JP2000214093A - Inductively coupled plasma emission spectrochemical analyzing apparatus - Google Patents

Inductively coupled plasma emission spectrochemical analyzing apparatus

Info

Publication number
JP2000214093A
JP2000214093A JP11016203A JP1620399A JP2000214093A JP 2000214093 A JP2000214093 A JP 2000214093A JP 11016203 A JP11016203 A JP 11016203A JP 1620399 A JP1620399 A JP 1620399A JP 2000214093 A JP2000214093 A JP 2000214093A
Authority
JP
Japan
Prior art keywords
torch
branch pipe
plasma
center axis
inductively coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11016203A
Other languages
Japanese (ja)
Other versions
JP3805916B2 (en
Inventor
Tetsumasa Itou
哲雅 伊藤
Ryoji Takazawa
良治 高沢
Yoshitomo Nakagawa
良知 中川
Osamu Matsuzawa
修 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP01620399A priority Critical patent/JP3805916B2/en
Publication of JP2000214093A publication Critical patent/JP2000214093A/en
Application granted granted Critical
Publication of JP3805916B2 publication Critical patent/JP3805916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a positional relationship constant even when a force is applied to a torch by setting a torch branch pipe clip which enables a torch branch pipe to be fitted by rotating the torch centering a center axis of the torch. SOLUTION: The inductively coupled plasma emission spectrochemical analyzing apparatus is provided with a torch branch pipe clip 9 for holding, e.g. a plasma gas feed pipe 10 of a torch 12. A gap of the torch branch pipe clip 9 has an equal size to an outer diameter of the plasma gas feed pipe 10. The plasma gas feed branch pipe 10 is fitted by rotating the torch 12 about a center axis of the torch after setting the torch to a torch-fixing tool 7. The fixed torch 12 is accordingly prevented from moving back and forth in a direction of the center axis. A positional relationship in the direction of the center axis between an XYZ stage 14 and the torch 12 is kept constant. Unless a position of the XYZ stage 14 changes, a positional relationship between a plasma 2 formed to a leading end of the torch 12 and a sampling cone 1 or the like is constant at all times, and therefore measurement results of good reproducibility can be obtained.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、誘導結合プラズマ
分析装置のトーチの保持法に関する。 【0002】 【従来の技術】従来の誘導結合プラズマ分析装置は、図
4 に示すようにプラズマ2 発生用のトーチ12に試料を導
入し、プラズマ2 によって試料を発光、あるいはイオン
化させる。そして、発した光を各波長のスペクトル光に
分光して光検出器(図示せず)で検出したり、あるいは
イオン化された試料を質量分析計(図示せず)で検出す
ることによって、試料に含まれる元素の定性・定量分析
を行う。 【0003】通常トーチ12は同軸の三重の円筒管より構
成され、トーチ12に接続した試料供給部(図示せず)か
ら導入された試料は、三重の円筒管の最内管6 を経由し
たうえでプラズマ2 に導入される。トーチ12の最内管6
の径方向外側に中間管5 が配置され、中間管5 の内部に
通じるように中間管5 の径方向内側に向けて設けられた
補助ガス供給枝管11を介して、補助ガスが中間管5 に通
される。また、中間管5 の径方向外側に最外管4 が配置
され、最外管4 の内部に通じるように最外管4の径方向
内側に向けて設けられたプラズマガス供給枝管10を介し
て、プラズマガスが最外管4 に通される。 【0004】また、XYZ ステージ14の上には高周波電力
の伝達を調節するマッチングボックス13が固定されてお
り、マッチングボックス13には高周波電力をトーチ12先
端部の周囲に流すための誘導コイル3 が設けられてい
る。XYZ ステージ14にはさらにトーチ固定具7 が取り付
けられており、トーチ12は円筒状の最外管4 の径方向外
側からトーチ固定具7 を締め付けネジ8 で締め付けるこ
とによって保持されている。 【0005】誘導結合プラズマ分析装置のうち発光分光
分析装置の場合、トーチ12先端部分に発生するプラズマ
2 によって試料から発した光は、集光レンズや入射スリ
ット等の入射光学系(図示せず)を介して分光器(図示
せず)内に入る。そしてこの分光器によって光は各波長
のスペクトル光に分光され、光検出器によって分析され
る。一方、誘導結合プラズマ分析装置のうち質量分析装
置の場合、トーチ12の中心軸の先端方向には、プラズマ
2 によってイオン化された試料が通過するサンプリング
コーン1 が設けられ、試料はサンプリングコーン1 の穴
を通過した後、質量分析計(図示せず)によって分析さ
れる。 【0006】ここでプラズマ2 中の試料の発光強度やイ
オン化率はプラズマ2 中の部位によって異なるため、プ
ラズマ2 と入射光学系やサンプリングコーン1 との位置
関係が変化すると、光検出器に導かれる光の強度や、質
量分析計に導かれるイオン化試料の量が変化し、同じ試
料を測定しても感度が大きく異なってくる。よってトー
チ12をトーチ固定具7 に取り付ける際には、トーチ12が
トーチ固定具7 から動かないように固定し、トーチ固定
具7 が固定されているXYZ ステージ14の位置をパソコン
から制御することによって、トーチ12と入射光学系やサ
ンプリングコーン1 との位置関係を調整する。 【0007】 【発明が解決しようとする課題】上記従来技術において
は、トーチ12の円筒状の最外管4 の径方向外側からトー
チ固定具7 を締め付けることによってトーチ12を保持し
ていた。図5 に示すように、トーチ固定具はV 字溝が彫
ってある2 枚の板をトーチ12の両側から挟むようになっ
ており、このV 字溝のために円筒状のトーチ12の中心軸
の位置がずれないように保持される。 【0008】しかし、前記保持方法ではトーチ12の中心
軸方向に関する保持力や脱着位置再現性が不十分であっ
た。そのため、トーチ12に接続されている試料供給部
(図示せず)の重量などの負荷がトーチ12に加わったと
きや、トーチ固定具7 からトーチ12を脱着した前後で
は、トーチ12の位置が変わることがあった。故にトーチ
固定具7 を介してXYZ ステージ14に保持されているトー
チ12と、入射光学系やサンプリングコーン1 との位置関
係は、XYZ ステージ14の位置が変化していないにも関わ
らず一定にならなかった。そのような時は同じ試料を同
じ測定条件で測定しても、同じ感度を得られず、トーチ
12脱着前後の測定結果を比較することが不可能であっ
た。 【0009】本発明は、上記問題を解決し、トーチ12に
力が加わった場合やトーチ12の脱着によってもトーチ12
と入射光学系やサンプリングコーン1 との位置関係を一
定に保つことができ、同一条件下での同じ試料の測定で
再現性の良い測定結果を得ることができる誘導結合プラ
ズマ分析装置を得ることを目的とする。 【0010】 【課題を解決するための手段】上記目的を達成するため
に本発明が採用した誘導結合プラズマ分析装置は、トー
チ枝管クリップを有し、トーチの中心軸を中心にトーチ
を回転させることによって、トーチの枝管をトーチ枝管
クリップにはめ込むことのできることを特徴とする。 【0011】本発明の誘導結合プラズマ分析装置のトー
チ枝管クリップはXYZ ステージに固定されており、トー
チ枝管クリップの隙間は、枝管の外径と同じ寸法であ
り、枝管をはめ込んだトーチはトーチ中心軸方向に前後
移動することはない。さらに、トーチをトーチ中心軸回
りに回転させても、V 字溝形状のトーチ固定具によりト
ーチ中心軸の位置は固定されているので、常に同じ位置
に保たれている。 【0012】XYZ ステージに固定されたトーチ固定具を
基準にして、トーチ中心軸の位置とトーチ中心軸方向の
トーチ位置が常に同じ位置になるので、XYZ ステージの
位置が変化しない限り、トーチの位置と入射光学系やサ
ンプリングコーンとの位置関係が常に一定に保たれる。
したがってトーチに力が加わった場合やトーチの脱着に
よってもトーチと入射光学系やサンプリングコーンとの
位置関係を一定に保つことができ、同一条件下での同じ
試料の測定で再現性の良い測定結果を得ることができ
る。 【0013】 【発明の実施の形態】本願発明を図1 〜図3 に基づいて
詳細に説明する。なお、図1 〜図3 において、図4 、図
5 に書かれている部品で、ほぼ同一の機能を有するもの
は、ここでは説明を省略することもある。トーチ12は三
重構造の石英円筒管からなっており、プラズマガス供給
枝管10からガス (例えばアルゴンガス)が最外管4 を
介してトーチ12先端に供給され、誘導コイル3 に高周波
電力(例えば、周波数27.12MHz、電力1.6kW )を印加す
ることにより、プラズマ2 が形成される。11は補助ガス
供給枝管であり中間管5 を介して補助ガスがトーチ12先
端に供給される。 【0014】試料供給部(図示せず)を経てトーチ12に
達した試料はトーチ12の三重管のうち、最内管6 を通
り、トーチ12先端に供給され、プラズマ2 によってイオ
ン化される。イオン化された試料はサンプリングコーン
1 の穴を通り、質量分析計(図示せず)によって分析さ
れる。ここで試料のイオン化率はプラズマ2 中の部位に
よって異なるため、プラズマ2 とサンプリングコーン1
との位置関係が変化すると、サンプリングコーン1 の穴
を通過するイオン化試料の量が変化し、同じ試料を測定
しても感度が大きく異なってくる。 【0015】そこで最適な感度が得られるように、トー
チ12先端に形成されるプラズマ2 とサンプリングコーン
1 との位置を調整する必要がある。このときサンプリン
グコーン1 の位置は固定されているため、トーチ固定具
7 を介してトーチ12が固定されているXYZ ステージ14を
パソコン制御により移動させてトーチ12の最適位置を調
整する。調整されたXYZ ステージ14の位置はパソコンに
記憶されて、いつでも記憶位置にXYZ ステージ14を戻す
ことができるが、XYZ ステージ14に取り付けたトーチ12
の位置が調整後にずれてしまうと、トーチ12先端に形成
されているプラズマ2 とサンプリングコーン1 との位置
がずれることになり、XYZ ステージ14が調整した最適位
置にあるにも関わらず調整前の感度が得られないことに
なる。 【0016】ここでXYZ ステージ14に固定されているト
ーチ固定具7 は、図5 に示すようにV 字溝が彫ってある
2 枚の板をトーチ12の両側から挟むような構造になって
いるため、トーチ固定具7 に保持したトーチ12をトーチ
中心軸回りに回転させても、トーチ中心軸の位置とトー
チ固定具7 との位置関係が変わることはなく、XYZ ステ
ージ14とトーチ中心軸の位置関係はいつも一定に保たれ
る。 【0017】また、トーチ12をトーチ固定具7 に取り付
けた後、図2 に示すようにトーチ中心軸回りに回転させ
ることによって、トーチ12のプラズマガス供給枝管10を
はめ込むことができるようになっているトーチ枝管クリ
ップ9 の隙間は、図3 に示すようにプラズマガス供給枝
管10の外径と同じ寸法なので、固定されたトーチ12がト
ーチ中心軸方向に前後移動することはなく、XYZ ステー
ジ14とトーチ12のトーチ中心軸方向の位置関係はいつも
一定に保たれる。 【0018】XYZ ステージ14を基準にして、トーチ中心
軸の位置とトーチ中心軸方向のトーチ12位置が常に同じ
位置になるので、XYZ ステージ14の位置が変化しない限
り、トーチ12先端に形成されるプラズマ2 とサンプリン
グコーン1 との位置関係は常に一定に保たれる。したが
ってトーチ12に力が加わった場合やトーチ12の脱着によ
ってプラズマ2 の位置とサンプリングコーン1 の位置関
係が変わることがなく、同一条件下での同じ試料の測定
で再現性の良い測定結果を得ることができる。 【0019】上記ではプラズマガス供給枝管10にはめ込
むトーチ枝管クリップ9 として説明したが、補助ガス供
給枝管11にはめ込むトーチ枝管クリップ9 においても本
発明の効果を有することは明らかである。さらに上記で
は、サンプリングコーン1 と質量分析計(図示せず)か
ら構成されている誘導結合プラズマ質量分析装置として
説明したが、入射光学系と分光器(図示せず)から構成
されている誘導結合プラズマ発光分光分析装置において
も本発明の効果を有することは明らかである。 【0020】つまり本願発明は、同軸の多重の円筒管で
あって、前記多重の円筒管を構成している各円筒管の内
部にそれぞれ通じる枝管を前記各円筒管の径方向内側に
向けてそれぞれ配置してなるトーチと、前記トーチを保
持するトーチ固定具を備えた誘導結合プラズマ分析装置
において、前記多重の円筒管の軸を中心に前記トーチを
回転させることによって前記枝管(実施例では、プラズ
マガス供給枝管10あるいは補助ガス供給枝管11に相当)
をはめ込むことのできるトーチ枝管クリップを有するこ
とを特徴とする誘導結合プラズマ分析装置である。 【0021】 【発明の効果】本発明は、誘導結合プラズマ分析装置に
おいて、トーチ枝管クリップを有し、トーチをトーチ固
定具に取り付けた後、トーチ中心軸回りに回転させるこ
とによって、トーチの枝管をトーチ枝管クリップにはめ
込むことができるような構造としたので、下記の効果を
有する。 (1 )固定されたトーチがトーチ中心軸方向に前後移動
することはなく、XYZ ステージと、トーチのトーチ中心
軸方向の位置関係はいつも一定に保たれる。 (2 )トーチに力が加わった場合やトーチの脱着によっ
てXYZ ステージとトーチの位置関係がずれることがな
い。 (3 )XYZ ステージとトーチの位置関係が常に一定であ
るため、XYZ ステージの位置が同じである限り、トーチ
先端に形成されるプラズマと、入射光学系やサンプリン
グコーンとの位置関係は常に一定に保たれる。 (4 )プラズマと、入射光学系やサンプリングコーンと
の位置関係が常に一定であるため、同一条件の下では同
じ試料の感度は常に一定に保たれ、再現性の良い測定が
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for holding a torch of an inductively coupled plasma analyzer. 2. Description of the Related Art A conventional inductively coupled plasma analyzer is shown in FIG.
As shown in FIG. 4, the sample is introduced into the torch 12 for generating the plasma 2, and the sample is emitted or ionized by the plasma 2. Then, the emitted light is separated into spectrum light of each wavelength and detected by a photodetector (not shown), or the ionized sample is detected by a mass spectrometer (not shown), thereby forming a sample. Perform qualitative and quantitative analysis of contained elements. Usually, the torch 12 is formed of a coaxial triple cylindrical tube, and a sample introduced from a sample supply unit (not shown) connected to the torch 12 passes through the innermost tube 6 of the triple cylindrical tube. Is introduced into the plasma 2. Innermost tube 6 of torch 12
An intermediate pipe 5 is disposed radially outside of the intermediate pipe 5, and auxiliary gas is supplied to the intermediate pipe 5 through an auxiliary gas supply branch pipe 11 provided radially inward of the intermediate pipe 5 so as to communicate with the inside of the intermediate pipe 5. Passed through. Further, an outermost tube 4 is disposed radially outside the intermediate tube 5, and a plasma gas supply branch pipe 10 provided radially inside the outermost tube 4 so as to communicate with the inside of the outermost tube 4. Then, the plasma gas is passed through the outermost tube 4. On the XYZ stage 14, a matching box 13 for adjusting the transmission of high-frequency power is fixed, and the matching box 13 has an induction coil 3 for flowing high-frequency power around the tip of the torch 12. Is provided. The torch fixture 7 is further attached to the XYZ stage 14, and the torch 12 is held by tightening the torch fixture 7 from the outside in the radial direction of the outermost cylindrical tube 4 with the tightening screw 8. In the case of an emission spectrometer of the inductively coupled plasma analyzer, plasma generated at the tip of the torch 12 is used.
The light emitted from the sample by 2 enters a spectroscope (not shown) via an incident optical system (not shown) such as a condenser lens or an entrance slit. The spectroscope separates the light into spectral light of each wavelength, and the light is analyzed by a photodetector. On the other hand, in the case of a mass spectrometer among the inductively coupled plasma analyzers, a plasma
A sampling cone 1 through which the sample ionized by 2 passes is provided, and the sample is analyzed by a mass spectrometer (not shown) after passing through the hole of the sampling cone 1. Here, since the emission intensity and ionization rate of the sample in the plasma 2 differ depending on the site in the plasma 2, when the positional relationship between the plasma 2 and the incident optical system or the sampling cone 1 changes, it is led to the photodetector. The light intensity and the amount of the ionized sample guided to the mass spectrometer change, and even if the same sample is measured, the sensitivity greatly differs. Therefore, when attaching the torch 12 to the torch fixture 7, the torch 12 is fixed so as not to move from the torch fixture 7, and the position of the XYZ stage 14 to which the torch fixture 7 is fixed is controlled from a personal computer. The positional relationship between the torch 12 and the incident optical system or the sampling cone 1 is adjusted. In the above-mentioned prior art, the torch 12 is held by tightening the torch fixture 7 from the radially outer side of the cylindrical outermost tube 4 of the torch 12. As shown in Fig. 5, the torch fixing device sandwiches two plates with a V-shaped groove from both sides of the torch 12, and the central axis of the cylindrical torch 12 is formed due to the V-shaped groove. Is held so as not to shift. However, the holding method described above has insufficient holding force in the center axis direction of the torch 12 and reproducibility of the detached position. Therefore, when a load such as the weight of a sample supply unit (not shown) connected to the torch 12 is applied to the torch 12, or before and after the torch 12 is detached from the torch fixture 7, the position of the torch 12 changes. There was something. Therefore, if the positional relationship between the torch 12 held on the XYZ stage 14 via the torch fixture 7 and the incident optical system and the sampling cone 1 is constant even though the position of the XYZ stage 14 has not changed. Did not. In such a case, even if the same sample is measured under the same measurement conditions, the same sensitivity cannot be obtained, and the torch is not used.
12 It was not possible to compare the measured results before and after desorption. [0009] The present invention solves the above-mentioned problems, and the torch 12 can be provided even when a force is applied to the torch 12 or when the torch 12 is detached.
It is necessary to obtain an inductively coupled plasma analyzer that can maintain a constant positional relationship between the laser beam, the incident optical system, and the sampling cone 1, and can obtain a highly reproducible measurement result in the same sample under the same conditions. Aim. [0010] In order to achieve the above object, an inductively coupled plasma analyzer adopted by the present invention has a torch branch pipe clip, and rotates the torch about a central axis of the torch. Thereby, the branch pipe of the torch can be fitted into the torch branch pipe clip. The torch branch pipe clip of the inductively coupled plasma analyzer of the present invention is fixed to the XYZ stage, and the gap between the torch branch pipe clips has the same size as the outer diameter of the branch pipe. Does not move back and forth in the direction of the torch center axis. Further, even when the torch is rotated around the torch center axis, the position of the torch center axis is fixed by the V-shaped groove-shaped torch fixing tool, so that the torch is always kept at the same position. The position of the center axis of the torch and the position of the torch in the direction of the center axis of the torch are always the same with respect to the torch fixture fixed to the XYZ stage, so that the position of the torch is maintained unless the position of the XYZ stage changes. , And the positional relationship with the incident optical system and the sampling cone is always kept constant.
Therefore, the positional relationship between the torch and the incident optical system or the sampling cone can be kept constant even when a force is applied to the torch or when the torch is attached or detached, and the measurement results with good reproducibility when measuring the same sample under the same conditions Can be obtained. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to FIGS. Note that in FIGS. 1 to 3, FIG.
Components described in 5 and having almost the same function may not be described here. The torch 12 is made of a triple cylindrical quartz tube, and gas (eg, argon gas) is supplied from the plasma gas supply branch pipe 10 to the tip of the torch 12 via the outermost tube 4, and high frequency power (eg, , A frequency of 27.12 MHz and a power of 1.6 kW) to form a plasma 2. Reference numeral 11 denotes an auxiliary gas supply branch pipe, and auxiliary gas is supplied to the tip of the torch 12 through the intermediate pipe 5. The sample that reaches the torch 12 via a sample supply unit (not shown) is supplied to the tip of the torch 12 through the innermost tube 6 among the triple tubes of the torch 12, and is ionized by the plasma 2. The ionized sample is the sampling cone
It passes through hole 1 and is analyzed by a mass spectrometer (not shown). Here, since the ionization rate of the sample differs depending on the site in plasma 2, plasma 2 and sampling cone 1
Is changed, the amount of the ionized sample passing through the hole of the sampling cone 1 changes, and even if the same sample is measured, the sensitivity greatly differs. Therefore, in order to obtain the optimum sensitivity, the plasma 2 formed at the tip of the torch 12 and the sampling cone
Need to adjust the position with 1. At this time, since the position of sampling cone 1 is fixed, the torch fixture
The optimum position of the torch 12 is adjusted by moving the XYZ stage 14 to which the torch 12 is fixed via the computer 7 under the control of a personal computer. The adjusted position of the XYZ stage 14 is stored in the personal computer, and the XYZ stage 14 can be returned to the stored position at any time.
If the position is shifted after the adjustment, the position of the plasma 2 formed at the tip of the torch 12 and the sampling cone 1 will be shifted, and even though the XYZ stage 14 is at the adjusted optimum position, No sensitivity will be obtained. The torch fixture 7 fixed to the XYZ stage 14 has a V-shaped groove as shown in FIG.
Since the two plates are sandwiched from both sides of the torch 12, even when the torch 12 held by the torch fixing device 7 is rotated around the torch center axis, the position of the torch The positional relationship between the XYZ stage 14 and the center axis of the torch is always kept constant. After the torch 12 is attached to the torch fixture 7, the plasma gas supply branch pipe 10 of the torch 12 can be fitted by rotating the torch around the torch center axis as shown in FIG. Since the gap between the torch branch pipe clips 9 is the same as the outer diameter of the plasma gas supply branch pipe 10 as shown in FIG. 3, the fixed torch 12 does not move back and forth in the torch center axis direction. The positional relationship between the stage 14 and the torch 12 in the direction of the torch center axis is always kept constant. Since the position of the torch center axis and the position of the torch 12 in the direction of the torch center axis are always the same with respect to the XYZ stage 14, the torch 12 is formed at the tip of the torch 12 unless the position of the XYZ stage 14 changes. The positional relationship between the plasma 2 and the sampling cone 1 is always kept constant. Therefore, when a force is applied to the torch 12 or the attachment / detachment of the torch 12, the positional relationship between the plasma 2 and the sampling cone 1 does not change, and a highly reproducible measurement result can be obtained by measuring the same sample under the same conditions. be able to. In the above description, the torch branch pipe clip 9 fitted into the plasma gas supply branch pipe 10 has been described. However, it is apparent that the torch branch pipe clip 9 fitted into the auxiliary gas supply branch pipe 11 also has the effect of the present invention. Further, in the above description, the inductively coupled plasma mass spectrometer constituted by the sampling cone 1 and the mass spectrometer (not shown) has been described, but the inductively coupled plasma mass spectrometer constituted by the incident optical system and the spectroscope (not shown) has been described. It is clear that the plasma emission spectrometer also has the effects of the present invention. That is, the invention of the present application is directed to a coaxial multiple cylindrical tube, wherein branch pipes respectively communicating with the inside of each cylindrical tube constituting the multiple cylindrical tube are directed radially inward of each cylindrical tube. In an inductively coupled plasma analyzer including a torch arranged in each case and a torch fixture for holding the torch, the torch is rotated by rotating the torch about an axis of the multiple cylindrical tubes. , Equivalent to plasma gas supply branch 10 or auxiliary gas supply branch 11)
An inductively coupled plasma analyzer having a torch branch pipe clip into which a torch can be fitted. According to the present invention, there is provided an inductively coupled plasma analyzing apparatus having a torch branch pipe clip, and attaching the torch to a torch fixture and then rotating the torch around a torch center axis. Since the structure is such that the tube can be fitted into the torch branch tube clip, the following effects are obtained. (1) The fixed torch does not move back and forth in the torch center axis direction, and the positional relationship between the XYZ stage and the torch in the torch center axis direction is always kept constant. (2) The positional relationship between the XYZ stage and the torch does not shift when a force is applied to the torch or when the torch is attached or detached. (3) Since the positional relationship between the XYZ stage and the torch is always constant, as long as the position of the XYZ stage is the same, the positional relationship between the plasma formed at the tip of the torch and the incident optical system and the sampling cone is always constant. Will be kept. (4) Since the positional relationship between the plasma and the incident optical system or the sampling cone is always constant, the sensitivity of the same sample is always kept constant under the same conditions, and measurement with good reproducibility can be performed.

【図面の簡単な説明】 【図1 】本発明を実施した実施例の誘導結合プラズマ分
析装置の概略断面である。 【図2 】本発明を実施した実施例の誘導結合プラズマ分
析装置の正面図である。 【図3 】本発明を実施した実施例の誘導結合プラズマ分
析装置の上面図である。 【図4 】従来例の誘導結合プラズマ分析装置の概略断面
である。 【図5 】従来例の誘導結合プラズマ分析装置の正面図で
ある。 【符号の説明】 1 サンプリングコーン 2 誘導結合プラズマ 3 誘導コイル 4 最外管 5 中間管 6 最内管 7 トーチ固定具 8 締め付けネジ 9 トーチ枝管クリップ 10 プラズマガス供給枝管 11 補助ガス供給枝管 12 トーチ 13 マッチングボックス 14 XYZ ステージ 15 XYZ ステージ移動方向
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross section of an inductively coupled plasma analyzer according to an embodiment of the present invention. FIG. 2 is a front view of an inductively coupled plasma analyzer according to an embodiment of the present invention. FIG. 3 is a top view of an inductively coupled plasma analyzer according to an embodiment of the present invention. FIG. 4 is a schematic cross section of a conventional inductively coupled plasma analyzer. FIG. 5 is a front view of a conventional inductively coupled plasma analyzer. [Description of Signs] 1 Sampling cone 2 Inductively coupled plasma 3 Induction coil 4 Outer tube 5 Intermediate tube 6 Inner tube 7 Torch fixture 8 Clamping screw 9 Torch branch pipe clip 10 Plasma gas supply branch 11 Auxiliary gas supply branch 12 Torch 13 Matching box 14 XYZ stage 15 XYZ stage moving direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 良知 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 松澤 修 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 Fターム(参考) 2G043 AA01 EA08 GA11 GB01 GB05 GB19 JA01    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yoshitomo Nakagawa             1-8 Nakase, Mihama-ku, Chiba-shi, Chiba             Iko Instruments Inc. (72) Inventor Osamu Matsuzawa             1-8 Nakase, Mihama-ku, Chiba-shi, Chiba             Iko Instruments Inc. F term (reference) 2G043 AA01 EA08 GA11 GB01 GB05                       GB19 JA01

Claims (1)

【特許請求の範囲】 【請求項1 】 同軸の多重の円筒管であって、前記多重
の円筒管を構成している各円筒管の内部にそれぞれ通じ
る枝管を前記各円筒管の径方向内側に向けてそれぞれ配
置してなるトーチと、前記トーチを保持するトーチ固定
具を備えた誘導結合プラズマ分析装置において、前記多
重の円筒管の軸を中心に前記トーチを回転させることに
よって前記枝管をはめ込むことのできるトーチ枝管クリ
ップを有することを特徴とする誘導結合プラズマ分析装
置。
Claims: 1. A coaxial multiple cylindrical pipe, wherein a branch pipe communicating with the inside of each cylindrical pipe constituting the multiple cylindrical pipe is radially inward of each of the cylindrical pipes. In an inductively coupled plasma analyzer equipped with a torch and a torch fixture holding the torch, the branch pipe is rotated by rotating the torch about the axis of the multiple cylindrical pipe. An inductively coupled plasma analyzer having a torch branch tube clip that can be fitted.
JP01620399A 1999-01-25 1999-01-25 Inductively coupled plasma analyzer Expired - Lifetime JP3805916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01620399A JP3805916B2 (en) 1999-01-25 1999-01-25 Inductively coupled plasma analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01620399A JP3805916B2 (en) 1999-01-25 1999-01-25 Inductively coupled plasma analyzer

Publications (2)

Publication Number Publication Date
JP2000214093A true JP2000214093A (en) 2000-08-04
JP3805916B2 JP3805916B2 (en) 2006-08-09

Family

ID=11909964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01620399A Expired - Lifetime JP3805916B2 (en) 1999-01-25 1999-01-25 Inductively coupled plasma analyzer

Country Status (1)

Country Link
JP (1) JP3805916B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607058U (en) * 1983-06-24 1985-01-18 株式会社島津製作所 ICP emission spectrometer
JPS60107754U (en) * 1983-11-29 1985-07-22 株式会社島津製作所 High frequency inductively coupled plasma emission spectrometer
JPH02118856U (en) * 1989-03-09 1990-09-25
JPH05135896A (en) * 1991-11-11 1993-06-01 Sansha Electric Mfg Co Ltd Induction plasma torch
JPH07120396A (en) * 1993-10-28 1995-05-12 Hitachi Ltd Icp emission analyzer
JPH0935681A (en) * 1995-07-14 1997-02-07 Yokogawa Analytical Syst Kk High frequency induction coupling plasma mass spectrometer
JPH1019783A (en) * 1996-07-09 1998-01-23 Sony Corp Emission spectrophotometer
JPH11201902A (en) * 1997-10-15 1999-07-30 Perkin Elmer Corp:The Installing device for inductively coupled plasma torch

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607058U (en) * 1983-06-24 1985-01-18 株式会社島津製作所 ICP emission spectrometer
JPS60107754U (en) * 1983-11-29 1985-07-22 株式会社島津製作所 High frequency inductively coupled plasma emission spectrometer
JPH02118856U (en) * 1989-03-09 1990-09-25
JPH05135896A (en) * 1991-11-11 1993-06-01 Sansha Electric Mfg Co Ltd Induction plasma torch
JPH07120396A (en) * 1993-10-28 1995-05-12 Hitachi Ltd Icp emission analyzer
JPH0935681A (en) * 1995-07-14 1997-02-07 Yokogawa Analytical Syst Kk High frequency induction coupling plasma mass spectrometer
JPH1019783A (en) * 1996-07-09 1998-01-23 Sony Corp Emission spectrophotometer
JPH11201902A (en) * 1997-10-15 1999-07-30 Perkin Elmer Corp:The Installing device for inductively coupled plasma torch

Also Published As

Publication number Publication date
JP3805916B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
Okamoto Annular-shaped microwave-induced nitrogen plasma at atmospheric pressure for emission spectrometry of solutions
US11079333B2 (en) Analyzer sample detection method and system
US20180332697A1 (en) Torches and systems and methods using them
JPH0221242A (en) Atomic absorption spectrometer
US5642190A (en) Dual-axis plasma imaging system for use in spectroscopic analysis
JP2000214093A (en) Inductively coupled plasma emission spectrochemical analyzing apparatus
JPS61160027A (en) Spectrophotometer for analysis
CN111707628A (en) Multi-station automatic switching optical path device and spectrometer
JP2001165857A (en) Icp emission spectroscopic analyzer
US5579104A (en) Apparatus applied to spectroscopy
Duan et al. Comparative studies of surfatron and microwave plasma torch sources for determination of mercury by atomic emission spectrometry
JP2823584B2 (en) Electromagnet for atomic absorption spectrometer
JP3620147B2 (en) Inductively coupled plasma emission spectrometer
JP3059402B2 (en) Cylindrical crystal-type spectrometer and its manufacturing method
JP2007212378A (en) Light source aligning mechanism for spectrofluorometer
US6411381B1 (en) Method of reducing noise generated by arc lamps in optical systems employing slits
RU2319937C2 (en) METHOD AND DEVICE FOR DETECTING SPECTRAL LINE OF CARBON AT 193 nm BY MEANS OF OPTICAL EMISSION SPECTROSCOPY
Abdillahi Gas Chromatography—Microwave-Induced Plasma for the Determination of Halogenated Hydrocarbons
US11085873B2 (en) Spectrometer having a discharge lamp with a plurality of beam paths
JP2001305059A (en) Inductively coupled plasma photometric analyzer and its method
CN110289202B (en) Ion guiding device
JP4981872B2 (en) Trace component measuring device
RU2085912C1 (en) Atomic-fluorescent analyzer without dispersion
JPH05107186A (en) Solid luminescence spectroscopic analyzer
JPS6285847A (en) Method and device for direct emission spectrochemical analysis of laser multistage excitation

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term