JP2000212785A - Water-electrolysis gas generator - Google Patents

Water-electrolysis gas generator

Info

Publication number
JP2000212785A
JP2000212785A JP11014026A JP1402699A JP2000212785A JP 2000212785 A JP2000212785 A JP 2000212785A JP 11014026 A JP11014026 A JP 11014026A JP 1402699 A JP1402699 A JP 1402699A JP 2000212785 A JP2000212785 A JP 2000212785A
Authority
JP
Japan
Prior art keywords
exchange membrane
temperature
platinum
gas generator
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11014026A
Other languages
Japanese (ja)
Other versions
JP3035537B1 (en
Inventor
Choichi Suga
長市 須賀
Fujio Suga
冨士夫 須賀
Yoji Watanabe
洋二 渡辺
Koichi Taniguchi
皓一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suga Test Instruments Co Ltd
Original Assignee
Suga Test Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suga Test Instruments Co Ltd filed Critical Suga Test Instruments Co Ltd
Priority to JP11014026A priority Critical patent/JP3035537B1/en
Application granted granted Critical
Publication of JP3035537B1 publication Critical patent/JP3035537B1/en
Publication of JP2000212785A publication Critical patent/JP2000212785A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower an electric resistance and to minimize resistance loss by bringing an ion-exchange membrane into full contact with an electrode plate in a generator for generating a gas by electrolyzing water by the use of the membrane because of that the magnitude of the contact resistance depends on whether contact of the membrane with the electrode plate is sufficient or not to cause a heat loss. SOLUTION: An anode plate 1b and a cathode plate 1a are set on both sides of an ion-exchange membrane 2 in this water-electrolysis gas generator. In this case, the surface of the membrane 2 is coated with platinum or palladium by sputtering, the upper surface is electroless-plated with platinum and iridium, and a carbon grain 3 is firmly held between the membrane and cathode plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換膜を用
いて水を電気分解し、酸素ガス、水素ガス或いはオゾン
ガス、水素ガスを発生させる水電解ガス発生装置に関す
るもので、特に、新規な表面構造を備えたイオン交換膜
とカーボン粒からなる密着接触材を用いた水電解ガス発
生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water electrolysis gas generator for electrolyzing water using an ion exchange membrane to generate oxygen gas, hydrogen gas or ozone gas, and hydrogen gas. The present invention relates to a water electrolysis gas generator using an ion exchange membrane having a structure and a close contact material made of carbon particles.

【0002】[0002]

【従来の技術】水電解ガス発生装置として、イオン交換
膜を用いた隔膜電解法が用いられ、特に、電解効率の高
い水電解装置を提供するため、固体高分子電解質隔膜の
両側に陽極及び陰極として炭素繊維等の多孔質電極を密
着接触させることにより電解効率を向上する電解装置が
開発されている。
2. Description of the Related Art A diaphragm electrolysis method using an ion exchange membrane is used as a water electrolysis gas generator. In particular, in order to provide a water electrolysis device with high electrolysis efficiency, an anode and a cathode are provided on both sides of a solid polymer electrolyte diaphragm. Electrolytic devices have been developed which improve the electrolytic efficiency by bringing a porous electrode such as carbon fiber into close contact.

【0003】しかしながら上記した従来の水電解ガス発
生装置においても、電極板とイオン交換膜を全面に亘っ
て密着することは困難であり、十分に満足できる電解効
率を達成できず、また長時間の使用においては、イオン
交換膜上の触媒が脱落するという問題を有していた。す
なわち、従来の水電解ガス発生装置において使用されて
いるイオン交換膜に触媒として白金等の無電解メッキが
施されていたが、密着性において満足する機能を有して
おらず、長期の使用において、イオン交換膜上の触媒が
脱落するという課題があった。さらに、隔膜の両側に陽
極及び陰極として炭素繊維等の多孔質電極を密着するこ
とにより、接触抵抗を低下し、消費電力を節減する方式
が検討されてきたが、より低エネルギー型の水電解ガス
発生装置に対するニーズが大きくなってきている。
However, even in the above-described conventional water electrolysis gas generator, it is difficult to make the electrode plate and the ion exchange membrane adhere to each other over the entire surface, and it is not possible to achieve a sufficiently satisfactory electrolysis efficiency, In use, there was a problem that the catalyst on the ion exchange membrane fell off. That is, although the electro-exchange plating such as platinum is applied as a catalyst to the ion exchange membrane used in the conventional water electrolysis gas generator, it does not have a satisfactory function in the adhesiveness, and in long-term use. In addition, there has been a problem that the catalyst on the ion exchange membrane drops off. Furthermore, a method of reducing contact resistance and reducing power consumption by adhering a porous electrode such as carbon fiber as an anode and a cathode on both sides of the diaphragm has been studied. The need for generators is increasing.

【0004】すなわち、従来のイオン交換膜を用いた水
電解の槽電圧をVt (V)とすると
[0004] That is, when the cell voltage of water electrolysis using a conventional ion exchange membrane is V t (V),

【0005】、Vt (V)は次式になる。[0005] V t (V) is given by the following equation.

【0006】[0006]

【数1】 (Equation 1)

【0007】このときの消費電力は、Vt ・Iで、電解
によって得られるガス量は電流(I)のみに依存するの
で、可能な限り槽電圧(Vt )を下げた方が消費電力が
少なくなり、エネルギー効率がよいことになる。一般に
カソード及びアノードに白金を用いると、過電圧は約2
V(100A/dm2 )となる。そして、槽電圧
(Vt )は約3V程度でその差約1Vは接触抵抗及び導
体抵抗による電圧降下でそれによる損失は約100Wと
なる。
The power consumption at this time is V t · I, and the amount of gas obtained by electrolysis depends only on the current (I). Therefore, the power consumption should be reduced by lowering the cell voltage (V t ) as much as possible. Less and more energy efficient. Generally, when platinum is used for the cathode and anode, the overvoltage is about 2
V (100 A / dm 2 ). The cell voltage (V t ) is about 3 V, and the difference of about 1 V is a voltage drop due to the contact resistance and the conductor resistance, resulting in a loss of about 100 W.

【0008】そのため、導体抵抗(RL )を限りなく零
に近づけるとともに、接触抵抗(Rc)を低下する試み
が行われてきた。本発明者は、この試みの一環として図
3に示すように、先にイオン交換膜2を挟んでその両側
に箱状隔壁5を設け、該隔壁の内側を凹凸状に形成し、
該凹凸面を金属被膜処理を施した金属被覆面6とするこ
とにより、電極の表面積を拡大し、電気抵抗を下げるこ
とができるので、電極間の電圧を下げ、電気分解の電解
効率を向上することができる酸素・水素電解ガス発生装
置を提案した(特願平7−307627号公報及びUS P
atent 5667647参照)なお、図において、7は桟、8は
切り欠き部、9はガス放出口、10は電極、11は酸素
ガス室、12は水素ガス室である。詳細は特願平7−3
07627号公報を参照し、省略する。
Therefore, attempts have been made to reduce the contact resistance (Rc) while keeping the conductor resistance (R L ) as close to zero as possible. As part of this attempt, the inventor provided box-shaped partitions 5 on both sides of the ion-exchange membrane 2 first, as shown in FIG.
By forming the uneven surface as the metal-coated surface 6 subjected to the metal coating, the surface area of the electrode can be increased and the electric resistance can be reduced. Therefore, the voltage between the electrodes is reduced, and the electrolytic efficiency of electrolysis is improved. Oxygen / hydrogen electrolysis gas generator that can perform the process (Japanese Patent Application No. 7-307627 and US Pat.
In the figure, reference numeral 7 denotes a bar, 8 denotes a cutout, 9 denotes a gas discharge port, 10 denotes an electrode, 11 denotes an oxygen gas chamber, and 12 denotes a hydrogen gas chamber. For details, refer to Japanese Patent Application No. 7-3.
Reference is made to Japanese Patent Application Laid-Open No. 07627, and description thereof will be omitted.

【0009】さらに、図2に示すように、イオン交換膜
2と電極板1との間に繊維状或いはマット状の密着接触
材3aを入れ、発生するガスを繊維間を通って容易に抜
き出すことによって、繊維状の電気良導体3aとイオン
交換膜2の電気接触をガス発生によって遮断される恐れ
がなく、常に一定の接触状態を保つことが可能にし、か
つその接触面も実質拡大するガス発生装置を開発した。
Further, as shown in FIG. 2, a fibrous or mat-like close contact material 3a is inserted between the ion exchange membrane 2 and the electrode plate 1, and the generated gas is easily extracted through the space between the fibers. Thus, the gas-generating device which can maintain a constant contact state at all times without the possibility that the electrical contact between the fibrous electric good conductor 3a and the ion exchange membrane 2 is cut off by gas generation, and also substantially expands the contact surface. Was developed.

【0010】この装置において、密着接触材3aとして
は、炭素繊維で太さ数ミクロンのものを用い、これを複
数本束ねた細い平帯状のもので、平織りに仕上げ布状に
織りあげたものを用いた。その表面及び裏面に金スパッ
タリングを施し、イオン交換膜との接触を良好にし、ま
た、電極板2との接触をも良好にするためである。ま
た、従来通り、電極板1でイオン交換膜2に対し、この
密着接触材3aを押しつけるようにして、密着接触材3
aを挟んで電極板1とイオン交換膜2aが電気的に接触
するようにした。
In this apparatus, as the close-contact material 3a, a carbon fiber having a thickness of several microns is used, and a plurality of bundles are bundled into a thin flat band, which is woven in a plain weave and a finished cloth. Using. This is because gold sputtering is performed on the front surface and the back surface to improve the contact with the ion exchange membrane, and also to improve the contact with the electrode plate 2. Further, as in the prior art, the contact plate 3a is pressed against the ion exchange membrane 2 by the electrode plate 1 so that the contact plate 3a is pressed.
The electrode plate 1 and the ion-exchange membrane 2a were made to be in electrical contact with each other with "a" interposed therebetween.

【0011】この結果、電解電流100A/dm2 のと
きの槽電圧(Vt )は、2.5(V)となり、この電圧
から過電圧成分の2(V)を差し引くと、2.5(V)
−2(V)=0.5(V)となり、0.5(V)×10
0(A)=50(W)が接触抵抗分による損失となり、
従来の方法では、約100Wが電力損失として消費され
ていたのに比べて、エネルギー効果で約17%の節減を
果すことが可能になった。
As a result, when the electrolytic current is 100 A / dm 2 , the cell voltage (V t ) is 2.5 (V). When 2 (V) of the overvoltage component is subtracted from this voltage, 2.5 (V) is obtained. )
−2 (V) = 0.5 (V), and 0.5 (V) × 10
0 (A) = 50 (W) is the loss due to the contact resistance,
Compared to the conventional method in which about 100 W is consumed as power loss, it has become possible to save about 17% by the energy effect.

【0012】[0012]

【発明が解決しようとする課題】しかし、本発明者は、
さらにエネルギー効果の改善及びイオン交換膜の耐食性
の改善を行う研究を行った結果、槽電圧をさらに低下さ
せることにより、よりエネルギー効果を改善し、さらに
新規な構成のイオン交換膜により耐食性を改善する新規
な水電解ガス発生装置の開発に成功した。
However, the present inventor has
Furthermore, as a result of research on improving the energy effect and the corrosion resistance of the ion exchange membrane, the energy efficiency was further improved by further reducing the cell voltage, and the corrosion resistance was further improved by the ion exchange membrane of a new configuration. A new water electrolysis gas generator was successfully developed.

【0013】本発明は、新規なイオン交換膜を用い、か
つイオン交換膜と陰極側電極板との間にカーボン粒を全
面にわたって密着接触させることにより、抵抗損失を極
力小さくし、より効率を高めた酸素ガス、水素ガス或い
はオゾンガス、水素ガスを発生させる水電解ガス発生装
置を提供することを目的としたものである。
According to the present invention, the resistance loss is reduced as much as possible and the efficiency is further improved by using a novel ion exchange membrane and bringing the carbon particles into close contact with the entire surface between the ion exchange membrane and the cathode side electrode plate. It is an object of the present invention to provide a water electrolysis gas generator for generating oxygen gas, hydrogen gas, ozone gas, and hydrogen gas.

【0014】[0014]

【課題を解決するための手段】本発明は上記の課題を解
決するため、イオン交換膜の両側に陽極側電極板及び陰
極側電極板を接触させる水電解ガス発生装置において、
イオン交換膜表面に白金又はパラジウムをスパッタリン
グにてコートし、その上面に白金及びイリジウムの無電
解メッキを施し、イオン交換膜と陰極側電極板間にカー
ボン粒を密着保持させたことを特徴とする水電解ガス発
生装置である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a water electrolysis gas generator in which an anode electrode plate and a cathode electrode plate are brought into contact with both sides of an ion exchange membrane.
The surface of the ion-exchange membrane is coated with platinum or palladium by sputtering, the upper surface is subjected to electroless plating of platinum and iridium, and carbon particles are held tightly between the ion-exchange membrane and the cathode-side electrode plate. It is a water electrolysis gas generator.

【0015】本発明によれば、イオン交換膜表面に触媒
として機能をする白金又はパラジウムを薄くスパッタリ
ングにてコートすることにより、イオン交換膜表面に白
金及びイリジウム等の無電解メッキを均一かつ良好な状
態で施すことができ、さらに、イオン交換膜と陰極側電
極板間にカーボン粒を密着保持する構成としたので、イ
オン交換膜と電極板との密着性をより良好にし、かつガ
ス抜けも良好にすることができ、接触抵抗の低い水電解
ガス発生装置を提供することができる。本発明によれ
ば、上記の構成とすることにより、電解電圧を従来のカ
ーボン繊維を用いたものに比して、約12%低くするこ
とができ、大幅な省エネルギー型の水電解ガス発生装置
を提供できる。
According to the present invention, the surface of the ion exchange membrane is thinly coated with platinum or palladium, which functions as a catalyst, by sputtering, so that the surface of the ion exchange membrane can be uniformly and favorably electrolessly plated with platinum or iridium. It can be applied in a state, and furthermore, the carbon particles are tightly held between the ion-exchange membrane and the cathode-side electrode plate, so that the adhesion between the ion-exchange membrane and the electrode plate is further improved, and the outgassing is also good. And a water electrolysis gas generator having low contact resistance can be provided. According to the present invention, by adopting the above configuration, the electrolysis voltage can be reduced by about 12% as compared with that using the conventional carbon fiber, and a large energy-saving water electrolysis gas generator can be provided. Can be provided.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載の発明
は、イオン交換膜の両側に陽極側電極板及び陰極側電極
板を接触させる水電解ガス発生装置において、イオン交
換膜表面に白金又はパラジウムをスパッタリングにてコ
ートし、その上面に白金及びイリジウムの無電解メッキ
を施し、イオン交換膜と陰極側電極板間にカーボン粒を
密着保持させたことを特徴とするものであり、イオン交
換膜表面に触媒として機能をする白金又はパラジウムを
薄くスパッタリングにてコートすることにより、イオン
交換膜表面に白金及びイリジウム等の無電解メッキを均
一かつ良好な状態で施すことができ、さらに、イオン交
換膜と陰極側電極板間にカーボン粒を密着保持する構成
としたので、イオン交換膜と電極板との密着性をより良
好にし、かつガス抜けも良好にすることができ、接触抵
抗の低い水電解ガス発生装置を提供することができ、電
解電圧を従来のカーボン繊維を用いたものに比して、約
12%低くすることができる大幅な省エネルギー型の水
電解ガス発生装置を提供できる作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention is directed to a water electrolysis gas generator in which an anode electrode plate and a cathode electrode plate are brought into contact with both sides of an ion exchange membrane. Alternatively, palladium is coated by sputtering, the upper surface is subjected to electroless plating of platinum and iridium, and carbon particles are held in close contact between the ion-exchange membrane and the cathode-side electrode plate. By coating the membrane surface with platinum or palladium, which functions as a catalyst, by thin sputtering, the surface of the ion-exchange membrane can be subjected to uniform and favorable electroless plating of platinum, iridium, and the like. The structure is such that carbon particles are held tightly between the membrane and the cathode side electrode plate, so that the adhesion between the ion exchange membrane and the electrode plate is improved, and gas is released. And a water electrolysis gas generator having a low contact resistance can be provided, and the electrolysis voltage can be reduced by about 12% as compared with a conventional apparatus using carbon fibers. This has the function of providing an energy-saving water electrolysis gas generator.

【0017】請求項2に記載の発明は、スパッタリング
が施される白金又はパラジウムの厚さは、5〜10Åで
あり、白金及びイリジウムの無電解メッキは、1〜3m
mg/cm2 であることを特徴とするものであり、請求
項1に記載の発明が有する作用に加えて、イオン交換膜
と、触媒である白金、イリジウムと、水を効果的に接触
することが可能となり、かつ、接触抵抗及び触媒として
の機能面も改善できる作用を有する。
According to a second aspect of the present invention, the thickness of the platinum or palladium to be sputtered is 5 to 10 °, and the electroless plating of platinum and iridium is 1 to 3 m.
mg / cm 2 , and in addition to the action of the invention according to claim 1, effectively contacting the ion exchange membrane with platinum and iridium as catalysts and water. And also has the effect of improving the contact resistance and the function as a catalyst.

【0018】請求項3に記載の発明は、無電解メッキは
無電解メッキ開始から30分でメッキ温度を常温から5
0℃に昇温し、この温度を3時間保ち、次いで30分で
60℃に昇温し、この温度を1時間保った温度条件下で
実施したことを特徴とするものであり、請求項1,2に
記載の発明が有する作用に加えて、上記した温度条件で
無電解メッキを行うことにより、従来の温度管理を行わ
ない無電解メッキ方法においては、比抵抗が10-2〜1
-3Ω・cmで、白金、イリジウム、ロジウム等の一部
がメッキ浴容器内面に付着するという問題を有していた
が、上記した温度条件下で無電解メッキを行うことによ
り、比抵抗を10-4〜10-5Ω・cmと比抵抗を低下す
ることができるため、無駄なくイオン交換膜にメッキを
行うことができる作用を有する。
According to a third aspect of the present invention, in the electroless plating, the plating temperature is changed from room temperature to 5 minutes in 30 minutes from the start of the electroless plating.
The temperature was raised to 0 ° C., the temperature was maintained for 3 hours, then the temperature was raised to 60 ° C. in 30 minutes, and the temperature was maintained for 1 hour. In addition to the functions of the invention described in the above, the electroless plating is carried out under the above-mentioned temperature conditions, so that in the conventional electroless plating method without performing temperature control, the specific resistance is 10 -2 to 1.
At 0 -3 Ω · cm, there was a problem that a part of platinum, iridium, rhodium, etc. adhered to the inner surface of the plating bath container. Since the specific resistance can be reduced to 10 −4 to 10 −5 Ω · cm, the ion exchange membrane can be plated without waste.

【0019】請求項4に記載の発明は、前記イリジウム
の無電解メッキの代りに、ロジウムの無電解メッキを施
し、メッキ温度が無電解メッキ開始から30分で常温か
ら25℃に昇温し、この温度を3時間保ち、次いで、3
0分で40℃に昇温し、この温度を1時間保持し、1〜
3mmg/cm2 のロジウムメッキを施したことを特徴
とするもので、請求項1に記載の発明と同じ作用を有す
る。
According to a fourth aspect of the present invention, the electroless plating of rhodium is performed instead of the electroless plating of iridium, and the plating temperature is raised from room temperature to 25 ° C. in 30 minutes from the start of the electroless plating. This temperature is maintained for 3 hours, then 3
The temperature was raised to 40 ° C. in 0 minutes, and this temperature was maintained for 1 hour.
It is characterized by having been subjected to rhodium plating at 3 mmg / cm 2 , and has the same effect as the first aspect of the present invention.

【0020】以下、本発明の実施の形態について図面を
参照して説明する。図1は、本発明の水電解ガス発生装
置の電解セルを示す概観図で、図において、1a,1b
は電極板、2はイオン交換膜、3はカーボン粒が充填さ
れる接触材、4はPtメッキ部である。本実施の形態に
おいては、陰極側の電極板1aは箱状に形成され、その
内部にはカーボン粒3が充填され、陰極側のイオン交換
膜2及び電極板1aと密着接触している。カーボン粒は
厚さ1〜3mmで、粒子の直径は0.5〜1.0mmの
ものが用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing an electrolysis cell of a water electrolysis gas generator of the present invention.
Is an electrode plate, 2 is an ion exchange membrane, 3 is a contact material filled with carbon particles, and 4 is a Pt plated portion. In the present embodiment, the cathode-side electrode plate 1a is formed in a box shape, and the inside thereof is filled with carbon particles 3, and is in close contact with the cathode-side ion exchange membrane 2 and the electrode plate 1a. Carbon particles having a thickness of 1 to 3 mm and a particle diameter of 0.5 to 1.0 mm are used.

【0021】カーボン粒は小さければイオン交換膜と電
極板との物理的な接触は良好になるが、イオン交換膜か
らのガス抜けが悪化する。一方、直径を1.0mmより
大きくすると、ガス抜けは良くなるが、接触面積が少な
くなり、接触抵抗が大きくなるため、粒子直径は0.5
〜1.0mmの範囲が最も好ましい。また、カーボン粒
の厚さは、特に限定されないが、イオン交換膜と電極板
の凹凸の形状を考慮してその厚さが適宜決定され、本実
施の形態においては、厚さ1〜3mmとした。また、カ
ーボン粒は各粒が独立しており、型の変化に対して柔軟
に型を変えることができるため、イオン交換膜との密着
性に優れ、気体や液体の通過する十分な間隙を維持でき
るため、接触抵抗を低く保つことができ、消費電力が少
なく、かつ耐食性を向上することができた。本実施の形
態によれば、カーボン粒を使用することにより、槽電圧
が従来のカーボン繊維を用いたものに比して、2.5V
から2.2Vへと低下した。これは効率面で約12%改
善されたことに相当し、工業的にみて大幅な省エネルギ
ーを実現することが可能となった。
The smaller the carbon particles, the better the physical contact between the ion exchange membrane and the electrode plate, but the worse the outgassing from the ion exchange membrane. On the other hand, when the diameter is larger than 1.0 mm, the outgassing is improved, but the contact area is reduced and the contact resistance is increased.
The range of from to 1.0 mm is most preferable. The thickness of the carbon particles is not particularly limited, but the thickness is appropriately determined in consideration of the shape of the irregularities of the ion-exchange membrane and the electrode plate. In the present embodiment, the thickness is set to 1 to 3 mm. . In addition, each carbon particle is independent and can change the mold flexibly with the change of the mold, so it has excellent adhesion with the ion exchange membrane and maintains a sufficient gap for gas and liquid to pass through As a result, the contact resistance could be kept low, the power consumption was small, and the corrosion resistance could be improved. According to the present embodiment, the use of carbon particles allows the cell voltage to be 2.5 V lower than that using a conventional carbon fiber.
To 2.2V. This is equivalent to an improvement in efficiency of about 12%, and it has become possible to realize a great energy saving industrially.

【0022】また、イオン交換膜2表面に白金又はパラ
ジウムをスパッタリングにてコートし、その上面に白金
及びイリジウムの無電解メッキを施した。イオン交換膜
2表面にスパッタリングが施される白金又はパラジウム
の厚さは5〜10Åとし、無電解メッキは白金及びイリ
ジウムを1〜3mmg/cm2 とし、メッキ温度を無電
解メッキ開始から30分で常温から50℃に昇温し、こ
の温度を3時間保ち、次いで、30分で60℃に昇温
し、この温度を1時間保った温度条件下で実施した。
The surface of the ion exchange membrane 2 was coated with platinum or palladium by sputtering, and the upper surface thereof was subjected to electroless plating of platinum and iridium. The thickness of the platinum or palladium to be sputtered on the surface of the ion exchange membrane 2 is 5 to 10 °, the electroless plating is platinum and iridium at 1 to 3 mmg / cm 2 , and the plating temperature is 30 minutes from the start of the electroless plating. The temperature was raised from room temperature to 50 ° C., and this temperature was maintained for 3 hours, then raised to 60 ° C. in 30 minutes, and the temperature was maintained for 1 hour.

【0023】本実施の形態においては、イオン交換膜表
面を白金又はパラジウムをスパッタリングにて薄くコー
トすることにより、白金及びイリジウム等の無電解メッ
キを起動する触媒として機能し、イオン交換膜表面に良
好な白金及びイリジウムの無電解メッキを施すことがで
きる。また、イオン交換膜上での電気分解は、イオン交
換膜と、触媒である白金、イリジウムと、水の3体が効
果的に接触する構造とすることが必要であり、多孔状に
なっていなければならないが、3mmg/cm2 以上だ
とこの接触が妨げられ、また、1mmg/cm2 以下だ
と電極板1aとの接触抵抗及び触媒としての機能が妨げ
られる。
In the present embodiment, the surface of the ion exchange membrane is thinly coated with platinum or palladium by sputtering to function as a catalyst for starting electroless plating of platinum, iridium, etc. Electroless plating of platinum and iridium can be performed. In addition, the electrolysis on the ion-exchange membrane needs to have a structure in which the ion-exchange membrane, the catalysts platinum and iridium, and the three bodies of water are effectively in contact with each other, and must be porous. However, if it is 3 mmg / cm 2 or more, this contact is hindered, and if it is 1 mmg / cm 2 or less, the contact resistance with the electrode plate 1 a and the function as a catalyst are hindered.

【0024】そのため、1〜3mmg/cm2 の範囲が
最も好ましい。また、本実施の形態においては、上記し
た温度条件で無電解メッキを行うことにより、従来の温
度管理を行わない無電解メッキ方法においては、比抵抗
が10 -2〜10-3Ω・cmで、白金、イリジウム、ロジ
ウム等の一部がメッキ浴容器内面に付着するという問題
を有していたが、上記した温度条件下で無電解メッキを
行うことにより、比抵抗を10-4〜10-5Ω・cmと比
抵抗を低下することができるため、無駄なくイオン交換
膜にメッキを行うことができる。
Therefore, 1-3 mmg / cmTwoRange of
Most preferred. Also, in the present embodiment,
By performing electroless plating under different temperature conditions,
In the electroless plating method that does not control the
Is 10 -2-10-3Ω · cm, platinum, iridium, lodge
The problem that some of the metals adhere to the inner surface of the plating bath
However, electroless plating was performed under the above temperature conditions.
By doing so, the specific resistance becomes 10-Four-10-FiveΩ · cm and ratio
Ion exchange without waste because resistance can be reduced
The film can be plated.

【0025】また、上記した実施の形態において用いて
いたイリジウムの無電解メッキの代りに、ロジウムの無
電解メッキを施し、メッキ温度が無電解メッキ開始から
30分で常温から25℃に昇温し、この温度を3時間保
ち、次いで、30分で40℃に昇温し、この温度を1時
間保ち、1〜3mmg/cm2 のロジウムメッキを施す
ことにより、上記した実施の形態と同じ作用を有する水
電解ガス発生装置を提供することができる。
In place of the iridium electroless plating used in the above embodiment, rhodium is electrolessly plated, and the plating temperature is raised from room temperature to 25 ° C. 30 minutes after the start of the electroless plating. By maintaining this temperature for 3 hours, then increasing the temperature to 40 ° C. in 30 minutes, maintaining this temperature for 1 hour, and applying rhodium plating of 1 to 3 mmg / cm 2 , the same effect as in the above-described embodiment is obtained. A water electrolysis gas generator having the same can be provided.

【0026】[0026]

【発明の効果】本発明は、水電解ガス発生装置におい
て、イオン交換膜表面に薄く白金又はパラジウムをスパ
ッタリングにてコートし、その上面に白金及びイリジウ
ムの無電解メッキを施し、イオン交換膜と陰極側電極板
の間はカーボン粒を密着保持させたことを特徴とするも
のであり、イオン交換膜表面に触媒として機能する白金
又はパラジウムを薄くスパッタリングにてコートするこ
とにより、イオン交換膜表面に白金及びイリジウム等の
無電解メッキを均一かつ良好な状態で施すことができ、
イオン交換膜の耐食性を改善し、さらに、イオン交換膜
と陰極側電極板間にカーボン粒を密着保持する構成とす
ることにより、イオン交換膜と電極板との密着性に優
れ、かつガス抜けを良好にすることができ、接触抵抗の
低い水電解ガス発生装置を提供することができる。本発
明によれば、上記の構成とすることにより、電解電圧を
従来のカーボン繊維を用いたものに比して、約12%低
くすることができ、大幅な省エネルギー型の水電解ガス
発生装置を提供できる。
According to the present invention, there is provided a water electrolysis gas generator, wherein platinum or palladium is thinly coated on the surface of an ion exchange membrane by sputtering, and electroless plating of platinum and iridium is performed on the upper surface thereof. It is characterized in that carbon particles are held in close contact between the side electrode plates, and platinum or iridium, which functions as a catalyst, is thinly coated on the ion exchange membrane surface by sputtering, so that platinum and iridium are coated on the ion exchange membrane surface. Etc. can be applied in a uniform and good condition,
By improving the corrosion resistance of the ion-exchange membrane and maintaining the carbon particles in close contact between the ion-exchange membrane and the cathode-side electrode plate, the adhesion between the ion-exchange membrane and the electrode plate is excellent, and gas is evacuated. It is possible to provide a water electrolysis gas generator having a good contact resistance and a low contact resistance. According to the present invention, by adopting the above configuration, the electrolysis voltage can be reduced by about 12% as compared with that using the conventional carbon fiber, and a large energy-saving water electrolysis gas generator can be provided. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水電解ガス発生装置の電解セルを示す
概観図である。
FIG. 1 is a schematic view showing an electrolysis cell of a water electrolysis gas generator of the present invention.

【図2】本発明の先願として開発した水電解ガス発生装
置の電解セルを示す概観図である。
FIG. 2 is a schematic view showing an electrolysis cell of a water electrolysis gas generator developed as a prior application of the present invention.

【図3】先願発明の酸素・水素電解ガス発生装置の単体
ユニットを示す概観図で、(a)は分解斜視図、(b)
は組立図である。
FIG. 3 is a schematic view showing a single unit of the oxygen / hydrogen electrolysis gas generator of the prior application, (a) is an exploded perspective view, (b)
Is an assembly drawing.

【符号の説明】[Explanation of symbols]

1 電極板 2 イオン交換膜 3 カーボン粒 3a 密着接触材 4 Ptメッキ 5 箱状隔壁 6 金属被覆面 7 桟 8 切り欠き部 9 ガス放出口 9a 酸素ガス放出口 9b 水素ガス放出口 10 電極 11 酸素ガス室 12 水素ガス室 DESCRIPTION OF SYMBOLS 1 Electrode plate 2 Ion exchange membrane 3 Carbon particle 3a Close contact material 4 Pt plating 5 Box-shaped partition wall 6 Metal coating surface 7 Bar 8 Notch 9 Gas discharge port 9a Oxygen gas discharge port 9b Hydrogen gas discharge port 10 Electrode 11 Oxygen gas Room 12 Hydrogen gas chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 洋二 東京都新宿区新宿5丁目4番14号 スガ試 験機株式会社内 (72)発明者 谷口 皓一 東京都新宿区新宿5丁目4番14号 スガ試 験機株式会社内 Fターム(参考) 4K021 AA01 BA02 CA09 DB05 DB18 DB20 DB31 DB43 DB46 DB53 DC01 DC03 4K022 AA02 AA11 AA43 BA18 DA01 DB26 DB29 4K044 AA16 BA08 BB04 CA13 CA15 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoji Watanabe 5-4-1-14 Shinjuku, Shinjuku-ku, Tokyo Inside Suga Test Machine Co., Ltd. (72) Inventor Koichi Taniguchi 5-4-1-14 Shinjuku, Shinjuku-ku, Tokyo F-term in Suga Test Machine Co., Ltd. (reference) 4K021 AA01 BA02 CA09 DB05 DB18 DB20 DB31 DB43 DB46 DB53 DC01 DC03 4K022 AA02 AA11 AA43 BA18 DA01 DB26 DB29 4K044 AA16 BA08 BB04 CA13 CA15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜の両側に陽極側電極板及び
陰極側電極板を接触させる水電解ガス発生装置におい
て、イオン交換膜表面に白金又はパラジウムをスパッタ
リングにてコートし、その上面に白金及びイリジウムの
無電解メッキを施し、イオン交換膜と陰極側電極板間に
カーボン粒を密着保持させたことを特徴とする水電解ガ
ス発生装置。
In a water electrolysis gas generating apparatus in which an anode-side electrode plate and a cathode-side electrode plate are brought into contact with both sides of an ion exchange membrane, platinum or palladium is coated on the surface of the ion exchange membrane by sputtering, and platinum and A water electrolysis gas generator characterized in that iridium is electrolessly plated and carbon particles are held tightly between an ion exchange membrane and a cathode side electrode plate.
【請求項2】 スパッタリングが施される白金又はパラ
ジウムの厚さは、5〜10Åであり、白金及びイリジウ
ムの無電解メッキは、1〜3mmg/cm2であること
を特徴とする請求項1の水電解ガス発生装置。
2. The method according to claim 1, wherein the thickness of the platinum or palladium to be sputtered is 5 to 10 °, and the electroless plating of platinum and iridium is 1 to 3 mmg / cm 2 . Water electrolysis gas generator.
【請求項3】 無電解メッキは、無電解メッキ開始から
30分でメッキ温度を常温から50℃に昇温し、この温
度を3時間保ち、次いで、30分で60℃に昇温し、こ
の温度を1時間保った温度条件下で実施したことを特徴
とする請求項1または2記載の水電解ガス発生装置。
3. In the electroless plating, the plating temperature is raised from room temperature to 50 ° C. in 30 minutes from the start of the electroless plating, this temperature is maintained for 3 hours, and then the temperature is raised to 60 ° C. in 30 minutes. 3. The water electrolysis gas generator according to claim 1, wherein the temperature is maintained for one hour.
【請求項4】 前記イリジウムの無電解メッキの代り
に、ロジウムの無電解メッキを施し、メッキ温度が無電
解メッキ開始から30分で常温から25℃に昇温し、こ
の温度を3時間保ち、次いで、30分で60℃に昇温
し、この温度を1時間保ち、1〜3mmg/cm2 のロ
ジウムメッキを施したことを特徴とする請求項1記載の
水電解ガス発生装置。
4. An electroless plating of rhodium is performed in place of the electroless plating of iridium, and a plating temperature is raised from room temperature to 25 ° C. in 30 minutes from the start of the electroless plating, and this temperature is maintained for 3 hours. 2. The water electrolysis gas generator according to claim 1, wherein the temperature is raised to 60 [deg.] C. in 30 minutes, the temperature is maintained for one hour, and rhodium plating of 1 to 3 mmg / cm < 2 > is performed.
JP11014026A 1999-01-22 1999-01-22 Water electrolysis gas generator Expired - Fee Related JP3035537B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11014026A JP3035537B1 (en) 1999-01-22 1999-01-22 Water electrolysis gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11014026A JP3035537B1 (en) 1999-01-22 1999-01-22 Water electrolysis gas generator

