JP2000213419A - Heat source system using low temperature and cogeneration system using thereof - Google Patents

Heat source system using low temperature and cogeneration system using thereof

Info

Publication number
JP2000213419A
JP2000213419A JP11011983A JP1198399A JP2000213419A JP 2000213419 A JP2000213419 A JP 2000213419A JP 11011983 A JP11011983 A JP 11011983A JP 1198399 A JP1198399 A JP 1198399A JP 2000213419 A JP2000213419 A JP 2000213419A
Authority
JP
Japan
Prior art keywords
heat
temperature
low
working gas
temperature heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11011983A
Other languages
Japanese (ja)
Inventor
Sumio Yagyu
寿美夫 柳生
Naoji Isshiki
尚次 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11011983A priority Critical patent/JP2000213419A/en
Publication of JP2000213419A publication Critical patent/JP2000213419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To construct a heat source system using low temperature with high energy utilization efficiency. SOLUTION: A cycle executing portion 1 is provided in which working gas G is circulated among four chambers, i.e., a high temperature heat sink chamber 4, a low temperature heat sink chamber 2, a high temperature heat radiation chamber 3, and a low temperature heat radiation chamber 5, so that simultaneously conducting a stirling cycle and an inverse stirling cycle. In the cycle executing portion 1: high temperature heat medium Na for inputting heat is subjected to heat exchange with the working gas G by a high temperature heater 4a of the high temperature heat sink chamber 4; low temperature heat medium Nb having low temperature heat for an object of utilization is subjected to heat exchange with the working gas G by a low temperature heater 2a of the low temperature heat sink chamber 2; heat medium Nc for outputting heat to a heat demander 9 is subjected to heat exchange with the working gas G by a high temperature radiator 3a of the high temperature heat radiation chamber 3; and refrigerant Nc for radiating heat is subjected to heat exchange with the working gas G by a low temperature radiator 5a of the low temperature heat radiation chamber 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、種々の機器からの
廃熱などとして得られる低温熱を回収利用して高温熱を
生成する低温熱利用の熱源システム、及び、それを用い
たコージェネレーションシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat source system utilizing low-temperature heat for generating high-temperature heat by collecting and utilizing low-temperature heat obtained as waste heat from various devices, and a cogeneration system using the same. About.

【0002】[0002]

【従来の技術】従来、廃熱などの低温熱(例えば、吸収
式冷凍機の駆動熱源としても利用することが難しい80
℃以下の熱)を回収利用して高温熱を生成するには、所
謂スーパーヒートポンプシステムとして、特殊な冷媒や
多段圧縮方式を用いた電動機駆動の高出力圧縮式ヒート
ポンプにより、低温熱源からの回収熱を100℃以上の
レベルにヒートアップするシステムがある。
2. Description of the Related Art Conventionally, low-temperature heat such as waste heat (for example, it is difficult to use it as a driving heat source for an absorption refrigerator)
In order to generate high-temperature heat by recovering and utilizing heat below ℃, a so-called super heat pump system uses a special refrigerant or a high-power compression heat pump driven by an electric motor using a multi-stage compression method to recover heat from a low-temperature heat source. There is a system for heating up to a temperature of 100 ° C. or higher.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記のスーパ
ーヒートポンプシステムでは、全体としてのエネルギ利
用効率(特に電動機への供給電力の生成効率も含めたエ
ネルギ利用効率)が未だ低く、また、それ自身が電動機
駆動であるため、省エネの1つの有効な手段であるコー
ジェネレーションシステム(熱電併給システム)の構築
に不向きであり、この点、一層の省エネを図る上で、よ
り有効な低温熱利用熱源システムが望まれている。
However, in the above-mentioned super heat pump system, the energy use efficiency as a whole (especially the energy use efficiency including the generation efficiency of the electric power supplied to the electric motor) is still low, and the super heat pump system itself has a problem. Since it is driven by an electric motor, it is not suitable for the construction of a cogeneration system (cogeneration system), which is one effective means of energy saving. Is desired.

【0004】この実情に鑑み、本発明の主たる課題は、
エネルギ利用効率の一層の向上が可能で、また、コージ
ェネレーションシステムの構築にも適した低温熱利用熱
源システムを提供する点にある。
[0004] In view of this situation, the main problems of the present invention are:
An object of the present invention is to provide a low-temperature heat utilization heat source system that can further improve energy utilization efficiency and is suitable for constructing a cogeneration system.

【0005】[0005]

【課題を解決するための手段】〔1〕請求項1に係る発
明では、高温加熱器を備える高温吸熱室と、低温加熱器
を備える低温吸熱室と、高温放熱器を備える高温放熱室
と、低温放熱器を備える低温放熱室とを各室間に再生熱
交換器を介在させて連通させた状態で、作動ガスを前記
再生熱交換器を通じて前記高温放熱室及び前記低温放熱
室から前記高温吸熱室及び前記低温吸熱室に移動させる
吸熱側作動ガス移動過程と、前記高温加熱器及び前記低
温加熱器からの採熱を伴う作動ガス膨張過程と、作動ガ
スを前記再生熱交換器を通じて前記高温吸熱室及び前記
低温吸熱室から前記高温放熱室及び前記低温放熱室に移
動させる放熱側作動ガス移動過程と、前記高温放熱器及
び前記低温放熱器への放熱を伴う作動ガス圧縮過程と
を、その順に繰り返してスターリングサイクルと逆スタ
ーリングサイクルとを併行実施するサイクル実行部を設
ける。そして、前記高温加熱器において熱入力用の高温
熱媒と作動ガスとを熱交換させ、前記低温加熱器におい
て利用対象の低温熱を保有する低温熱媒と作動ガスとを
熱交換させ、前記高温放熱器において熱需要先へ供給す
る温熱出力用熱媒と作動ガスとを熱交換させ、前記低温
放熱器において放熱用冷却熱媒と作動ガスとを熱交換さ
せる構成にする。
Means for Solving the Problems [1] In the invention according to claim 1, a high-temperature heat-absorbing chamber having a high-temperature heater, a low-temperature heat-absorbing chamber having a low-temperature heater, and a high-temperature heat-radiating chamber having a high-temperature radiator are provided. A working gas is passed through the regenerative heat exchanger from the high-temperature radiating chamber and the low-temperature radiating chamber while the low-temperature radiating chamber including the low-temperature radiator and the low-temperature radiating chamber are connected to each other with a regenerative heat exchanger interposed therebetween. A heat-absorbing-side working gas moving step of moving the chamber to the low-temperature heat absorbing chamber, a working gas expanding step involving heat collection from the high-temperature heater and the low-temperature heater, and the high-temperature endothermic moving the working gas through the regenerative heat exchanger. A heat-radiating-side working gas moving process of moving from the chamber and the low-temperature heat-absorbing room to the high-temperature heat-radiating room and the low-temperature heat-radiating room; and a working gas compression process involving heat radiation to the high-temperature radiator and the low-temperature radiator. repeat Te providing the cycle execution unit for parallel implementation of the Stirling cycle and the reverse Stirling cycle. Then, in the high-temperature heater, heat exchange is performed between the high-temperature heat medium for heat input and the working gas, and in the low-temperature heater, heat exchange is performed between the low-temperature heat medium holding the low-temperature heat to be used and the working gas, In the radiator, heat is exchanged between the heat medium for heating output supplied to the heat demand destination and the working gas, and heat is exchanged between the cooling heat medium for heat dissipation and the working gas in the low-temperature radiator.

【0006】つまり、この構成では、高温吸熱室と低温
吸熱室と高温放熱室と低温放熱室との4室を有するサイ
クル実行部において、上記の吸熱側作動ガス移動過程と
作動ガス膨張過程と放熱側作動ガス移動過程と作動ガス
圧縮過程とをその順に繰り返すことにより、4室のう
ち、高温加熱器を備える高温吸熱室とそれぞれが放熱器
を備える高温・低温放熱室との組み合わせ、並びに、低
温加熱器を備える低温吸熱室と低温放熱器を備える低温
放熱室との組み合わせの夫々については、吸熱側作動ガ
ス移動過程で再生用熱交換器を通じ各吸熱室に移動させ
た作動ガスを、作動ガス膨張過程で各加熱器からの採熱
(この場合、各加熱器による作動ガス加熱)により膨張
させて動力を発生(正の仕事)させ、これに続き、放熱
側作動ガス移動過程で再生熱交換器を通じ各放熱室に移
動させた作動ガスを、作動ガス圧縮過程で圧縮(負の仕
事)して各放熱器に放熱させるスターリングサイクルを
実行させる。
In other words, in this configuration, in the cycle execution section having four chambers of the high-temperature heat absorbing chamber, the low-temperature heat absorbing chamber, the high-temperature heat radiating chamber, and the low-temperature heat radiating chamber, the heat absorbing side working gas moving process, the working gas expanding process, and the heat radiating process are performed. By repeating the side working gas moving process and the working gas compression process in that order, of the four chambers, a combination of a high-temperature heat absorbing chamber provided with a high-temperature heater and a high-temperature / low-temperature heat radiating chamber each having a radiator, and a low-temperature For each of the combination of the low-temperature heat-absorbing chamber with the heater and the low-temperature radiating chamber with the low-temperature radiator, the working gas moved to each heat-absorbing chamber through the heat exchanger for regeneration in the heat-absorbing-side working gas transfer process is used as the working gas. In the expansion process, heat is generated from each heater (in this case, the working gas is heated by each heater) and expanded to generate power (positive work). The working gas is moved in each of the radiation chamber through the regenerative heat exchanger, to perform a Stirling cycle to dissipate is compressed in the working gas compression process (negative work) in each radiator.

【0007】また、これに併行して、4室のうち、低温
加熱器を備える低温吸熱室と高温放熱器を備える高温放
熱室との組み合わせについては、吸熱側作動ガス移動過
程で再生熱交換器を通じ低温吸熱室に移動させた作動ガ
スを、作動ガス膨張過程で前記の発生動力により膨張さ
せて低温加熱器から採熱(この場合、低温加熱器から吸
熱)させ、これに続き、放熱側作動ガス移動過程で再生
熱交換器を通じ高温放熱室に移動させた作動ガスを、作
動ガス圧縮過程で前記の発生動力により圧縮して高温放
熱器に放熱させる逆スターリングサイクルを実行させ
る。
Concurrently, of the four chambers, the combination of the low-temperature heat-absorbing chamber provided with the low-temperature heater and the high-temperature heat-radiating chamber provided with the high-temperature radiator requires the regenerative heat exchanger The working gas moved to the low-temperature heat absorbing chamber through is expanded by the generated power in the process of expanding the working gas, and heat is taken from the low-temperature heater (in this case, heat is absorbed from the low-temperature heater). A reverse Stirling cycle is performed in which the working gas moved to the high-temperature radiating chamber through the regenerative heat exchanger in the gas moving process is compressed by the generated power in the working gas compressing process to release the heat to the high-temperature radiator.

【0008】そして、各加熱器について、高温吸熱室の
高温加熱器では熱入力用の高温熱媒を作動ガスと熱交換
させ、他方、低温吸熱室の低温加熱器では利用対象の低
温熱を保有する低温熱媒を作動ガスと熱交換させ、ま
た、各放熱器について、高温放熱室の高温放熱器では熱
需要先へ供給する温熱出力用熱媒を作動ガスと熱交換さ
せ、他方、低温放熱室の低温放熱器では放熱用冷却熱媒
を作動ガスと熱交換させることにより、上記スターリン
グサイクルによるエンジン機能については、高温加熱器
での熱入力用高温熱媒からの熱入力に加え、低温加熱器
における低温熱媒(利用対象低温熱を保有する低温熱
媒)からも熱入力して動力を発生し、そして、そのエン
ジン排熱のうち高温部分を高温放熱器から温熱出力用熱
媒に放熱し、低温部分を低温放熱器から放熱用冷却熱媒
に放熱する形態のものにする。
In each of the heaters, the high-temperature heater in the high-temperature heat absorbing chamber exchanges heat with the high-temperature heat medium for heat input with the working gas, while the low-temperature heater in the low-temperature heat absorbing chamber has low-temperature heat to be used. The heat exchange between the low-temperature heat medium and the working gas is exchanged with the working gas. For each radiator, the high-temperature heat radiator in the high-temperature heat radiating chamber causes the heat medium for heat output supplied to the heat demand to exchange heat with the working gas. In the low-temperature radiator of the room, the cooling heat medium for heat radiation is exchanged with the working gas, so that the engine function by the above-mentioned Stirling cycle, in addition to heat input from the high-temperature heat medium for heat input in the high-temperature heater, low-temperature heating Heat is also input from the low-temperature heat medium (low-temperature heat medium holding the target low-temperature heat) in the heat generator to generate power, and the high-temperature portion of the engine exhaust heat is radiated from the high-temperature radiator to the heat output heat medium. And low temperature part To the form of radiating the heat radiation for cooling heat medium from the low-temperature radiator.

【0009】また、上記逆スターリングサイクルによる
ヒートポンプ機能については、上記エンジン機能による
発生動力を駆動源として、低温加熱器における低温熱媒
(利用対象低温熱を保有する低温熱媒)から熱回収し、
その回収熱をヒートアップして前記エンジン排熱におけ
る高温部分とともに高温放熱器における温熱出力用熱媒
に付与する形態のものにする。
In the heat pump function by the reverse Stirling cycle, heat is recovered from a low-temperature heat medium (a low-temperature heat medium having low-temperature heat to be used) in a low-temperature heater by using the power generated by the engine function as a drive source.
The recovered heat is heated up and applied to the heat output heat medium in the high-temperature radiator together with the high-temperature portion in the engine exhaust heat.

【0010】すなわち、この構成によれば、熱入力用高
温熱媒による高温熱入力のみならず、利用対象の低温熱
も有効利用した状態でスターリングサイクルによるエン
ジン機能により効率的に動力を発生させ、そして、その
発生動力を用いた逆スターリングサイクルによるヒート
ポンプ機能により利用対象の低温熱を昇温して熱需要先
へ供給する高温熱(温熱出力用熱媒への付与熱)を生成
するから、また、エンジン機能を得る為の熱入力用高温
熱媒による高温熱入力に対し、エンジン排熱のうちの高
温部分をヒートポンプ機能による昇温熱とともに温熱出
力用熱媒へ付与して更に有効利用するから、全体として
のエネルギ利用効率の向上を極めて効果的に達成でき
る。
In other words, according to this configuration, not only the high-temperature heat input by the high-temperature heat medium for heat input but also the low-temperature heat of the object to be used is effectively used to efficiently generate power by the engine function by the Stirling cycle, Then, the heat pump function of the reverse Stirling cycle using the generated power raises the low-temperature heat of the object of use and generates high-temperature heat (heat applied to the heat medium for heat output) to be supplied to the heat demand destination. In response to the high-temperature heat input by the high-temperature heat medium for heat input to obtain the engine function, the high-temperature portion of the exhaust heat of the engine is applied to the heat medium for heat output together with the heat-up heat by the heat pump function, so that the heat can be further effectively utilized. Improvement of the energy use efficiency as a whole can be achieved very effectively.

【0011】また、入力は熱入力用高温熱媒による熱入
力となることから、電動機駆動のヒートポンプシステム
に比べ、コージェネレーションシステムの構築にも適し
たものとなる。
Further, since the input is heat input by the high-temperature heat medium for heat input, the input is more suitable for the construction of a cogeneration system than a heat pump system driven by an electric motor.

【0012】〔2〕請求項2に係る発明では、前記熱需
要先として吸収式冷凍機を設け、この吸収式冷凍機の駆
動熱源として、前記高温放熱器において作動ガスと熱交
換させた温熱出力用熱媒と、前記高温加熱器において作
動ガスと熱交換させた後の熱入力用高温熱媒とを併用す
る構成にする。
[2] In the invention according to the second aspect, an absorption refrigerator is provided as the heat demand destination, and a thermal output obtained by exchanging heat with working gas in the high-temperature radiator as a driving heat source of the absorption refrigerator. The heat medium for heat input and the high-temperature heat medium for heat input after the heat exchange with the working gas in the high-temperature heater are used in combination.

【0013】つまり、この構成では、前記高温放熱器に
おいて作動ガスと熱交換させた温熱出力用熱媒(すなわ
ち、低温熱を回収利用して生成した高温熱を保有する熱
媒)を駆動熱源とする吸収式冷凍機を設けることで、低
温熱を利用しての冷熱供給を可能にする。
In other words, in this configuration, the heat medium for heat output (that is, the heat medium having high-temperature heat generated by collecting and utilizing low-temperature heat) that has been heat-exchanged with the working gas in the high-temperature radiator is used as the driving heat source. By providing an absorption refrigerator that performs low-temperature heat, it is possible to supply cold heat using low-temperature heat.

【0014】そして、その吸収式冷凍機の駆動熱源とし
て、高温放熱器で作動ガスと熱交換させた温熱出力用熱
媒に加え、前記高温加熱器において作動ガスと熱交換さ
せた後の熱入力用高温熱媒を併せ用いることにより、そ
の熱入力用高温熱媒の残存保有熱を冷熱生成において更
に有効利用する。すなわち、このことにより、吸収式冷
凍機での冷熱発生量を増大させることができ、全体とし
てのエネルギ利用効率を一層向上させることができる。
As a driving heat source of the absorption refrigerator, in addition to the heating medium for heat output that has been exchanged with the working gas by the high-temperature radiator, the heat input after the heat exchange with the working gas in the high-temperature heater has been performed. By using the high-temperature heat medium for heat input together, the remaining retained heat of the high-temperature heat medium for heat input is more effectively utilized in the generation of cold heat. That is, by this, the amount of cold generated in the absorption refrigerator can be increased, and the energy use efficiency as a whole can be further improved.

【0015】なお、高温放熱器で作動ガスと熱交換させ
た温熱出力用熱媒と、高温加熱器で作動ガスと熱交換さ
せた熱入力用高温熱媒とは、それら熱媒の温度に応じ、
吸収式冷凍機において必要温度が異なる部分で各別に使
用するのが望ましい。
[0015] The heating medium for heat output, which has been heat-exchanged with the working gas by the high-temperature radiator, and the high-temperature heating medium for heat input, which has been heat-exchanged with the working gas by the high-temperature heater, depend on the temperature of the heating medium. ,
It is desirable to use each of the absorption refrigerators at different portions of the required temperature.

【0016】また、ボイラによる生成蒸気や生成高温水
を熱入力用高温熱媒として用いる場合、高温放熱器で作
動ガスと熱交換させた後の温熱出力用熱媒と、高温加熱
器で作動ガスと熱交換させた後の熱入力用高温熱媒とを
吸収式冷凍機の駆動熱源として併用することに加え、ボ
イラの燃焼排ガスも併せて、その吸収式冷凍機の駆動熱
源として用いるようにすれば、エネルギ利用効率を更に
向上させることができる。
When steam generated by the boiler or generated high-temperature water is used as the high-temperature heat medium for heat input, the heat medium for heat output after heat exchange with the working gas by the high-temperature radiator and the working gas by the high-temperature heater are used. In addition to using the high-temperature heat medium for heat input after heat exchange as the driving heat source for the absorption refrigerator, the flue gas from the boiler is also used as the driving heat source for the absorption refrigerator. If this is the case, the energy use efficiency can be further improved.

【0017】〔3〕請求項3に係る発明では、前記吸収
式冷凍機の発生冷熱を冷房又は冷却用の冷熱源にすると
ともに、前記低温加熱器において作動ガスと熱交換させ
た後の低温熱媒を暖房又は加熱用の温熱源とする構成に
する。
[3] In the invention according to claim 3, the cold generated by the absorption refrigerator is used as a cold source for cooling or cooling, and the low-temperature heat is exchanged with working gas in the low-temperature heater. The medium is used as a heating or heating heat source.

【0018】つまり、この構成によれば、吸収式冷凍機
の発生冷熱(すなわち、低温熱を回収利用して生成した
冷熱)を冷房又は冷却用の冷熱源に用いることに加え、
低温加熱器において作動ガスと熱交換させた後の低温熱
媒(すなわち、利用対象の保有低温熱を回収した後の低
温熱媒)を更に暖房又は加熱用の温熱源に用いて、その
低温熱媒の残存保有熱も有効利用することから、全体と
してのエネルギ利用効率を更に向上させることができ
る。
That is, according to this configuration, in addition to using the cold generated by the absorption refrigerator (that is, the cold generated by recovering and utilizing the low-temperature heat) as the cooling or cooling source,
The low-temperature heat medium after the heat exchange with the working gas in the low-temperature heater (that is, the low-temperature heat medium after collecting the low-temperature heat possessed by the object of use) is further used as a heat source for heating or heating, and the low-temperature heat medium is used. Since the remaining heat of the medium is also effectively used, the energy use efficiency as a whole can be further improved.

【0019】〔4〕請求項4に係る発明では、請求項1
〜3のいずれか1項に係る発明の低温熱利用熱源システ
ムを用いてコージェネレーションシステムを構築するに
あたり、発電部として燃料電池を設け、この燃料電池の
廃熱を保有する低温熱媒を前記低温加熱器において作動
ガスと熱交換させる構成にする。
[4] In the invention according to claim 4, claim 1
In constructing a cogeneration system using the low-temperature heat utilization heat source system of the invention according to any one of (1) to (3), a fuel cell is provided as a power generation unit, and the low-temperature heat medium holding waste heat of the fuel cell is converted into the low-temperature heat medium. The heater is configured to exchange heat with the working gas.

【0020】つまり、この構成によれば、燃料電池によ
る電力発生に加え、この燃料電池の廃熱を利用対象の低
温熱として、前述の如きサイクル実行部でのスターリン
グサイクルと逆スターリングサイクルとの併行実施によ
り、吸収式冷凍機の駆動熱源等に用いる利用価値の高い
高温熱を効率的に生成することができ、これにより、エ
ネルギ利用効率の高いコージェネレーションシステムに
することができる。
In other words, according to this configuration, in addition to the power generation by the fuel cell, the waste heat of the fuel cell is used as the low-temperature heat to be used, and the Stirling cycle and the reverse Stirling cycle in the cycle execution section as described above are performed in parallel. By implementation, high-use heat having high utility value used for a drive heat source or the like of an absorption refrigerator can be efficiently generated, whereby a cogeneration system having high energy use efficiency can be obtained.

【0021】そして特に、他の形式に比べ廃熱温度が低
くて、そのままでは廃熱を吸収式冷凍機の駆動熱源等に
用いることが難しい固体高分子型の燃料電池を発電部と
する場合に有効なシステムとなる。
In particular, when a solid polymer type fuel cell having a lower waste heat temperature than other types and it is difficult to use the waste heat as a driving heat source for an absorption refrigerator as it is as a power generation unit is used. Become an effective system.

【0022】[0022]

【発明の実施の形態】図1において、1はスターリング
サイクルと逆スターリングサイクルとを併行実施するサ
イクル実行部であり、低温加熱器2aを備える低温吸熱
室2と、高温放熱器3aを備える高温放熱室3と、高温
加熱器4aを備える高温吸熱室4と、低温放熱器5aを
備える低温放熱室5とを、蓄熱材の充填層からなる再生
熱交換器6を各室間に介在させた状態で、その順に直列
に連通させ、そして、各室2〜5には作動ガスGの吐出
吸入を行うためのピストン2p〜5pを装備してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, reference numeral 1 denotes a cycle execution unit for executing a Stirling cycle and a reverse Stirling cycle in parallel, and a low-temperature heat absorbing chamber 2 having a low-temperature heater 2a and a high-temperature heat radiation chamber having a high-temperature radiator 3a. A state in which a regenerative heat exchanger 6 composed of a layer of a heat storage material is interposed between a chamber 3, a high-temperature heat absorbing chamber 4 having a high-temperature heater 4a, and a low-temperature heat radiation chamber 5 having a low-temperature radiator 5a. The chambers 2 to 5 are provided with pistons 2p to 5p for discharging and sucking the working gas G in that order.

【0023】クランク軸7を介して同一周期で連動動作
させる上記の各ピストン2p〜5pは、低温吸熱室2の
ピストン2pと高温吸熱室4のピストン4pとがほぼ同
位相で往復動作するのに対し、高温放熱室3のピストン
3pと低温放熱室5のピストン5pの夫々が各吸熱室
2,4のピストン2p,4pよりも所定位相差(例えば
1/4周期分程度)だけ位相が遅れた状態で往復動作す
るように位相差関係を設定してあり、これにより、作動
ガスGを再生熱交換器6を通じて高温放熱室3及び低温
放熱室5から高温吸熱室4及び低温吸熱室2に移動させ
る吸熱側作動ガス移動過程(図2におけるイ〜ロの過
程)と、高温加熱器4a及び低温加熱器2aからの採熱
を伴う作動ガス膨張過程(図2におけるロ〜ハの過程)
と、作動ガスGを再生熱交換器6を通じて高温吸熱室4
及び低温吸熱室2から高温放熱室3及び低温放熱室5に
移動させる放熱側作動ガス移動過程(図2におけるハ〜
ニ)と、高温放熱器3a及び低温放熱器5aへの放熱を
伴う作動ガス圧縮過程(図2におけるニ〜イ)とを、そ
の順に繰り返すようにしてある。
The above-mentioned pistons 2p to 5p, which are interlocked to operate at the same cycle via the crankshaft 7, are arranged so that the piston 2p of the low-temperature heat absorbing chamber 2 and the piston 4p of the high-temperature heat absorbing chamber 4 reciprocate in substantially the same phase. On the other hand, the phases of the piston 3p of the high-temperature radiating chamber 3 and the piston 5p of the low-temperature radiating chamber 5 are each delayed by a predetermined phase difference (for example, about 1/4 cycle) from the pistons 2p and 4p of the heat absorbing chambers 2 and 4. The phase difference relationship is set so as to reciprocate in the state, whereby the working gas G is moved from the high-temperature heat-radiating chamber 3 and the low-temperature heat-radiating chamber 5 to the high-temperature heat-absorbing chamber 4 and the low-temperature heat-absorbing chamber 2 through the regenerative heat exchanger 6. The heat-absorbing-side working gas moving process (steps (a) to (b) in FIG. 2) and the working gas expansion process involving heat collection from the high-temperature heater 4a and the low-temperature heater 2a (process (b) to (c) in FIG. 2).
And the working gas G through the regenerative heat exchanger 6
And a heat-dissipating-side working gas moving process of moving from the low-temperature heat absorbing chamber 2 to the high-temperature heat releasing chamber 3 and the low-temperature heat releasing chamber 5 (C in FIG.
D), and the working gas compression process involving heat radiation to the high-temperature radiator 3a and the low-temperature radiator 5a (D to A in FIG. 2) are repeated in that order.

【0024】つまり、四室2〜5のうち、高温加熱器4
aを備える高温吸熱室4とそれぞれが放熱器3a,5a
を備える高温・低温放熱室3,5との組み合わせ、並び
に、低温加熱器2aを備える低温吸熱室2と低温放熱器
5aを備える低温放熱室5との組み合わせの夫々につい
ては、吸熱側作動ガス移動過程で再生用熱交換器6を通
じ各吸熱室2,4に移動させた作動ガスGを、作動ガス
膨張過程で各加熱器2a,4aからの採熱(この場合、
各加熱器2a,4aによる作動ガス加熱)により膨張さ
せて動力を発生(正の仕事)させ、これに続き、放熱側
作動ガス移動過程で再生熱交換器6を通じ各放熱室3,
5に移動させた作動ガスGを、作動ガス圧縮過程で圧縮
(負の仕事)して各放熱器3a,5aに放熱させるスタ
ーリングサイクルを実行させる。
That is, among the four chambers 2 to 5, the high-temperature heater 4
a heat-absorbing chamber 4 provided with a radiator 3a, 5a
The combination of the high-temperature and low-temperature heat radiating chambers 3 and 5 and the combination of the low-temperature heat-absorbing chamber 2 provided with the low-temperature heater 2a and the low-temperature heat radiating chamber 5 provided with the low-temperature radiator 5a are described below. In the process, the working gas G moved to each of the heat absorbing chambers 2 and 4 through the regeneration heat exchanger 6 receives heat from the heaters 2a and 4a in the working gas expansion process (in this case,
The working gas is heated by the heaters 2a, 4a) to generate power (positive work). Subsequently, in the process of moving the working gas on the heat radiating side, each heat radiating chamber 3, 3 is passed through the regenerative heat exchanger 6.
The Stirling cycle in which the working gas G moved to 5 is compressed (negative work) in the working gas compression process to release the heat to the radiators 3a and 5a is executed.

【0025】また、これに併行して、四室2〜5のう
ち、低温加熱器2aを備える低温吸熱室2と高温放熱器
3aを備える高温放熱室3との組み合わせについては、
吸熱側作動ガス移動過程で再生熱交換器6を通じ低温吸
熱室2に移動させた作動ガスGを、作動ガス膨張過程で
前記の発生動力により膨張させて低温加熱器2aから採
熱(この場合、低温加熱器2aから吸熱)させ、これに
続き、放熱側作動ガス移動過程で再生熱交換器6を通じ
高温放熱室3に移動させた作動ガスGを、作動ガス圧縮
過程で前記の発生動力により圧縮して高温放熱器3aに
放熱させる逆スターリングサイクルを実行させる。
Concurrently, the combination of the low-temperature heat-absorbing chamber 2 having the low-temperature heater 2a and the high-temperature heat-radiating chamber 3 having the high-temperature radiator 3a among the four chambers 2 to 5 is as follows.
The working gas G moved to the low temperature heat absorbing chamber 2 through the regenerative heat exchanger 6 in the heat absorbing side working gas moving process is expanded by the above-mentioned generated power in the working gas expansion process to collect heat from the low temperature heater 2a (in this case, Then, the working gas G that has been moved to the high-temperature radiating chamber 3 through the regenerative heat exchanger 6 in the process of moving the radiating side working gas is compressed by the generated power in the process of compressing the working gas. Then, a reverse Stirling cycle for causing the high-temperature radiator 3a to release heat is executed.

【0026】一方、8は熱入力用のボイラ、9は吸収式
冷凍機、10はコージェネレーションシステムにおける
発電部としての燃料電池であり、これら機器の装備に対
し、上記サイクル実行部1における高温吸熱室4の高温
加熱器4aでは、ボイラ8で生成する熱入力用の高温熱
媒Na(例えば、200℃程度の高温蒸気)を作動ガス
Gと熱交換させ、低温吸熱室2の低温吸熱器2aでは、
燃料電池10を廃熱源として、その燃料電池10からの
低温廃熱を保有する低温熱媒Nb(例えば、60〜11
0℃の蒸気や温水)を作動ガスGと熱交換させる構成に
してある。
On the other hand, 8 is a boiler for heat input, 9 is an absorption refrigerator, and 10 is a fuel cell as a power generation unit in the cogeneration system. In the high-temperature heater 4 a of the chamber 4, the high-temperature heat medium Na (for example, high-temperature steam at about 200 ° C.) for heat input generated in the boiler 8 is exchanged with the working gas G, and the low-temperature heat absorber 2 a of the low-temperature heat absorption chamber 2 is exchanged. Then
Using the fuel cell 10 as a waste heat source, a low-temperature heat medium Nb (for example, 60 to 11) having low-temperature waste heat from the fuel cell 10 is used.
(0 ° C. steam or hot water) is exchanged with the working gas G.

【0027】また、高温放熱室3の高温放熱器3aで
は、熱需要先としての吸収式冷凍機9へ供給する温熱出
力用熱媒Nc(例えば、高温放熱器3aでの加熱により
120〜130℃の蒸気とする温水)を作動ガスGと熱
交換させ、低温放熱室5の低温放熱器5aでは、放熱用
冷却熱媒Nd(例えば、20℃程度の冷却水)を作動ガ
スGと熱交換させる構成にしてある。
In the high-temperature radiator 3a of the high-temperature radiator chamber 3, a heat medium Nc for heating output supplied to the absorption refrigerator 9 as a heat demand destination (for example, 120-130 ° C. by heating in the high-temperature radiator 3a). Is exchanged with the working gas G, and the low-temperature radiator 5a of the low-temperature radiating chamber 5 exchanges heat with the radiating cooling heat medium Nd (for example, cooling water of about 20 ° C.) with the working gas G. It has a configuration.

【0028】すなわち、前記のサイクル実行部1では、
スターリングサイクルによるエンジン機能と逆スターリ
ングサイクルによるヒートポンプ機能とを併行して得る
が、このサイクル実行部1に対し上記の如きの熱媒供給
を行うことにより、スターリングサイクルによるエンジ
ン機能については、ボイラ8からの熱入力用高温熱媒N
aによる高温加熱器4aでの熱入力に加え、低温加熱器
2aにおける廃熱保有低温熱媒Nbからも併せ熱入力し
て動力を発生し、そして、そのエンジン排熱のうち高温
部分を高温放熱器3aから温熱出力用熱媒Ncに放熱
し、低温部分を低温放熱器5aから放熱用冷却熱媒Nd
に放熱する形態のものにする。
That is, in the cycle execution unit 1,
The engine function by the Stirling cycle and the heat pump function by the reverse Stirling cycle are obtained in parallel. By supplying the heat medium to the cycle execution unit 1 as described above, the engine function by the Stirling cycle is High temperature heat carrier N for heat input
In addition to the heat input from the high-temperature heater 4a, heat is also input from the low-temperature heating medium Nb having waste heat in the low-temperature heater 2a to generate power. The heat is radiated from the heater 3a to the heat output heat medium Nc, and the low-temperature portion is radiated from the low-temperature radiator 5a to the heat transfer cooling medium Nd.
Heat radiation.

【0029】また、逆スターリングサイクルによるヒー
トポンプ機能については、上記エンジン機能による発生
動力を駆動源として、低温加熱器2aにおける廃熱保有
低温熱媒Nbから熱回収し、その回収熱をヒートアップ
して前記エンジン排熱における高温部分とともに高温放
熱器3aにおける温熱出力用熱媒Ncに付与する形態の
ものにし、これにより、燃料電池10の低温廃熱を回収
利用して、吸収式冷凍機9の駆動熱源とする高温熱を効
率的に生成するように、また、エンジン排熱のうちの高
温部分をヒートポンプ機能による昇温熱とともに吸収式
冷凍機9の駆動熱源として更に有効利用するようにして
ある。
As for the heat pump function by the reverse Stirling cycle, heat is recovered from the low-temperature heat medium Nb having waste heat in the low-temperature heater 2a using the power generated by the engine function as a driving source, and the recovered heat is heated up. In addition to the high temperature portion in the engine exhaust heat, the heat transfer medium Nc in the high temperature radiator 3a is provided to the heating medium Nc, whereby the low temperature waste heat of the fuel cell 10 is recovered and used to drive the absorption refrigerator 9 In order to efficiently generate high-temperature heat as a heat source, the high-temperature portion of the engine exhaust heat is further effectively used as a driving heat source of the absorption refrigerator 9 together with the temperature rising heat by the heat pump function.

【0030】なお、本例のシステムでは、高温放熱器3
aで作動ガスGと熱交換させた温熱出力用熱媒Ncに加
え、高温加熱器4aにおいて作動ガスGと熱交換させた
後の熱入力用高温熱媒Na′(例えば、高温の蒸気復水
や一部凝縮した高温湿り蒸気)、及び、ボイラ8の排ガ
スEも駆動熱源として吸収式冷凍機9に供給し、これら
熱入力用高温熱媒Na′や排ガスEの残存保有熱も吸収
式冷凍機9での冷熱生成に有効利用するようにしてあ
る。
In the system of this embodiment, the high-temperature radiator 3
In addition to the heat output heat medium Nc heat-exchanged with the working gas G in a, the heat input high-temperature heat medium Na '(for example, high-temperature steam condensate) after heat exchange with the working gas G in the high-temperature heater 4a. And partially condensed high-temperature wet steam) and the exhaust gas E of the boiler 8 are also supplied to the absorption refrigerator 9 as a driving heat source, and the residual heat of the heat input high-temperature heat medium Na ′ and the exhaust gas E are also absorbed by the absorption refrigerator. The heat is effectively used for generating cold heat in the machine 9.

【0031】また、本例システムでは、吸収式冷凍機9
の発生冷熱を冷房や冷却等の冷熱用途に対する冷熱源に
用いることに加え、低温加熱器2aにおいて作動ガスG
と熱交換させた後の低温熱媒Nb′(すなわち、未だ低
温の残存温熱を保有する熱媒)を更に暖房や加熱等の温
熱用途に対する温熱源に用い、これにより、一層高いエ
ネルギ利用効率を実現するようにしてある。
In the system of the present embodiment, the absorption refrigerator 9
Is used as a cold source for cooling applications such as cooling and cooling, and the working gas G
The low-temperature heat medium Nb '(that is, the heat medium having the remaining low-temperature heat) after the heat exchange with the heat source is further used as a heat source for a heat application such as heating or heating, thereby increasing the energy use efficiency. It is to be realized.

【0032】11はボイラ8に対する燃料供給路、12
はサイクル実行部1に対する起動用の電動機である。
Reference numeral 11 denotes a fuel supply path for the boiler 8, and 12
Is an electric motor for starting the cycle execution unit 1.

【0033】〔別実施形態〕作動ガスを再生熱交換器を
通じて高温放熱室及び低温放熱室から高温吸熱室及び低
温吸熱室に移動させる吸熱側作動ガス移動過程と、高温
加熱器及び低温加熱器からの採熱を伴う作動ガス膨張過
程と、作動ガスを再生熱交換器を通じて高温吸熱室及び
低温吸熱室から高温放熱室及び低温放熱室に移動させる
放熱側作動ガス移動過程と、高温放熱器及び低温放熱器
への放熱を伴う作動ガス圧縮過程とを、その順に繰り返
してスターリングサイクルと逆スターリングサイクルと
を併行実施するサイクル実行部の具体的構造は、所謂ア
ルファ型のスターリング機器構造をベースにした前述実
施形態の如き構造に限定されるものではなく、ベータ型
やガンマ型のスターリング機器構造をベースにした構造
を採用するなど、種々の構成変更が可能である。
[Another Embodiment] A heat absorbing side working gas moving process of moving a working gas from a high temperature heat radiating chamber and a low temperature heat radiating chamber to a high temperature heat absorbing chamber and a low temperature heat absorbing chamber through a regenerative heat exchanger, and from a high temperature heater and a low temperature heater. A process of expanding the working gas accompanied by heat collection, a process of moving the working gas from the high-temperature heat-absorbing chamber and the low-temperature heat-absorbing chamber to the high-temperature heat-radiating chamber and the low-temperature heat-radiating chamber through the regenerative heat exchanger, The specific structure of the cycle execution unit that repeats the working gas compression process with heat release to the radiator and performs the Stirling cycle and the reverse Stirling cycle in that order is based on the so-called alpha-type Stirling device structure. It is not limited to the structure as in the embodiment, such as adopting a structure based on a beta type or gamma type Stirling device structure, Configuration change of people is possible.

【0034】熱入力用高温熱媒Naの温度、利用対象の
低温熱を保有する低温熱媒Nbの温度、温熱出力用熱媒
Ncの温度、放熱用冷却熱媒Ndの温度など、各部の具
体的温度は前述の実施形態で例示した温度に限定される
ものではなく、条件に応じ種々の温度を採用できる。
Specific examples of each part, such as the temperature of the high-temperature heat medium Na for heat input, the temperature of the low-temperature heat medium Nb having low-temperature heat to be used, the temperature of the heat medium Nc for heat output, and the temperature of the cooling heat medium Nd for heat radiation. The target temperature is not limited to the temperature exemplified in the above embodiment, and various temperatures can be adopted depending on conditions.

【0035】利用対象の低温熱は燃料電池の廃熱に限ら
れるものではなく、種々の低温熱を利用対象熱とするこ
とができ、また、その低温熱を回収利用して生成した高
温熱の用途も吸収式冷凍機の駆動熱源に限られるもので
はなく、種々の高温熱用途に使用できる。
The low-temperature heat to be used is not limited to the waste heat of the fuel cell. Various low-temperature heat can be used as the target heat, and the high-temperature heat generated by recovering and using the low-temperature heat can be used. The application is not limited to the drive heat source of the absorption refrigerator, but can be used for various high-temperature heat applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】システム構成を示す図FIG. 1 shows a system configuration.

【図2】サイクル実行部の動作過程を示す図FIG. 2 is a diagram showing an operation process of a cycle execution unit.

【符号の説明】[Explanation of symbols]

1 サイクル実行部 2 低温吸熱室 2a 低温加熱器 3 高温放熱室 3a 高温放熱器 4 高温吸熱室 4a 高温加熱器 5 低温放熱室 5a 低温放熱器 6 再生熱交換器 9 熱需要先,吸収式冷凍機 10 燃料電池 G 作動ガス Na 熱入力用の高温熱媒 Na′ 作動ガスとの熱交換後の熱入力用高温
熱媒 Nb 低温熱媒 Nb′ 作動ガスとの熱交換後の低温熱媒 Nc 温熱出力用熱媒 Nd 放熱用冷却熱媒
1 Cycle execution unit 2 Low temperature heat absorbing room 2a Low temperature heater 3 High temperature heat radiating room 3a High temperature heat radiator 4 High temperature heat absorbing room 4a High temperature heater 5 Low temperature heat radiating room 5a Low temperature heat radiator 6 Regenerative heat exchanger 9 Heat demand destination, absorption refrigerator Reference Signs List 10 fuel cell G working gas Na high-temperature heat medium for heat input Na 'high-temperature heat medium for heat input after heat exchange with working gas Nb low-temperature heat medium Nb' low-temperature heat medium after heat exchange with working gas Nc hot heat output Heat medium Nd Heat radiation cooling medium

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高温加熱器を備える高温吸熱室と、低温
加熱器を備える低温吸熱室と、高温放熱器を備える高温
放熱室と、低温放熱器を備える低温放熱室とを各室間に
再生熱交換器を介在させて連通させた状態で、 作動ガスを前記再生熱交換器を通じて前記高温放熱室及
び前記低温放熱室から前記高温吸熱室及び前記低温吸熱
室に移動させる吸熱側作動ガス移動過程と、 前記高温加熱器及び前記低温加熱器からの採熱を伴う作
動ガス膨張過程と、 作動ガスを前記再生熱交換器を通じて前記高温吸熱室及
び前記低温吸熱室から前記高温放熱室及び前記低温放熱
室に移動させる放熱側作動ガス移動過程と、 前記高温放熱器及び前記低温放熱器への放熱を伴う作動
ガス圧縮過程とを、 その順に繰り返してスターリングサイクルと逆スターリ
ングサイクルとを併行実施するサイクル実行部を設け、 前記高温加熱器において熱入力用の高温熱媒と作動ガス
とを熱交換させ、前記低温加熱器において利用対象の低
温熱を保有する低温熱媒と作動ガスとを熱交換させ、前
記高温放熱器において熱需要先へ供給する温熱出力用熱
媒と作動ガスとを熱交換させ、前記低温放熱器において
放熱用冷却熱媒と作動ガスとを熱交換させる構成にして
ある低温熱利用の熱源システム。
1. A high-temperature heat-absorbing chamber provided with a high-temperature heater, a low-temperature heat-absorbing chamber provided with a low-temperature heater, a high-temperature heat-radiating room provided with a high-temperature radiator, and a low-temperature heat-radiating room provided with a low-temperature radiator are reproduced between the respective rooms. A heat absorbing side working gas moving step of moving a working gas from the high temperature heat radiating chamber and the low temperature heat radiating chamber to the high temperature heat absorbing chamber and the low temperature heat absorbing chamber through the regenerative heat exchanger with the heat exchanger interposed therebetween. A working gas expansion process involving heat collection from the high-temperature heater and the low-temperature heater; and a working gas flowing from the high-temperature heat-absorbing chamber and the low-temperature heat-absorbing chamber through the regenerative heat exchanger to the high-temperature heat-radiating chamber and the low-temperature heat radiation. The process of moving the radiating side working gas to be moved to the chamber, and the process of compressing the working gas with radiating heat to the high-temperature radiator and the low-temperature radiator are repeated in this order, and the Stirling cycle and the reverse Stirling cycle are repeated. And a cycle execution unit that performs the process in parallel with the carrier, causing the high-temperature heater to exchange heat between the high-temperature heat medium for heat input and the working gas in the high-temperature heater, and a low-temperature heat medium having low-temperature heat to be used in the low-temperature heater. The heat exchange between the working gas and the working gas is performed in the high-temperature radiator, and the working gas is exchanged with the heating medium for heating output supplied to the heat demand destination. A heat source system that uses low-temperature heat and has a configuration that allows it to be used.
【請求項2】 前記熱需要先として吸収式冷凍機を設
け、 この吸収式冷凍機の駆動熱源として、前記高温放熱器に
おいて作動ガスと熱交換させた温熱出力用熱媒と、前記
高温加熱器において作動ガスと熱交換させた後の熱入力
用高温熱媒とを併用する構成にしてある請求項1記載の
低温熱利用の熱源システム。
An absorption refrigerator is provided as the heat demand destination, and a heating medium for thermal output, which is heat-exchanged with working gas in the high-temperature radiator, as a driving heat source of the absorption refrigerator, and the high-temperature heater 2. The heat source system using low-temperature heat according to claim 1, wherein the heat source system for heat input after the heat exchange with the working gas is used together.
【請求項3】 前記吸収式冷凍機の発生冷熱を冷房又は
冷却用の冷熱源にするとともに、前記低温加熱器におい
て作動ガスと熱交換させた後の低温熱媒を暖房又は加熱
用の温熱源にしてある請求項2記載の低温熱利用の熱源
システム。
3. A heat source for heating or heating a low-temperature heat medium after heat exchange with working gas in the low-temperature heater while using the cold generated by the absorption refrigerator as a cold source for cooling or cooling. The heat source system utilizing low-temperature heat according to claim 2, wherein
【請求項4】 請求項1〜3のいずれか1項に記載の低
温熱利用熱源システムを用いたコージェネレーションシ
ステムであって、 発電部として燃料電池を設け、この燃料電池の廃熱を保
有する低温熱媒を前記低温加熱器において作動ガスと熱
交換させる構成にしてあるコージェネレーションシステ
ム。
4. A cogeneration system using the low-temperature heat utilization heat source system according to claim 1, wherein a fuel cell is provided as a power generation unit, and waste heat of the fuel cell is retained. A cogeneration system configured to cause a low-temperature heat medium to exchange heat with a working gas in the low-temperature heater.
JP11011983A 1999-01-20 1999-01-20 Heat source system using low temperature and cogeneration system using thereof Pending JP2000213419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011983A JP2000213419A (en) 1999-01-20 1999-01-20 Heat source system using low temperature and cogeneration system using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011983A JP2000213419A (en) 1999-01-20 1999-01-20 Heat source system using low temperature and cogeneration system using thereof

Publications (1)

Publication Number Publication Date
JP2000213419A true JP2000213419A (en) 2000-08-02

Family

ID=11792842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011983A Pending JP2000213419A (en) 1999-01-20 1999-01-20 Heat source system using low temperature and cogeneration system using thereof

Country Status (1)

Country Link
JP (1) JP2000213419A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7377107B2 (en) 2003-02-05 2008-05-27 Tetuo Sugioka Cogeneration system
JP2010261426A (en) * 2009-05-11 2010-11-18 Isuzu Motors Ltd Stirling engine
JP2015052426A (en) * 2013-09-06 2015-03-19 株式会社東芝 Freezing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7377107B2 (en) 2003-02-05 2008-05-27 Tetuo Sugioka Cogeneration system
JP2010261426A (en) * 2009-05-11 2010-11-18 Isuzu Motors Ltd Stirling engine
JP2015052426A (en) * 2013-09-06 2015-03-19 株式会社東芝 Freezing machine

Similar Documents

Publication Publication Date Title
Wu Power optimization of a finite-time Carnot heat engine
JP4140544B2 (en) Waste heat utilization equipment
US20200370796A1 (en) Heat pump utilising the shape memory effect
JP2022547653A (en) Pump mechanism for recovering heat from thermoelastic material in heat pump/refrigeration system
US9869495B2 (en) Multi-cycle power generator
US20120240570A1 (en) Heat exchanger and associated method employing a stirling engine
JPH03286103A (en) Steam turbine power generator
JP2008501885A5 (en)
JP2000213419A (en) Heat source system using low temperature and cogeneration system using thereof
RU2018129741A (en) Cascade cycle and method for the recovery of waste heat
JP5312644B1 (en) Air conditioning power generation system
JP2002256970A (en) Co-generation system
JP2013535608A (en) Vehicle drive system
JP4148169B2 (en) Waste heat recovery system
KR100814615B1 (en) Cogeneration system using compression type cycle and absorption type cycle
CN101782002A (en) New gas condensing type thermal power generation technology based on working medium changing positive and negative coupling circulation system
CN115468317A (en) Carnot battery energy storage device based on solar photovoltaic photo-thermal gradient utilization
Vasil’ev et al. Multisalt-carbon chemical cooler for space applications
CN103486890A (en) Solar-powered heat-dissipating device
DE59602171D1 (en) HEATING MACHINE WORKING ACCORDING TO THE STIRLING PRINCIPLE
CN205477784U (en) Cogeneration of heat and power device
KR20190133809A (en) A cooling system for the Photovoltaic module
RU2224190C1 (en) Device for generation of thermal and electric energy
JP3126852B2 (en) Engine driven heat pump
KR100658321B1 (en) Power generation system of heat-absorption type