JP2000216016A - Dust core and coil - Google Patents

Dust core and coil

Info

Publication number
JP2000216016A
JP2000216016A JP11018118A JP1811899A JP2000216016A JP 2000216016 A JP2000216016 A JP 2000216016A JP 11018118 A JP11018118 A JP 11018118A JP 1811899 A JP1811899 A JP 1811899A JP 2000216016 A JP2000216016 A JP 2000216016A
Authority
JP
Japan
Prior art keywords
dust core
powder
coil
alloy powder
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11018118A
Other languages
Japanese (ja)
Inventor
Teruhiko Fujiwara
照彦 藤原
Masayoshi Ishii
政義 石井
Haruki Hoshi
晴輝 保志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP11018118A priority Critical patent/JP2000216016A/en
Publication of JP2000216016A publication Critical patent/JP2000216016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a coil, which is excellent in DC superposition characteristics, by a method wherein alloy powder formed by adding a specified amount of Mn to a specified amount of an Si-Fe alloy is used to remarkedly raise the DC superposition characteristics of a dust core. SOLUTION: A starting material is formed in a composition of about 1 to about 10 wt.% of Si and about 0.1 to about 5 wt.% of Mn with the remnant of Fe. Alloy powder is formed by powdering an ingot made by a high-frequency furnace from the starting material or is formed by an atomizing method and the composition of the alloy powder is made uniform. Moreover, this alloy powder is subjected to heat treatment according to the need, then a binder is mixed with the alloy powder and the mixture is press-molded into a desired form using a metal mold. Then this molded material is subjected to distortion removal heat treatment according to the need. In such a way, a dust core is formed by an increase in a saturation magnetization and of low-coercive force ferromagnetic powder. A winding wire is executed on this dust core to form a coil. Thereby, a coil, which is excellent in DC superposition characteristics, is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョークコイル等
に用いられる圧粉磁芯及びコイルに関するものである。
The present invention relates to a dust core and a coil used for a choke coil or the like.

【0002】[0002]

【従来の技術】高周波で用いられるチョークコイルに
は、軟磁性フェライト磁芯や圧粉磁芯が使用されてい
る。これらの内、軟磁性フェライト磁芯は、飽和磁束密
度が小さいという欠点を有している。これに対して、強
磁性金属粉末を成形して作製される圧粉磁芯は、軟磁性
フェライト磁芯に比べて高い飽和磁束密度を持つため、
直流重畳性に優れているという長所を有している。
2. Description of the Related Art Soft magnetic ferrite cores and dust cores are used in choke coils used at high frequencies. Among them, the soft magnetic ferrite core has a disadvantage that the saturation magnetic flux density is small. On the other hand, a dust core manufactured by molding a ferromagnetic metal powder has a higher saturation magnetic flux density than a soft magnetic ferrite core.
It has the advantage of excellent DC superimposition.

【0003】また、近年の電子機器の小型化要請に伴う
電子部品の小型化の要求に対し、増々動作電流の高電流
化が進んでいる。これに伴い、使用される圧粉磁芯に
は、高磁界での透磁率向上が強く求められている。
Further, in response to recent demands for downsizing of electronic components accompanying downsizing of electronic devices, operating currents have been increasingly increased. Along with this, there is a strong demand for powder magnetic cores to be used with improved magnetic permeability in high magnetic fields.

【0004】一般に、コイルの直流重畳特性を向上させ
るためには、飽和磁化の高い磁芯を選択すること、つま
り、高磁界で磁気飽和しない磁芯の選択が必須とされて
いる。
Generally, in order to improve the DC superposition characteristics of a coil, it is essential to select a magnetic core having a high saturation magnetization, that is, to select a magnetic core which is not magnetically saturated at a high magnetic field.

【0005】そこで、必然的に高い飽和磁化の材料が必
須となる。そのような高い飽和磁化材料として、純鉄が
良く知られている。また、この純鉄は、圧粉磁芯材料と
して広く使用されている。
Therefore, a material having a necessarily high saturation magnetization is indispensable. Pure iron is well known as such a high saturation magnetization material. This pure iron is widely used as a dust core material.

【0006】ところが、純鉄による圧粉磁芯は、材料の
飽和磁化が約2分の1のセンダスト系圧粉磁芯よりも低
い重畳特性しか示さない。この理由は、純鉄がセンダス
トに比較し、高い磁気異方性のため保磁力が大きいこと
と、材料の電気抵抗が低いため渦電流損が大きいためと
考えられる。
However, a dust core made of pure iron has only a superposition characteristic lower than that of a sendust-based dust core whose material has a saturation magnetization of about half. This is presumably because pure iron has a higher coercive force due to its high magnetic anisotropy than sendust, and a large eddy current loss due to the low electric resistance of the material.

【0007】この欠点を改善するため、純鉄にSi、A
l等を添加元素として合金を製造することにより、磁気
異方性を低減させるとともに、電気抵抗を向上できるこ
とが広く知られている。
[0007] In order to remedy this disadvantage, Si, A
It is widely known that by manufacturing an alloy using l or the like as an additional element, magnetic anisotropy can be reduced and electrical resistance can be improved.

【0008】[0008]

【発明が解決しようとする課題】しかし、本発明者らが
検討した結果によると、圧粉磁芯材料としてみた場合、
何れの添加元素の合金粉末で圧粉磁芯を製造しても、そ
の重畳特性の改善は顕著ではなかった。その原因は、前
記合金系では磁気異方性を0にする組成が存在しないた
め、保磁力が高く、材料自信の高い飽和磁化を有効に利
用できないためと考えられる。
However, according to the results of studies by the present inventors, when viewed as a dust core material,
No matter how the alloy powder of any of the additive elements produced the dust core, the improvement of the superposition characteristics was not remarkable. It is considered that the reason for this is that there is no composition for reducing the magnetic anisotropy in the alloy system, so that the coercive force is high and the saturation magnetization with high material confidence cannot be used effectively.

【0009】従って、本発明の課題は、上記問題点に鑑
み、高飽和磁化で、かつ、低保磁力の強磁性粉末で作製
された圧粉磁芯を提供することにより、直流重畳特性に
優れたコイルを提供することである。
Accordingly, an object of the present invention is to provide a dust core made of a ferromagnetic powder having a high saturation magnetization and a low coercive force in view of the above-mentioned problems, thereby providing excellent DC superposition characteristics. Is to provide a coil.

【0010】[0010]

【課題を解決するための手段】本発明者らは、前記課題
を達成するべく合金組成の検討を重ねた結果、1重量%
〜10重量%SiFe合金に0.1重量%〜5重量%の
Mnを添加した合金粉末を使用することにより、圧粉磁
芯の直流重畳特性が著しく向上することを見い出した。
Means for Solving the Problems The inventors of the present invention have repeatedly studied alloy compositions to achieve the above object, and have found that
It has been found that by using an alloy powder obtained by adding 0.1 wt% to 5 wt% of Mn to a SiFe alloy of 10 wt% to 10 wt%, the DC superposition characteristics of the dust core are remarkably improved.

【0011】これは、電磁鋼板材料として知られるSi
FeにMnを添加することにより、合金粉末の保磁力が
低減したためであり、磁気異方性の低減が関与している
と推察される。
This is because Si, which is known as a magnetic steel sheet material,
This is because the coercive force of the alloy powder was reduced by adding Mn to Fe, and it is presumed that reduction of magnetic anisotropy is involved.

【0012】ここで、SiFe合金系を選択した理由
は、SiはAlに比較し少量の添加でFeの磁気異方性
を著しく低減させることが可能なためである。また、S
iFe合金系では、Si量が6.5%で磁歪が最小であ
り、6.5%SiFeが本合金系で最も低い保磁力値を
示す。
Here, the reason why the SiFe alloy system is selected is that Si can significantly reduce the magnetic anisotropy of Fe by adding a small amount of Si as compared with Al. Also, S
In the iFe alloy system, the amount of Si is 6.5%, the magnetostriction is minimum, and 6.5% SiFe has the lowest coercive force value in the present alloy system.

【0013】しかし、合金粉末とした場合には、その保
磁力値は低いものとは言えなかった。それは、粉末の場
合、磁気異方性の影響がバルクより顕著に現れるためと
思われる。つまり、もう一つの磁気異方性の成分である
結晶磁気異方性が0でないことに起因していると思われ
る。
However, when the alloy powder was used, its coercive force value could not be said to be low. This is probably because the effect of magnetic anisotropy is more pronounced in powder than in bulk. In other words, it is considered that the crystal magnetic anisotropy, which is another component of the magnetic anisotropy, is not zero.

【0014】本発明者らは、Mnの添加により、SiF
e合金粉末の保磁力値が低減することを見い出した。こ
れは、上述した、磁気異方性低減の効果と思われる。こ
れにより、磁芯の保磁力値も低減し、結果として、直流
電流重畳時の高透磁率が達成されたものと思われる。
The present inventors have found that by adding Mn, SiF
It has been found that the coercive force value of the e-alloy powder is reduced. This is considered to be the effect of reducing the magnetic anisotropy described above. Thereby, it is considered that the coercive force value of the magnetic core was also reduced, and as a result, a high magnetic permeability when the DC current was superimposed was achieved.

【0015】即ち、本発明は、強磁性金属粉末とバイン
ダーとを混合した粉末を圧縮成型して得られる圧粉磁芯
において、強磁性金属粉末は1重量%〜10重量%S
i、0.1重量%〜5重量%Mn、残部Feとした合金
組成粉末である圧粉磁芯である。
That is, the present invention relates to a dust core obtained by compression-molding a powder obtained by mixing a ferromagnetic metal powder and a binder, wherein the ferromagnetic metal powder contains 1 wt% to 10 wt%
i, a dust core, which is an alloy composition powder with 0.1 wt% to 5 wt% Mn and the balance Fe.

【0016】また、本発明は、上記圧粉磁芯に巻線を施
してなるコイルである。
Further, the present invention is a coil formed by winding the dust core.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0018】出発原料は、組成が1重量%〜10重量%
Si、0.1重量%〜5重量%Mn、残部Feであり、
金属粉末の製造は、高周波溶解で作製したインゴットを
粉砕しても、アトマイズ法で作製しても、組成が均一で
あれば、どちらでも良い。
The starting material has a composition of 1% by weight to 10% by weight.
Si, 0.1% by weight to 5% by weight Mn, the balance being Fe,
The metal powder may be produced by pulverizing an ingot produced by high frequency melting or by an atomizing method, as long as the composition is uniform.

【0019】また、この合金粉末は、必要に応じて熱処
理し、次に、バインダーを混合し、金型を使用し、所望
の形状にプレス成形する。次に、この成形体を必要に応
じ歪取熱処理することにより、本発明の実施の形態によ
る圧粉磁芯が製造される。
The alloy powder is heat-treated if necessary, then mixed with a binder and pressed into a desired shape using a mold. Next, the compact is subjected to a strain relief heat treatment as required, whereby a dust core according to the embodiment of the present invention is manufactured.

【0020】ここで、Si量を規定したのは、Si量が
1%未満ではMn添加の効果が無く、10%を超えると
飽和磁化の低下が著しく、Mn添加の効果が無くなるた
めである。また、Mn量は、0.1%未満では添加の効
果が無く、5%を超えると飽和磁化の低下が著しく、M
n添加の効果が無くなるためである。
Here, the reason why the amount of Si is specified is that if the amount of Si is less than 1%, the effect of Mn addition is not obtained, and if the amount of Si exceeds 10%, the saturation magnetization is significantly reduced and the effect of Mn addition is lost. If the Mn content is less than 0.1%, the effect of addition is not obtained, and if it exceeds 5%, the saturation magnetization is significantly reduced.
This is because the effect of n addition is lost.