Publications (2)

Publication Number Publication Date
JP3035537B1 JP3035537B1 (en) 2000-04-24
JP2000212785A true JP2000212785A (en) 2000-08-02

Family

ID=11849672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11014026A Expired - Fee Related JP3035537B1 (en) 1999-01-22 1999-01-22 Water electrolysis gas generator

Country Status (1)

Country Link
JP (1) JP3035537B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221691A (en) * 2002-01-31 2003-08-08 Permelec Electrode Ltd Electrolytic cathode and electrolytic cell using this
JP2009513820A (en) * 2003-07-14 2009-04-02 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Membrane electrode assembly for water electrolysis
JP5913693B1 (en) * 2015-07-03 2016-04-27 アクアエコス株式会社 Electrolytic device and electrolytic ozone water production device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221691A (en) * 2002-01-31 2003-08-08 Permelec Electrode Ltd Electrolytic cathode and electrolytic cell using this
JP2009513820A (en) * 2003-07-14 2009-04-02 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト Membrane electrode assembly for water electrolysis
US7993499B2 (en) 2003-07-14 2011-08-09 Umicore Ag & Co. Kg Membrane electrode unit for the electrolysis of water
JP5913693B1 (en) * 2015-07-03 2016-04-27 アクアエコス株式会社 Electrolytic device and electrolytic ozone water production device
WO2017006837A1 (en) * 2015-07-03 2017-01-12 アクアエコス株式会社 Electrolysis device and apparatus for producing electrolyzed ozonated water
CN107075701A (en) * 2015-07-03 2017-08-18 阿库亚爱克斯公司 Electrolysis unit and electrolysis ozone water making device
KR101831743B1 (en) * 2015-07-03 2018-02-23 아쿠아에코스 주식회사 Electrolysis device and apparatus for producing electrolyzed ozonated water
US10053380B2 (en) 2015-07-03 2018-08-21 Aquaecos Ltd. Electrolysis device and apparatus for producing electrolyzed ozonated water

Also Published As

Publication number Publication date
JP3035537B1 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
EP3410520B1 (en) Fuel cell and method for producing metal porous body
US10738387B2 (en) Electrochemical cell containing a graphene coated electrode
CA2349242C (en) Electrodeposition of catalytic metals using pulsed electric fields
TW513824B (en) Bipolar plate for fuel cells
EP3333947A1 (en) Metal porous body, fuel cell, and method for manufacturing metal porous body
JPS6143436B2 (en)
CN108140845A (en) Metal porous body, fuel cell and the method for manufacturing metal porous body
EP3333948B1 (en) Metallic porous body, fuel cell, and method for manufacturing metallic porous body
US5407550A (en) Electrode structure for ozone production and process for producing the same
JP3036248B2 (en) Dehumidifying element using solid polymer electrolyte membrane
US6277261B1 (en) Method of producing electrolyte units by electrolytic deposition of a catalyst
KR102126183B1 (en) Diffusion layer and oxygen electrode composite layers of polymer electrolyte membrane water electrolysis apparatus and method for preparing the same and polymer electrolyte membrane water electrolysis apparatus using the same
MXPA02002604A (en) Method and device for the electrolytic treatment of electrically conducting surfaces separated plates and film material pieces in addition to uses of said method.
JP3035537B1 (en) Water electrolysis gas generator
US5296429A (en) Preparation of an electrocatalytic cathode for an aluminum-hydrogen peroxide battery
CN108588810A (en) A kind of preparation process of porous tantalum piece
JP3676554B2 (en) Activated cathode
JPH11209887A (en) Water electrolytic gas generating device
JP3264535B2 (en) Gas electrode structure and electrolysis method using the gas electrode structure
JP2840753B2 (en) Ozone electrolytic production method
JP3078570B2 (en) Electrochemical electrode
US6165333A (en) Cathode assembly and method of reactivation
US6740220B1 (en) Electrocatalytic cathode device of palladium and iridium on a high density or porous carbon support and a method for making such a cathode
JP3921300B2 (en) Hydrogen generator
JPH1053887A (en) Reactivation method of active cathode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000201

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees