus | |
JP3113837B2 (en) | Method and apparatus for reducing bias error of N-port mode former of Butler matrix type | |
JP3959357B2 (en) | Receiving system | |
JP4576742B2 (en) | Transmission / reception frequency division multiplexing radio equipment | |
JP2003222665A (en) | Device and method for detecting orientation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020604 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070705 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080705 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090705 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100705 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110705 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110705 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120705 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120705 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130705 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |