JP2000214086A - Method for observing gelation process or gel state - Google Patents

Method for observing gelation process or gel state

Info

Publication number
JP2000214086A
JP2000214086A JP11015959A JP1595999A JP2000214086A JP 2000214086 A JP2000214086 A JP 2000214086A JP 11015959 A JP11015959 A JP 11015959A JP 1595999 A JP1595999 A JP 1595999A JP 2000214086 A JP2000214086 A JP 2000214086A
Authority
JP
Japan
Prior art keywords
scattering
sample
dimensional
scattering intensity
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11015959A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Shibayama
充弘 柴山
Tomohisa Norisue
智久 則末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP11015959A priority Critical patent/JP2000214086A/en
Publication of JP2000214086A publication Critical patent/JP2000214086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a non-ergodic sample in real time by detecting as two-dimensional scattering intensity data a scattering light obtained by irradiating a sample, extracting and analyzing the two-dimensional scattering intensity data with a constant scattering angle. SOLUTION: A two-dimensional light-scattering and measuring apparatus is used to observe a gelation process or gel state of a non-ergodic sample 8 of a polymer gel or the like. The laser light from a laser device 1 is turned to only a vertical polarization component and irradiated to the sample 8. A scattering light from which the polarization component is selected forms an image on photodetectors 18 arranged in two dimensions of a CCD camera 15 or the like through a lens 12 and the like. Two-dimensional scattering intensity data with a constant scattering angle is extracted by an azimuth angle of a predetermined range, and an ensemble average scattering luminous intensity is found. A change with time of the luminous intensity is tracked. A gelation point is specified from a time when a point of inflexion is formed. Also, a method is used whereby a scattering intensity frequency distribution is obtained by a predetermined method, a change with time of the distribution is tracked and a time point when a shape of the distribution changes large or the like is specified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非エルゴード性試
料に光を照射して二次元散乱強度データを測定すること
により、前記試料のゲル化過程またはゲル状態を測定す
る方法に関する。
The present invention relates to a method for measuring a gelling process or a gel state of a non-ergodic sample by irradiating the sample with light and measuring two-dimensional scattering intensity data.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】従
来、散乱法による高分子ゲルの構造解析について数多く
の研究がなされてきたが、この解析を困難なものとする
理由の一つに、ゲルの構造不均一性が挙げられる。すな
わち、高分子ゲルの構造には分子間の架橋に基づく不均
一性が存在するため、統計力学における「物理量の位相
空間平均と時間的平均が同等である」というエルゴード
仮説が成立せず、単一観測点ではゲルの普遍的な物性を
把握することができない。このような系は非エルゴード
系と呼ばれ、高分子ゲル、ガラスがその範疇に含まれ
る。
2. Description of the Related Art Conventionally, many studies have been made on the structural analysis of polymer gels by the scattering method. One of the reasons for making this analysis difficult is that gels are difficult to analyze. Structural non-uniformity. That is, since the structure of the polymer gel has inhomogeneity due to cross-linking between molecules, the ergodic hypothesis that "the phase space average and the temporal average of physical quantities are equivalent" in statistical mechanics does not hold, At one observation point, the universal physical properties of the gel cannot be understood. Such a system is called a non-ergodic system, and includes a polymer gel and glass in its category.

【0003】かかる非エルゴード性試料の構造を解析
し、ゲル化の過程やゲルの状態を観測するには、前記試
料と同濃度の溶液に対応する熱揺らぎによる散乱挙動に
加えて、分子間の架橋により熱揺らぎが凍結された効果
を考慮しなければならず、散乱強度等の観測量を熱揺ら
ぎ(動的揺らぎ)と、構造の不均一性に伴う静的揺らぎ
とに分離することが非常に重要となる。
[0003] In order to analyze the structure of such a non-ergodic sample and observe the gelation process and the state of the gel, in addition to the scattering behavior due to thermal fluctuation corresponding to a solution having the same concentration as that of the sample, the inter-molecular It is necessary to consider the effect of freezing thermal fluctuations due to cross-linking, and it is very important to separate the observed quantities such as scattering intensity into thermal fluctuations (dynamic fluctuations) and static fluctuations due to structural non-uniformity. Is important.

【0004】また、非エルゴード系試料の構造を特定す
るには、(1) 構造不均一性に影響されない普遍的な物性
を抽出すること、すなわち同濃度の架橋していない高分
子溶液に対応する揺らぎを評価することと、(2) 構造不
均一性を定量化し、演算によって算出可能なものにする
ことも重要である。従来法による高分子ゲルの揺らぎ分
離法は、アンサンブル平均を併用した動的光散乱測定に
よって行われていた。すなわち、特定の散乱角度におい
て数分間程度の積算時間をかけて光散乱を測定し、これ
を十分な統計精度が得られるまで測定位置を変えて繰り
返し行うことによって、非エルゴード性試料の構造解析
が行われていた。
In order to specify the structure of a non-ergodic sample, it is necessary to (1) extract universal physical properties unaffected by structural heterogeneity, that is, to extract a non-crosslinked polymer solution of the same concentration. It is also important to evaluate the fluctuation and (2) to quantify the structural non-uniformity and make it possible to calculate by calculation. The fluctuation separation method of a polymer gel according to the conventional method has been performed by dynamic light scattering measurement using ensemble averaging. In other words, the light scattering is measured over a period of several minutes at a specific scattering angle over several minutes, and the measurement is repeated at different measurement positions until sufficient statistical accuracy is obtained, so that the structural analysis of the non-ergodic sample can be performed. It was done.

【0005】しかしながら、上記従来法では、1回の測
定だけで揺らぎの成分を分離することは不可能であっ
て、十分な統計精度を有する測定データを採取するに
は、試料を回転させたり、測定位置を変えて繰り返し測
定する必要がある。このため、一つの試料の測定を行う
のに数時間を要し、ゲル化のようにエルゴート系から非
エルゴート系へ刻々と変化する様子をリアルタイムで測
定すること、すなわち時系列での測定を行うことが困難
であった。
However, in the above-mentioned conventional method, it is impossible to separate the fluctuation components by only one measurement. In order to collect measurement data having sufficient statistical accuracy, it is necessary to rotate the sample, It is necessary to repeat the measurement while changing the measurement position. For this reason, it takes several hours to measure one sample, and it measures in real time how the ergodic system changes from ergot system to non-ergote system, such as gelation, that is, performs time-series measurement It was difficult.

【0006】そこで本発明の目的は、上記の問題点を解
決し、非エルゴード性試料のゲル化過程またはゲル状態
をリアルタイムで測定することのできる観測方法を提供
することである。
Accordingly, an object of the present invention is to solve the above problems and to provide an observation method capable of measuring the gelation process or gel state of a non-ergodic sample in real time.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の、本発明のゲル化過程またはゲル状態の観測方法は、
非エルゴード性試料に光を照射して得られる散乱光を、
結像手段を通して二次元散乱強度データとして検出し、
この検出されたデータの中から一定の散乱角における二
次元散乱強度データを抽出して解析することを特徴とす
る(請求項1)。
Means for Solving the Problems To solve the above problems, the method of observing the gelation process or gel state of the present invention comprises:
The scattered light obtained by irradiating the non-ergodic sample with light is
Detected as two-dimensional scattering intensity data through the imaging means,
Two-dimensional scattering intensity data at a fixed scattering angle is extracted and analyzed from the detected data (claim 1).

【0008】上記本発明のゲル化過程またはゲル状態の
観測方法によれば、散乱強度のデータを、結像手段を通
して、一定の散乱角における二次元のデータとして一度
に抽出することができるため、当該データを採取した時
点における非エルゴード性試料のゲル化過程またはゲル
状態を、前記試料の構造不均一性に影響されない普遍的
な物性として観測することができる。
According to the gelation process or the method of observing a gel state of the present invention, the scattering intensity data can be extracted at one time as two-dimensional data at a fixed scattering angle through the imaging means. The gelation process or gel state of the non-ergodic sample at the time of collecting the data can be observed as universal physical properties that are not affected by the structural heterogeneity of the sample.

【0009】また、本発明の観測方法は、従来法に比べ
てデータ採取の時間効率が格段に向上しており、その結
果、揺らぎの時系列測定、すなわち「その場測定」を行
うことができる。従って、試料の経時変化に応じて上記
散乱強度データの採取、解析を行うことで、非エルゴー
ド性試料の構造不均一性が発現する過程を経時的に測定
することが可能となり、ひいては不均一性の発現機構の
解明につなげることが可能になる。
The observation method of the present invention has significantly improved the time efficiency of data collection as compared with the conventional method, and as a result, it is possible to perform time-series measurement of fluctuation, that is, “in-situ measurement”. . Therefore, by collecting and analyzing the above-mentioned scattering intensity data according to the change over time of the sample, it becomes possible to measure over time the process of developing the structural non-uniformity of the non-ergodic sample, and consequently the non-uniformity To elucidate the expression mechanism.

【0010】上記本発明のゲル化過程またはゲル状態の
観測方法は、非エルゴード性試料に光を照射して得られ
る散乱光を、結像手段を通して二次元散乱強度データと
して検出し、この検出されたデータの中から一定の散乱
角における二次元散乱強度データを抽出した後、当該二
次元散乱強度データを所定範囲の方位角で抽出してアン
サンブル平均散乱強度<I>E を求め、このアンサンブ
ル平均散乱強度<I> E の経時変化を追跡するものであ
るのがより好ましい(請求項2)。
[0010] The gelation process or gel state of the present invention described above.
Observation methods were obtained by irradiating non-ergodic samples with light.
Scattered light is converted into two-dimensional scattered intensity data through the imaging means.
Scattered from this detected data
After extracting the two-dimensional scattering intensity data at the corner,
Dimensional scattering intensity data is extracted at a predetermined range of azimuth angle and
Samble mean scattering intensity <I>EAsk for this ensemble
Average scattering intensity <I> ETo track changes over time.
It is more preferable to have

【0011】上記アンサンブル平均散乱強度<I>
E は、ゲル化の進行に伴って急激に増加する。従って、
上記アンサンブル平均散乱強度<I>E の経時変化にお
いて変曲点が生じる時間を特定することにより、ゲル化
が起こった時点(ゲル化点)を容易にかつ高い精度で特
定することができる。また、上記本発明のゲル化過程ま
たはゲル状態の観測方法は、非エルゴード性試料に光を
照射して得られる散乱光を、結像手段を通して二次元散
乱強度データとして検出し、この検出されたデータの中
から一定の散乱角における二次元散乱強度データを抽出
した後、当該二次元散乱強度データを所定範囲の方位角
で抽出して散乱強度頻度分布P<I>E を求め、この散
乱強度頻度分布P<I>E の経時変化を追跡するもので
あるのがより好ましい(請求項3)。
The ensemble average scattering intensity <I>
E increases rapidly with the progress of gelation. Therefore,
By specifying the time at which the point of inflection occurs in the ensemble average scattering intensity <I> E over time, the point in time when gelation occurs (gelation point) can be specified easily and with high accuracy. Further, the method of observing the gelation process or gel state of the present invention detects scattered light obtained by irradiating the non-ergodic sample with light as two-dimensional scattered intensity data through the imaging means. After extracting two-dimensional scattering intensity data at a fixed scattering angle from the data, the two-dimensional scattering intensity data is extracted at a predetermined range of azimuth angles to obtain a scattering intensity frequency distribution P <I> E. It is more preferable to track a temporal change of the frequency distribution P <I> E (claim 3).

【0012】上記散乱強度の頻度分布P<I>E は、ゲ
ル化の進行に伴って幅広い分布に変化しつつ(すなわ
ち、強度分布がブロードになりつつ)、分布のピークが
高強度側にシフトする。従って、上記散乱強度頻度分布
P<I>E の分布形状や、散乱強度が急激に変化する時
間を特定することにより、ゲル化点を容易にかつ高い精
度で特定することができる。
The frequency distribution P <I> E of the scattering intensity changes to a wide distribution with the progress of gelation (that is, the intensity distribution becomes broad), and the peak of the distribution shifts to the higher intensity side. I do. Therefore, by specifying the distribution shape of the scattering intensity frequency distribution P <I> E and the time at which the scattering intensity changes rapidly, the gel point can be easily and accurately specified.

【0013】[0013]

【発明の実施の形態】以下、添付図面を参照しつつ本発
明を詳細に説明する。 〔二次元光散乱測定装置〕図1は、二次元光散乱測定装
置の光学系の概要を示す説明図である。本発明におい
て、試料に光を照射して得られる散乱光は、図1に示す
二次元光散乱測定装置を用いることにより、二次元散乱
強度データとして検出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. [Two-Dimensional Light Scattering Measurement Apparatus] FIG. 1 is an explanatory diagram showing an outline of an optical system of the two-dimensional light scattering measurement apparatus. In the present invention, the scattered light obtained by irradiating the sample with light is detected as two-dimensional scattering intensity data by using the two-dimensional light scattering measuring device shown in FIG.

【0014】かかる二次元光散乱測定装置において、レ
ーザ装置1から下向きに発せられたレーザ光線は、ミラ
ー2で反射され、NDフィルタ3で強度が調節される。
次いで、再度ミラー4で反射されて、1/4λ板5で円
偏光にされ、さらに照射側偏光板6によって垂直偏光成
分のみが抽出された上で、サンプルホルダー7にセット
された試料8に照射される。
In such a two-dimensional light scattering measuring apparatus, a laser beam emitted downward from a laser device 1 is reflected by a mirror 2 and the intensity is adjusted by an ND filter 3.
Next, the light is reflected again by the mirror 4, is converted into circularly polarized light by the 4λ plate 5, and is extracted by the irradiation-side polarizing plate 6. Then, the sample 8 set in the sample holder 7 is irradiated. Is done.

【0015】試料8に照射された光のうち、当該試料8
内で散乱されずにまっすぐ透過した光はビームトラップ
9で透過光モニタ10に導かれる。一方、試料8によっ
て散乱した光は、受光側偏光板11で偏光成分を選択し
た後、結像手段としてのレンズ12を経て、散乱光量の
強度調節機構としてのNDフィルタ13を通過する。さ
らに、シャッター機構14を持つCCDカメラ15等
の、二次元的に配置された受光素子18内にて結像され
る。
Of the light applied to the sample 8, the sample 8
The light transmitted straight without being scattered in the inside is guided to the transmitted light monitor 10 by the beam trap 9. On the other hand, the light scattered by the sample 8 passes through an ND filter 13 as an intensity adjusting mechanism of the amount of scattered light after passing through a lens 12 as an imaging means after selecting a polarization component by a light receiving side polarizing plate 11. Further, an image is formed in a two-dimensionally arranged light receiving element 18, such as a CCD camera 15 having a shutter mechanism 14.

【0016】こうして、受光素子内で円内に分布する二
次元散乱強度データが一度に得られ、このデータを解析
することで、試料8のゲル化過程またはゲル状態を観測
することができる。なお、試料8に入射する光の強度
は、ハーフミラー16を経て入射光量モニター17に導
かれた光の強度を検出して、適宜調整することができ
る。
In this way, two-dimensional scattering intensity data distributed in a circle in the light receiving element is obtained at a time, and by analyzing this data, the gelation process or gel state of the sample 8 can be observed. The intensity of light incident on the sample 8 can be appropriately adjusted by detecting the intensity of light guided to the incident light amount monitor 17 via the half mirror 16.

【0017】〔二次元散乱強度データ〕図2は試料8に
レーザ光線20を照射して得られる散乱強度データを示
す概念図である。本発明の観測方法においては、図2
(a) に示すように、散乱角θが0°である点を中心とし
て、同一の散乱角θでの散乱強度データ21が同心円状
に存在する。すなわち、同一の散乱角でのデータは円環
状に存在しており、方位角φの違いによって様々な強度
の散乱光データが存在している。この同一の散乱角θに
おける散乱強度データをコンピュータ解析により求める
ことで、図2(b) に示す円環抽出データ22が得られ
る。
[Two-Dimensional Scattering Intensity Data] FIG. 2 is a conceptual diagram showing scattering intensity data obtained by irradiating a sample 8 with a laser beam 20. In the observation method of the present invention, FIG.
As shown in (a), the scattering intensity data 21 at the same scattering angle θ exists concentrically around the point where the scattering angle θ is 0 °. That is, data at the same scattering angle exists in an annular shape, and scattered light data of various intensities exist depending on the difference in the azimuth angle φ. By obtaining the scattering intensity data at the same scattering angle θ by computer analysis, the ring extraction data 22 shown in FIG. 2B is obtained.

【0018】二次元散乱強度データ21は、二次元光散
乱測定装置の受光素子の視野角特性や、レンズ12の性
能等に応じて、通常散乱角θが±20°程度の範囲で一
度にデータを取り込むことができる。なお、図2(b) に
示す円環抽出データ22のうち、図の左側にある欠損部
23は、ビームトラップ9による影である。円環抽出デ
ータ22を作製する際には、ビームトラップ9の影によ
ってデータを得ることができない領域を除いて、できる
だけ方位角φの範囲を広くとってデータを採取するのが
好ましい。
The two-dimensional scattered intensity data 21 is usually obtained at one time within a range of the scattering angle θ of about ± 20 ° according to the viewing angle characteristics of the light receiving element of the two-dimensional light scattering measuring device, the performance of the lens 12, and the like. Can be captured. In addition, in the ring extraction data 22 shown in FIG. 2B, the missing portion 23 on the left side of the figure is a shadow by the beam trap 9. When producing the ring extraction data 22, it is preferable to collect the data by setting the range of the azimuth angle φ as wide as possible except for a region where data cannot be obtained due to the shadow of the beam trap 9.

【0019】さらに、本発明の観測方法において、二次
元散乱強度データの測定に要する時間は、1回のデータ
採取につき数秒、多くても数十秒の間で十分である。従
って、適宜間隔を設けてデータ採取を行うことにより、
試料のゲル化過程における構造変化や状態変化を経時的
に追跡することができる。 〔ゲル化点を特定する第1の方法〕本発明の観測方法の
うち、非エルゴード性試料のゲル化点を特定する第1の
方法は、前述のように、一定の散乱角における二次元散
乱強度データを所定範囲の方位角で抽出してアンサンブ
ル平均散乱強度<I>E を求め、このアンサンブル平均
散乱強度<I>E の経時変化を追跡して、変曲点が生じ
る時間を特定するものである。
Further, in the observation method of the present invention, the time required for measuring the two-dimensional scattering intensity data is several seconds per data collection, and at most tens of seconds. Therefore, by collecting data at appropriate intervals,
It is possible to track a structural change and a state change in the gelation process of the sample over time. [First Method for Specifying Gelation Point] Among the observation methods of the present invention, the first method for specifying the gelation point of a non-ergodic sample is, as described above, two-dimensional scattering at a fixed scattering angle. which obtains an ensemble average scattering intensity <I> E extracts the intensity data in the azimuth angle of a predetermined range, the time course of the ensemble average scattering intensity <I> E to track, identify the time the inflection point occurs It is.