【0021】[0021]

【実施例】以下、本発明を実施例によって説明する。The present invention will be described below with reference to examples.

【0022】(実施例1)1.5%Si、1.0%Mn、
残部Fe組成の合金インゴットを高周波溶解で作製し
た。このインゴットをジョークラッシャー、ロールミル
を使用して150μm以下に粉砕した。次に、この粉砕
された粉末をFe製の容器に入れ、炉中1000℃×2
時間、水素雰囲気中保持後、そのまま炉冷した。次に、
この粉末を炉から取出した後、篩を使用し150〜20
μmに分級した。次に、この分級した粉末にシリコーン
樹脂を3.0wt%混合し、外径20mm、内径10m
mの金型を用い、室温で10ton/cmで成形し、
トロイダル形状の圧粉磁芯を得た。
(Example 1) 1.5% Si, 1.0% Mn,
An alloy ingot having a balance of Fe composition was produced by high frequency melting. This ingot was ground to 150 μm or less using a jaw crusher and a roll mill. Next, the pulverized powder was placed in a container made of Fe and placed in a furnace at 1000 ° C. × 2.
After keeping in a hydrogen atmosphere for a time, the furnace was cooled as it was. next,
After removing this powder from the furnace, the powder was removed from the furnace using a sieve.
It was classified to μm. Next, 3.0 wt% of a silicone resin was mixed with the classified powder, and the outer diameter was 20 mm and the inner diameter was 10 m.
m at room temperature at 10 ton / cm 2 ,
A toroidal dust core was obtained.

【0023】この圧粉磁芯を170℃で2時間、大気中
で熱処理を行い、バインダー硬化を行った。次に、この
圧粉磁芯に対し、粉末成形時の歪を除去するため、60
0℃×2時間、水素中で熱処理した後、巻線を施し、HP
製4284Aプレシジョンメーターで直流重畳特性を測
定した。
The dust core was heat-treated at 170 ° C. for 2 hours in the air to cure the binder. Next, in order to remove the distortion during powder compaction,
After heat treatment in hydrogen at 0 ° C. for 2 hours, winding was performed and HP
DC superimposition characteristics were measured with a 4284A precision meter manufactured by FUJIFILM Corporation.

【0024】測定したインダクタンス値より透磁率μを
計算した。また、重畳した直流電流値より、重畳した直
流磁界Hm(Oe)を計算した。これらの結果から直流
磁界と透磁率の関係を図1に示す。
The magnetic permeability μ was calculated from the measured inductance value. The superimposed DC magnetic field Hm (Oe) was calculated from the superimposed DC current value. FIG. 1 shows the relationship between the DC magnetic field and the magnetic permeability based on these results.

【0025】また、比較例として、出発原料の組成が
6.5%SiFe合金(Mn無添加)であり、本発明の
実施例1と全く同じくインゴットから粉末を製造し、熱
処理、バインダー混合、成形、熱処理を行って作製した
圧粉磁芯の直流重畳特性を測定した。その結果を実施例
1と同様に、図1に示す。
As a comparative example, the starting material was a 6.5% SiFe alloy (with no Mn added), and powder was produced from an ingot just as in Example 1 of the present invention, and heat treatment, binder mixing, and molding were performed. The direct current superimposition characteristics of the dust core prepared by performing the heat treatment were measured. The results are shown in FIG.

【0026】図1から明らかなように、本発明の実施例
1による圧粉磁芯は、比較例に比べ、直流重畳特性が向
上していることが分かる。
As is apparent from FIG. 1, the dust core according to Example 1 of the present invention has improved DC superposition characteristics as compared with the comparative example.

【0027】(実施例2)Si量を6.5%に一定とし
て、Mn量を0、0.1、0.5、1.0、2.5、2.
0、7.5、10.0%の各組成としたインゴットを高周
波溶解にて作製した。次に、実施例1と同様な方法で粉
末の熱処理、篩分け、バインダー混合、コア作製、熱処
理を行った後、これらコアに一次側80ターン、二次側
30ターンの巻線を施し、東英工業株式会社製TRF−
5A直流自記磁束計により、これら圧粉磁芯であるコア
の直流磁気特性を測定した。
(Example 2) The amount of Mn was set at 0, 0.1, 0.5, 1.0, 2.5, 2.5 while the amount of Si was fixed at 6.5%.
Ingots having compositions of 0, 7.5 and 10.0% were produced by high frequency melting. Next, the powder was subjected to heat treatment, sieving, binder mixing, core production, and heat treatment in the same manner as in Example 1, and then these cores were wound with 80 turns on the primary side and 30 turns on the secondary side. TRF-
The DC magnetic characteristics of the cores, which were the powder magnetic cores, were measured by a 5A DC recording magnetometer.

【0028】測定した結果の内、印加磁界200(O
e)におけるMn添加量に対する磁束密度B200及び
保磁力Hcの値を図2に示す。
Of the measurement results, the applied magnetic field 200 (O
FIG. 2 shows the values of the magnetic flux density B200 and the coercive force Hc with respect to the amount of Mn added in e).

【0029】図2から分かるとおり、Mn添加量が0.
1%以上で磁束密度Bの増加及び保磁力Hcの低減が達
成されることが分かる。また、Mn添加量が5%を超え
ると、磁束密度Bの値が比較例よりも低くなり、Mn添
加の効果が実質的に失われることが分かる。ここで、M
n添加により磁束密度Bが向上するのは、保磁力Hcの
低減により、低磁界で大きな磁化が得られるようになる
ためである。
As can be seen from FIG.
It can be seen that at 1% or more, an increase in the magnetic flux density B and a decrease in the coercive force Hc are achieved. Also, when the Mn addition amount exceeds 5%, the value of the magnetic flux density B becomes lower than that of the comparative example, and it can be seen that the effect of the Mn addition is substantially lost. Where M
The reason why the magnetic flux density B is improved by adding n is that a large magnetization can be obtained in a low magnetic field by reducing the coercive force Hc.

【0030】次に、この圧粉磁芯であるコアに巻線を施
し、HP製4284Aプレシジョンメーターで直流重畳
特性を測定した。その測定値の内、印加磁界40(O
e)における透磁率μを計算により求めた結果を図3に
示す。
Next, a winding was applied to the core, which was a dust core, and the DC bias characteristics were measured by a 4284A precision meter made by HP. Among the measured values, the applied magnetic field 40 (O
FIG. 3 shows the result obtained by calculating the magnetic permeability μ in e).

【0031】図3より、0.1〜5%Mn量で、Mn無
添加より透磁率が向上していることが分かる。
FIG. 3 shows that the permeability is improved when the amount of Mn is 0.1 to 5% and when Mn is not added.

【0032】[0032]

【発明の効果】以上説明したように、本発明の圧粉磁芯
によれば、1重量%〜10重量%Si、残Feに、0.
1重量%〜5重量%Mnを添加した合金粉末を使用して
圧粉磁芯を作製することにより、直流重畳特性に優れた
コイルを作製することが可能となる。
As described above, according to the dust core of the present invention, 1 wt% to 10 wt% of Si and the remaining Fe are 0.1% by weight.
By manufacturing a dust core using an alloy powder to which 1 wt% to 5 wt% Mn is added, it becomes possible to manufacture a coil having excellent DC superimposition characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1及び比較例における圧粉磁芯
の直流重畳磁界と透磁率μの関係を示す図。
FIG. 1 is a diagram showing a relationship between a DC superposed magnetic field and a magnetic permeability μ of a dust core in Example 1 and Comparative Example of the present invention.

【図2】本発明の実施例2における圧粉磁芯のMn添加
量に対する磁束密度B及び保磁力Hcの関係を示す図。
FIG. 2 is a diagram showing the relationship between the magnetic flux density B and the coercive force Hc with respect to the amount of Mn added to a dust core in Example 2 of the present invention.

【図3】本発明の実施例2における圧粉磁芯のMn添加
量に対する透磁率μの関係を示す図。
FIG. 3 is a diagram showing the relationship between the amount of Mn added to a dust core and the magnetic permeability μ in Example 2 of the present invention.

フロントページの続き Fターム(参考) 4K018 AA26 CA07 KA44 5E041 AA02 AA11 AA19 BB03 CA02 CA10 HB05 NN01 Continued on the front page F term (reference) 4K018 AA26 CA07 KA44 5E041 AA02 AA11 AA19 BB03 CA02 CA10 HB05 NN01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強磁性金属粉末とバインダーとを混合し
た粉末を圧縮成型して得られる圧粉磁芯において、前記
強磁性金属粉末は1重量%〜10重量%Si、0.1重
量%〜5重量%Mn、残部Feとした合金組成粉末であ
ることを特徴とする圧粉磁芯。
1. A dust core obtained by compression-molding a powder obtained by mixing a ferromagnetic metal powder and a binder, wherein the ferromagnetic metal powder contains 1% by weight to 10% by weight Si, 0.1% by weight A dust core, which is an alloy composition powder containing 5 wt% Mn and the balance Fe.
【請求項2】 請求項1記載の圧粉磁芯に巻線を施して
なることを特徴とするコイル。
2. A coil obtained by winding the dust core according to claim 1.
JP11018118A 1999-01-27 1999-01-27 Dust core and coil Pending JP2000216016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11018118A JP2000216016A (en) 1999-01-27 1999-01-27 Dust core and coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11018118A JP2000216016A (en) 1999-01-27 1999-01-27 Dust core and coil

Publications (1)

Publication Number Publication Date
JP2000216016A true JP2000216016A (en) 2000-08-04

Family

ID=11962702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11018118A Pending JP2000216016A (en) 1999-01-27 1999-01-27 Dust core and coil

Country Status (1)

Country Link
JP (1) JP2000216016A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174065A (en) * 2015-03-17 2016-09-29 山陽特殊製鋼株式会社 Flat soft magnetic powder and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174065A (en) * 2015-03-17 2016-09-29 山陽特殊製鋼株式会社 Flat soft magnetic powder and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US9443652B2 (en) Soft magnetic core having excellent high-current DC bias characteristics and core loss characteristics and method of manufacturing same
JP2004349585A (en) Method of manufacturing dust core and nanocrystalline magnetic powder
US7800474B2 (en) Bond magnet for direct current reactor and direct current reactor
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2001011563A (en) Manufacture of composite magnetic material
JP2003217919A (en) Dust core and high-frequency reactor using the same
JPH11238613A (en) Compound magnetic material and its manufacture
US6432159B1 (en) Magnetic mixture
JP2000232014A (en) Manufacture of composite magnetic material
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
KR20170020897A (en) Alloy powder and magnetic component
US6419760B1 (en) Powder magnetic core
JP2003160847A (en) Composite magnetic material, magnetic element using the same, and manufacture method therefor
WO2003060930A1 (en) Powder magnetic core and high frequency reactor using the same
JP2006294733A (en) Inductor and its manufacturing method
JP2000216016A (en) Dust core and coil
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JP2002141213A (en) Dust core
JP2000150256A (en) Dust core
JP2000228305A (en) Dust core and coil
JP2000309801A (en) Dust core and coil
JP2003188009A (en) Compound magnetic material
JP2000235925A (en) Choke coil
JPH10270226A (en) Powder-molded magnetic core and manufacture therefor
JP2000331814A (en) Powder compact magnetic core and choke coil provided therewith