【0020】図3は、非エルゴード性試料のある時点で
の二次元散乱強度データから、一定の散乱角θのデータ
を抽出し、こうして得られた円環抽出データを「方位角
φ−散乱強度」のグラフで表したものである。上記第1
の方法によりゲル化点を特定するには、まず、図3に示
すような、一定の散乱角θにおいて抽出された散乱強度
データからバックグランドの散乱強度を差引き、所定範
囲の方位角φ(図3の場合φ=0°〜360°,但し、
180°〜200°付近の欠損部を除く)において散乱
強度データの平均をとることにより、アンサンブル平均
散乱強度<I>E を求める。次いで、アンサンブル平均
散乱強度<I>E を経時的に逐次測定し、その変化を、
図4に示す「時間−アンサンブル平均散乱強度<I
E 」のグラフに表せばよい。このグラフにおいて変曲
点が見られる時点がゲル化点となる。
FIG. 3 shows data of a fixed scattering angle θ extracted from two-dimensional scattering intensity data of a non-ergodic sample at a certain point in time. ”. The first
In order to specify the gel point by the method described above, first, the background scattering intensity is subtracted from the scattering intensity data extracted at a constant scattering angle θ as shown in FIG. In the case of FIG. 3, φ = 0 ° to 360 °, where
The ensemble average scattering intensity <I> E is obtained by taking the average of the scattering intensity data at (excluding the defective portion near 180 ° to 200 °). Then, the ensemble average scattering intensity <I> E is measured sequentially over time, and the change is
"Time-ensemble average scattering intensity <I
> E ”. The point at which the inflection point is seen in this graph is the gel point.

【0021】図4に示すデータは、所定濃度(690m
M)のN−イソプロピルアクリルアミド(NIPA)に
架橋剤N,N’−メチレンビスアクリルアミド(BI
S)を添加し、レドックス重合にてハイドロゲルを形成
した際の、アンサンブル平均散乱強度<I>E (散乱角
θ=15.6°)の経時変化を示したものである。上記
レドックス重合においては、NIPAにBISを添加し
た後、開始剤としての過硫酸アンモニウム(APS)を
加えて蒸留水に溶解し、脱気処理を施して冷却し、重合
促進剤としてのN,N,N’,N’−テトラメチルエチ
レンジアミン(TEMED)を加えて撹拌した。さら
に、これを20℃に保った専用セルに注入することによ
り重合を開始させた。
The data shown in FIG. 4 has a predetermined density (690 m
M) with N-isopropylacrylamide (NIPA) and a crosslinking agent N, N'-methylenebisacrylamide (BI
This is a graph showing the change with time of the average ensemble scattering intensity <I> E (scattering angle θ = 15.6 °) when a hydrogel was formed by redox polymerization with the addition of S). In the redox polymerization, after adding BIS to NIPA, ammonium persulfate (APS) as an initiator is added, dissolved in distilled water, degassed and cooled, and N, N, N ′, N′-tetramethylethylenediamine (TEMED) was added and stirred. Further, this was injected into a dedicated cell maintained at 20 ° C. to start polymerization.

【0022】この図より明らかなように、上記ハイドロ
ゲルにおいては、経過時間30分付近でアンサンブル平
均散乱強度<I>E が急激に変化しており、グラフに変
曲点が生じている。この変曲点がハイドロゲルの生成と
が対応していることから、かかる時点をゲル化点として
特定することができる。 〔ゲル化点を特定する第2の方法〕本発明の観測方法の
うち、非エルゴード性試料のゲル化点を特定する第2の
方法は、前述のように、一定の散乱角における二次元散
乱強度データを所定範囲の方位角で抽出して散乱強度頻
度分布P<I>E を求め、この散乱強度頻度分布P<I
E の経時変化を追跡して、散乱強度頻度分布P<I>
E の分布形状や散乱強度が急激に変化する時間を特定す
るものである。
As is apparent from this figure, in the above hydrogel, the ensemble average scattering intensity <I> E rapidly changes around 30 minutes in elapsed time, and an inflection point appears on the graph. Since this inflection point corresponds to the generation of the hydrogel, such a point can be specified as the gel point. [Second Method for Specifying Gelation Point] Among the observation methods of the present invention, the second method for specifying the gelation point of a non-ergodic sample is, as described above, two-dimensional scattering at a fixed scattering angle. The intensity data is extracted at a predetermined range of azimuth angles to obtain a scattering intensity frequency distribution P <I> E , and this scattering intensity frequency distribution P <I
> The time-dependent change of E is tracked, and the scattering intensity frequency distribution P <I>
It specifies the time at which the distribution shape and scattering intensity of E suddenly change.

【0023】図3に示す円環抽出データからバックグラ
ンドの散乱強度を差引いた後、データを散乱強度の順に
並び替えることによって、同一散乱角θにおける散乱強
度データの頻度分布(図5(a) 参照)に変換することが
できる。散乱強度の頻度分布P(<I>T )は式(1) で
表される。
After subtracting the background scattering intensity from the ring-extracted data shown in FIG. 3, the data is rearranged in the order of the scattering intensity, whereby the frequency distribution of the scattering intensity data at the same scattering angle θ (FIG. 5 (a)). See). The frequency distribution P (<I> T ) of the scattering intensity is represented by the following equation (1).

【0024】[0024]

【数1】 (Equation 1)

【0025】(式中、<I>T は散乱強度の時間平均を
示し、<IF T は散乱強度の動的な揺らぎ成分の時間
平均を示し、<I>E はアンサンブル平均散乱強度を示
す。また、H(x) はヘビサイド(Heaviside) のステップ
関数を表し、x<0のときH(x) =0、x≧0のときH
(x) =1である。)上記式(1) を変形すると下記式(2)
が得られる。
(Where <I> T indicates the time average of the scattering intensity, <I F > T indicates the time average of the dynamic fluctuation component of the scattering intensity, and <I> E indicates the average ensemble scattering intensity. In addition, H (x) represents a step function of Heaviside, and H (x) = 0 when x <0 and H (x) when x ≧ 0.
(x) = 1. ) By transforming the above equation (1), the following equation (2)
Is obtained.

【0026】[0026]

【数2】 (Equation 2)

【0027】(式中、<I>T 、<IF T 、<I>E
およびH(x) は前記と同じである。)図5(b) は、図5
(a) に示す散乱強度の頻度分布の縦軸を自然対数値に変
換したグラフである。このグラフにおけるピーク値より
高強度側におけるデータの傾きを最小二乗法によって求
めたものが、前記式(2) 中の式(3) :
(Wherein <I> T , < IF > T , <I> E
And H (x) are the same as above. FIG. 5 (b)
3 is a graph in which the vertical axis of the frequency distribution of the scattering intensity shown in FIG. The slope of the data on the higher intensity side than the peak value in this graph is obtained by the least square method, and the equation (3) in the equation (2) is as follows:

【0028】[0028]

【数3】 (Equation 3)

【0029】で表される部分に相当する。上記第2の方
法によりゲル化点を特定するには、まず、図3で表され
る一定の散乱角θにおいて抽出された散乱強度データを
用いて、図5(a) で表される散乱強度データの頻度分布
図を作成する。次いで、散乱強度頻度分布の経時的に逐
次測定し、その変化を、図6に示す「時間−出現頻度」
のグラフに表せばよい。このグラフにおいて分布形状が
ブロードに大きく変化したり、あるいはピーク値が大き
く高強度側に移動した時点がゲル化点となる。
Corresponds to the portion represented by In order to specify the gel point by the above second method, first, the scattering intensity shown in FIG. 5A is used by using the scattering intensity data extracted at a constant scattering angle θ shown in FIG. Create a data frequency distribution chart. Next, the scattering intensity frequency distribution is sequentially measured over time, and the change is shown in FIG.
It can be represented in the graph. In this graph, the point at which the distribution shape significantly changes broadly or the point at which the peak value is large and moves to the high strength side is the gel point.

【0030】図6に示すデータは、所定濃度(690m
M)のN−イソプロピルアクリルアミド(NIPA)に
架橋剤N,N’−メチレンビスアクリルアミド(BI
S)を添加し、レドックス重合にてハイドロゲルを形成
した際の、散乱強度頻度分布(散乱角θ=15.6°)
の経時変化を示したものである。前記レドックス重合の
手段は、前述と同じである。
The data shown in FIG. 6 has a predetermined density (690 m
M) with N-isopropylacrylamide (NIPA) and a crosslinking agent N, N'-methylenebisacrylamide (BI
S) is added and the scattering intensity frequency distribution (scattering angle θ = 15.6 °) when a hydrogel is formed by redox polymerization
5 shows the change with time. The means of redox polymerization is the same as described above.

【0031】この図より明らかなように、上記ハイドロ
ゲルにおいては、経過時間29分から30分の間で、急
激に分布がブロードになり、ピーク値も大幅に高強度側
に移動している。この変化とハイドロゲルの生成とが対
応していることから、かかる時点をゲル化点として特定
することができる。上記式(1) 〜(3) におけるアンサン
ブル平均散乱強度<I>E は、全散乱強度データのアン
サンブル平均により求められる。
As is clear from this figure, in the above hydrogel, the distribution rapidly becomes broad and the peak value shifts significantly to the high intensity side between the elapsed time of 29 minutes and 30 minutes. Since this change corresponds to the formation of a hydrogel, such a point can be specified as a gel point. The ensemble average scattering intensity <I> E in the above equations (1) to (3) is obtained by the ensemble average of all the scattering intensity data.

【0032】また、散乱強度の動的な揺らぎ成分の時間
平均を示す<IF T は、式(3) で表される傾きの逆数
からアンサンブル平均散乱強度<I>E を差引いた値と
して求められる。従って、本発明における二次元散乱強
度データを上記式にて演算することにより、散乱強度デ
ータの動的揺らぎ成分と静的揺らぎ成分への分離・解
析、ならびに非エルゴード性試料における構造不均一性
の定量化を容易に行うことができ、かつ単一観測点によ
る測定値を積算する従来の方法に比べて極めて高い精度
でもって、ゲル化過程またはゲル状態の観測を行うこと
ができる。
<I F > T , which indicates the time average of the dynamic fluctuation component of the scattering intensity, is a value obtained by subtracting the ensemble average scattering intensity <I> E from the reciprocal of the slope represented by the equation (3). Desired. Therefore, by calculating the two-dimensional scattering intensity data in the present invention by the above equation, separation and analysis of the scattering intensity data into a dynamic fluctuation component and a static fluctuation component, and the structural non-uniformity in the non-ergodic sample The quantification can be easily performed, and the gelation process or gel state can be observed with extremely high accuracy as compared with the conventional method of integrating the measured values at a single observation point.

【0033】さらに、<IF T /<I>E は、平均散
乱強度中に動的散乱成分が占める割合を示すため、ゲル
等の非エルゴード性試料における硬さの指標として用い
ることができる。測定試料がゲルの場合、この値が1に
近いほど溶液に近い柔らかいゲルであることを示し、0
に近いほど硬いゲルであるといえる。〔変更例〕本発明
に用いられる二次元光散乱測定装置(図1参照)におい
ては、レンズ12に代えて、球面ミラーを用いて結像さ
せてもよい。
Further, since < IF > T / <I> E indicates the ratio of the dynamic scattering component to the average scattering intensity, it can be used as an index of hardness in a non-ergodic sample such as a gel. . When the measurement sample is a gel, the closer this value is to 1, the softer the gel is, the closer to the solution,
It can be said that the closer the gel is, the harder the gel is. [Modification] In the two-dimensional light scattering measuring apparatus (see FIG. 1) used in the present invention, an image may be formed using a spherical mirror instead of the lens 12.

【0034】[0034]

【発明の効果】以上詳述したように、本発明のゲル化過
程またはゲル状態の観測方法によれば、散乱法を用いた
従来の方法に比べ極めて短時間で、かつ高い精度でもっ
てゲル化の過程またはゲル状態を観測することができ
る。従って、本発明の方法はゲル等の構造解析に好適で
ある。
As described above in detail, according to the method of observing the gelling process or the gel state of the present invention, the gelation is performed in an extremely short time and with high accuracy as compared with the conventional method using the scattering method. Process or gel state can be observed. Therefore, the method of the present invention is suitable for structural analysis of gels and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる二次元光散乱測定装置にお
ける光学系の概要を示す説明図である。
FIG. 1 is an explanatory diagram showing an outline of an optical system in a two-dimensional light scattering measurement device used in the present invention.

【図2】同図(a) は散乱角θおよび方位角φを示す概念
図であって、同図(b) は同一の散乱角における散乱強度
データを抽出した円環抽出データを示す模式図である。
FIG. 2 (a) is a conceptual diagram showing a scattering angle θ and an azimuth angle φ, and FIG. 2 (b) is a schematic diagram showing ring extraction data obtained by extracting scattering intensity data at the same scattering angle. It is.

【図3】一定の散乱角において抽出された二次元散乱強
度データを示すグラフである。
FIG. 3 is a graph showing two-dimensional scattering intensity data extracted at a constant scattering angle.

【図4】アンサンブル平均散乱強度の経時変化を示すグ
ラフである。
FIG. 4 is a graph showing the change over time in the average ensemble scattering intensity.

【図5】同図(a) は、図3に示すデータの頻度分布を示
すグラフであり、同図(b) は同図(a) の縦軸を自然対数
で表したグラフである。
5A is a graph showing a frequency distribution of the data shown in FIG. 3, and FIG. 5B is a graph in which the vertical axis of FIG.

【図6】散乱強度頻度分布の経時変化を示すグラフであ
る。
FIG. 6 is a graph showing a temporal change of a scattering intensity frequency distribution.

【符号の説明】[Explanation of symbols]

8 試料 θ 散乱角 φ 方位角 8 Sample θ Scattering angle φ Azimuth angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非エルゴード性試料に光を照射して得られ
る散乱光を、結像手段を通して二次元散乱強度データと
して検出し、この検出されたデータの中から一定の散乱
角における二次元散乱強度データを抽出して解析するこ
とを特徴とするゲル化過程またはゲル状態の観測方法。
1. A scattered light obtained by irradiating a non-ergodic sample with light is detected as two-dimensional scattered intensity data through an imaging means, and two-dimensional scattered light at a fixed scattering angle is detected from the detected data. A method for observing a gelation process or a gel state, wherein intensity data is extracted and analyzed.
【請求項2】一定の散乱角における二次元散乱強度デー
タを所定範囲の方位角で抽出してアンサンブル平均散乱
強度<I>E を求め、このアンサンブル平均散乱強度<
I> E の経時変化を追跡することによって、非エルゴー
ド性試料のゲル化点を特定する、請求項1記載のゲル化
過程またはゲル状態の観測方法。
2. A two-dimensional scattering intensity data at a constant scattering angle.
Ensemble average scattering
Strength <I>EAnd obtain the average ensemble scattering intensity <
I> ENon-ergo by tracking the aging of the
2. The gelation according to claim 1, wherein the gelation point of the volatile sample is specified.
How to observe the process or gel state.
【請求項3】一定の散乱角における二次元散乱強度デー
タを所定範囲の方位角で抽出して散乱強度頻度分布P<
I>E を求め、この散乱強度頻度分布P<I>E の経時
変化を追跡することによって、非エルゴード性試料のゲ
ル化点を特定する、請求項1記載のゲル化過程またはゲ
ル状態の観測方法。
3. A two-dimensional scattering intensity data at a certain scattering angle is extracted at a predetermined range of azimuth angles, and a scattering intensity frequency distribution P <
Seeking I> E, by tracking the time course of the scattering intensity frequency distribution P <I> E, to identify the gelation point of the non-ergodicity sample, observation of the gelling process or gel state according to claim 1, wherein Method.
JP11015959A 1999-01-25 1999-01-25 Method for observing gelation process or gel state Pending JP2000214086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015959A JP2000214086A (en) 1999-01-25 1999-01-25 Method for observing gelation process or gel state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015959A JP2000214086A (en) 1999-01-25 1999-01-25 Method for observing gelation process or gel state

Publications (1)

Publication Number Publication Date
JP2000214086A true JP2000214086A (en) 2000-08-04

Family

ID=11903280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015959A Pending JP2000214086A (en) 1999-01-25 1999-01-25 Method for observing gelation process or gel state

Country Status (1)

Country Link
JP (1) JP2000214086A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040807A (en) * 2005-08-02 2007-02-15 Hokkaido Univ Method and apparatus for analyzing dynamic hierarchy structure
US7310139B2 (en) 2002-03-28 2007-12-18 Takai Tofu & Soymilk Equipment Company Limited Evaluation method and device for gel state or sol-gel state change of object
CN102692753A (en) * 2012-05-24 2012-09-26 宁波大学 Device and method for controlling intermediate state of polymer dispersed liquid crystal
JP2012194165A (en) * 2011-03-16 2012-10-11 Eiko Furukawa Scanning microscopic light scattering measurement/analysis device and light scattering analysis method
JP2018004492A (en) * 2016-07-04 2018-01-11 株式会社リコー Information processing system and information processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7310139B2 (en) 2002-03-28 2007-12-18 Takai Tofu & Soymilk Equipment Company Limited Evaluation method and device for gel state or sol-gel state change of object
JP2007040807A (en) * 2005-08-02 2007-02-15 Hokkaido Univ Method and apparatus for analyzing dynamic hierarchy structure
JP4621916B2 (en) * 2005-08-02 2011-02-02 国立大学法人北海道大学 Method and apparatus for analyzing dynamic hierarchical structure
JP2012194165A (en) * 2011-03-16 2012-10-11 Eiko Furukawa Scanning microscopic light scattering measurement/analysis device and light scattering analysis method
CN102692753A (en) * 2012-05-24 2012-09-26 宁波大学 Device and method for controlling intermediate state of polymer dispersed liquid crystal
JP2018004492A (en) * 2016-07-04 2018-01-11 株式会社リコー Information processing system and information processing method

Similar Documents

Publication Publication Date Title
Viasnoff et al. Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics
CN106520535B (en) A kind of label-free cell detection device and method based on mating plate illumination
KR102315741B1 (en) Nanoparticle analyzer
US7769243B2 (en) Method and apparatus for image inspection
US6661519B2 (en) Semiconductor impurity concentration testing apparatus and semiconductor impurity concentration testing method
JPH05273110A (en) Measuring method and device for size information of grain or flaw
CN104596638B (en) High-resolution multi-wavelength laser intensity distribution detector and measurement method implemented by same
CN116448020B (en) Roughness measuring device and method based on pBRDF and dynamic TS algorithm
JP2000214086A (en) Method for observing gelation process or gel state
US11635385B2 (en) Characteristic information extraction method, and rapid detection method and system of organic pollutants in complex system
JP7018364B2 (en) Mass spectrum processing equipment and method
EP4267922A1 (en) Polarimetry
CN107421717B (en) Method and device for automatically testing minimum detectable temperature difference of infrared imager
CN105588789A (en) Detection method for particle size distribution of insulator surface dirt
KR101762384B1 (en) Observation system and method for 2-dimensional materials
WO2019175611A1 (en) Measuring crystal quality in low dimensional 2d materials based on polarization resolved second harmonic generation
CN113074848A (en) Optical elasticity testing system and method based on optical amplification technology
JPH06221838A (en) Surface roughness evaluation method
JP2001074637A (en) Dynamic light scattering particle diameter distribution measuring system
Liang et al. Ultrafast optical imaging
CN107421639B (en) Plasma three-dimensional information diagnosis system in material surface treatment process
WO2013121110A1 (en) Method and arrangement for determining structure defects of compound semiconductors, improving the growth process, and performance of the material as semiconductors
CN111912792B (en) Haze transmission medium target polarization spectrum testing device and using method
CN108550128A (en) A kind of single molecular fluorescence out-of-focus image processing method
JP7504460B2 (en) Dynamic light scattering measurement device, dynamic light scattering measurement/analysis method, and measurement/analysis program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225