JP2000212580A - Integrated gasification fuel cell power generation system - Google Patents

Integrated gasification fuel cell power generation system

Info

Publication number
JP2000212580A
JP2000212580A JP11014482A JP1448299A JP2000212580A JP 2000212580 A JP2000212580 A JP 2000212580A JP 11014482 A JP11014482 A JP 11014482A JP 1448299 A JP1448299 A JP 1448299A JP 2000212580 A JP2000212580 A JP 2000212580A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
anode
supplied
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11014482A
Other languages
Japanese (ja)
Inventor
Tadayoshi Adachi
忠由 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP11014482A priority Critical patent/JP2000212580A/en
Publication of JP2000212580A publication Critical patent/JP2000212580A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an integrated gasification fuel cell power generation system generating electricity by utilizing carbon dioxide obtained secondarily in wet fine desulfurization for a fuel cell. SOLUTION: This integrated gasification fuel cell power generation system where a fused carbonate fuel cell is incorporated into an integrated gasification combined cycle is operated as follows: (1) sulfur content in gasified gas generated is desulfurized in a wet fine desulfurizer 13; (2) carbon dioxide absorbed in a desulfurizing fluid of the desulfurizer is separated to be fed to the cathode 21 of a fuel cell 20, and part of gasified gas after desulfurized is fed to the anode 22; (3) exhaust gas discharged from the anode is returned to the desulfurizer through a water scrubber such as a wet deduster 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス化複合発電シ
ステムに燃料電池を組み込んだガス化燃料電池複合発電
システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined gasification fuel cell power generation system in which a fuel cell is incorporated into a combined gasification fuel cell system.

【0002】[0002]

【従来の技術】ガス化複合発電システム(IGCC)に
おいては、ガス化炉に石炭スラリ(or重質油+水蒸
気)を供給すると共に酸素を供給してガス化ガス
(H2 ,CO2)生成し、これを精製した後、コンバイ
ンドサイクルに供給してガスタービンによる発電を行う
と共にガスタービンで発生した熱とガス化炉で回収した
熱を排熱ボイラで回収して発電を行う。
2. Description of the Related Art In an integrated gasification combined cycle system (IGCC), gasification gas (H 2 , CO 2 ) is generated by supplying coal slurry (or heavy oil + steam) and oxygen to a gasification furnace. After refining this, it is supplied to a combined cycle to generate electric power by the gas turbine, and heat generated by the gas turbine and heat collected by the gasifier are collected by a waste heat boiler to generate electric power.

【0003】このIGCCに、溶融炭酸塩型燃料電池
(MCFC)を組み込んだガス化燃料電池複合発電シス
テム(IGFC)が検討されてきている。
[0003] A gasification fuel cell combined cycle system (IGFC) in which a molten carbonate fuel cell (MCFC) is incorporated in the IGCC has been studied.

【0004】[0004]

【発明が解決しようとする課題】このIGFCにおいて
は、溶融炭酸塩型燃料電池のアノードに供給する水素
は、IGCCのガス化炉で生成された水素を精製して供
給すればよいが、カソードに供給する炭酸ガス(C
2 )と空気をシステムのどこから供給するか、またア
ノードから排出されるアノード排ガスをどう処理するか
が課題となる。
In this IGFC, the hydrogen to be supplied to the anode of the molten carbonate fuel cell may be obtained by purifying the hydrogen generated in the gasification furnace of the IGCC and supplying it. Supply carbon dioxide (C
The challenge is where to supply O 2 ) and air from the system, and how to treat anode exhaust gases exhausted from the anode.

【0005】通常、カソードに必要となる炭酸ガスに
は、主としてアノード排ガスを燃焼させて得られる炭酸
ガスを供給することが考えられるが、燃料電池のアノー
ドでのH2 利用率は80%以下であるため、20%以上
がその燃焼熱の回収のみとなってしまう。
Usually, carbon dioxide gas required for the cathode may be supplied mainly by burning anode exhaust gas, but the H 2 utilization at the anode of the fuel cell is 80% or less. As a result, more than 20% of the combustion heat is only recovered.

【0006】またこのアノード排ガスを直接ガスタービ
ンに供給するシステムでは、燃料電池の炭酸塩がアノー
ド排ガスに混入することが考えられるため、ガスタービ
ンに悪影響を与えることが予想される。
In the system for directly supplying the anode exhaust gas to the gas turbine, the carbonate of the fuel cell may be mixed in the anode exhaust gas, so that it is expected that the gas turbine will be adversely affected.

【0007】一方、IGCCにおいて、ガス化合成ガス
中に含まれるH2 Sの除去は、実績や経済性などの総合
的評価から、アミン系脱硫液を用いた湿式精密脱硫が多
く採用されてきている。しかし、アミン系脱硫液は、脱
硫率を上げれば上げるほどガス化ガス中の炭酸ガスもよ
り多く吸収してしまうため、脱硫率を上げると相対的に
ガス化ガスの量が減り、結果的にプラント効率を下げる
ことになる。また脱硫液に吸収された硫黄分と炭酸ガス
は、その後分離されるが、分離され濃縮された炭酸ガス
をそのまま排出することは環境上好ましくない。
On the other hand, in IGCC, wet precision desulfurization using an amine-based desulfurization liquid has been widely adopted for the removal of H 2 S contained in gasified syngas from the comprehensive evaluation of results and economics. I have. However, the amine-based desulfurization liquid absorbs more carbon dioxide in the gasification gas as the desulfurization rate increases, so that increasing the desulfurization rate relatively decreases the amount of gasification gas, This will reduce plant efficiency. Further, the sulfur content and the carbon dioxide absorbed in the desulfurization solution are separated thereafter, but it is not environmentally preferable to discharge the separated and concentrated carbon dioxide as it is.

【0008】そこで、本発明の目的は、上記課題を解決
し、湿式精密脱硫で副次的に得られる炭酸ガスを燃料電
池に利用して発電を行うガス化燃料電池複合発電システ
ムを提供することにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a gasification fuel cell combined power generation system for generating electric power by utilizing carbon dioxide gas obtained as a secondary by wet precision desulfurization for a fuel cell. It is in.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、ガス化複合発電システムに溶融
炭酸塩型燃料電池を組み込んだガス化燃料電池複合発電
システムにおいて、生成したガス化ガス中の硫黄分を、
湿式精密脱硫で脱硫し、その脱硫液中に吸収された炭酸
ガスを分離して溶融炭酸塩型燃料電池のカソードに供給
すると共に脱硫後のガス化ガスの一部をアノードに供給
し、そのアノードから排出されるアノード排ガスを、湿
式脱じん等の水スクラバを通して湿式精密脱硫に戻すよ
うにしたガス化燃料電池複合発電システムである。
Means for Solving the Problems To achieve the above object, the invention of claim 1 has been developed in a combined gasification fuel cell combined power generation system in which a molten carbonate type fuel cell is incorporated in a combined gasification combined power generation system. Sulfur content in gasification gas,
Desulfurization is performed by wet precision desulfurization, carbon dioxide absorbed in the desulfurization liquid is separated and supplied to the cathode of a molten carbonate fuel cell, and a part of the gasified gas after desulfurization is supplied to the anode. This is a gasified fuel cell combined power generation system in which anode exhaust gas discharged from the system is returned to wet precision desulfurization through a water scrubber such as wet dust removal.

【0010】請求項2の発明は、生成したガス化ガス
は、湿式脱じん部からCOS転換及びアンモニア除去部
を通して湿式精密脱硫部に供給され、アノード排ガス
は、湿式脱じん部又はアンモニア除去部の水スクラバに
戻される請求項1記載のガス化燃料電池複合発電システ
ムである。
[0010] According to a second aspect of the present invention, the generated gasified gas is supplied from the wet dust removing section to the wet precision desulfurizing section through the COS conversion and ammonia removing section, and the anode exhaust gas is supplied to the wet dust removing section or the ammonia removing section. The combined gasification fuel cell power generation system according to claim 1, wherein the system is returned to a water scrubber.

【0011】請求項3の発明は、アノードに供給するガ
ス化ガス中の一酸化炭素と蒸気を触媒を用いて水素と炭
酸ガスに改質して水素リッチガスとしてアノードに供給
する請求項1記載のガス化燃料電池複合発電システムで
ある。
According to a third aspect of the present invention, the carbon monoxide and the vapor in the gasified gas supplied to the anode are reformed into hydrogen and carbon dioxide using a catalyst and supplied to the anode as a hydrogen-rich gas. It is a gasification fuel cell combined cycle system.

【0012】請求項4の発明は、高圧の上記水素リッチ
ガスをエキスパンダで膨張させてアノードに供給し、ア
ノード排ガスを上記エキスパンダに連結されたコンプレ
ッサで昇圧して湿式脱じん部又はアンモニア除去部の水
スクラバに戻す請求項2記載のガス化燃料電池複合発電
システムである。
According to a fourth aspect of the present invention, the high-pressure hydrogen-rich gas is expanded by an expander and supplied to the anode, and the anode exhaust gas is pressurized by a compressor connected to the expander to increase the pressure of the wet exhaust gas or the ammonia removal. The combined gasification fuel cell power generation system according to claim 2, wherein the system is returned to the water scrubber.

【0013】請求項5の発明は、脱硫液から分離された
炭酸ガスを昇圧し、これを昇圧した大気と混合してカソ
ードに供給する請求項1記載のガス化燃料電池複合発電
システムである。
According to a fifth aspect of the present invention, there is provided the combined gasification fuel cell power generation system according to the first aspect, wherein the pressure of the carbon dioxide gas separated from the desulfurization solution is increased, and the mixed gas is supplied to the cathode after being mixed with the increased air.

【0014】[0014]

【発明の実施の形態】以下、本発明の好適一実施の形態
を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0015】図1は、ガス化複合発電システム(IGC
C)に、溶融炭酸塩型燃料電池(MCFC)を組み込ん
だ本発明のガス化燃料電池複合発電システム(IGF
C)のブロック図を示したものである。
FIG. 1 shows an integrated gasification combined cycle system (IGC).
C), a combined gasification fuel cell power generation system (IGF) of the present invention in which a molten carbonate fuel cell (MCFC) is incorporated.
FIG. 3C shows a block diagram.

【0016】この図1において、先ず、IGCCを説明
する。
Referring to FIG. 1, first, the IGCC will be described.

【0017】ガス化炉からなる燃料ガス化部10に、石
炭スラリ(or重質油+蒸気)が供給されると共に空気
分離装置(AUS)で分離された酸素が供給されて
2 ,CO等からなる粗ガスが生成される。この粗ガス
は、湿式脱じん部11の水スクラバを通して固形分等が
除去され、次に粗ガス中に含まれるCOS(硫化カルボ
ニル)とアンモニアが、COS転換とアンモニア除去部
12の触媒塔と水スクラバを通すことで、COSと蒸気
が、硫化水素と炭酸ガスに改質されると共にアンモニア
が吸収される。
Coal slurry (or heavy oil + steam) and oxygen separated by an air separation unit (AUS) are supplied to a fuel gasification section 10 composed of a gasification furnace, and H 2 , CO, etc. are supplied. Is generated. The crude gas is removed of solids and the like through a water scrubber in a wet dust removing section 11, and then COS (carbonyl sulfide) and ammonia contained in the crude gas are converted into COS conversion and a catalyst tower in an ammonia removing section 12. By passing through the scrubber, COS and steam are reformed into hydrogen sulfide and carbon dioxide, and ammonia is absorbed.

【0018】次に粗ガスはアミン系脱硫液を用いた湿式
精密脱硫部13にて粗ガス中の硫化水素(H2 S)が除
去され、同時に粗ガス中に含まれる炭酸ガスが脱硫液に
吸収される。
Next, hydrogen sulfide (H 2 S) in the crude gas is removed from the crude gas in a wet precision desulfurization unit 13 using an amine-based desulfurization solution, and at the same time, carbon dioxide gas contained in the crude gas is converted into a desulfurization solution. Absorbed.

【0019】湿式精密脱硫部13で脱硫された粗ガス
は、精製ガスと呼ばれ、精製ガス分岐部14,精製ガス
加熱部15を通してガスタービンからなるコンバインド
サイクル16に供給されて発電に用いられる。
The crude gas desulfurized in the wet precision desulfurization section 13 is called a purified gas, supplied to a combined cycle 16 composed of a gas turbine through a purified gas branch section 14 and a purified gas heating section 15, and used for power generation.

【0020】このガスタービンからの燃焼排ガスが、排
熱回収ボイラ(HRSG)に供給され、また、排熱回収
ボイラ(HRSG)からのボイラ水が燃料ガス化部10
に供給され熱回収後の蒸気がHRSGを経由して蒸気タ
ービンに供給されて発電がなされる。
The combustion exhaust gas from the gas turbine is supplied to an exhaust heat recovery boiler (HRSG), and the boiler water from the exhaust heat recovery boiler (HRSG) is supplied to a fuel gasification section 10.
Is supplied to the steam turbine via the HRSG to generate power.

【0021】湿式脱じん部11での粗ガスの脱じんは、
灰水分離部17から供給される洗浄水による水スクラバ
を粗ガスが通ることで固形分等が脱じんされ、COS転
換及びアンモニア除去部12でも同様に灰水分離部17
から供給される洗浄水で水スクラバが形成され、そこで
アンモニアが吸収される。
The removal of the crude gas in the wet dust removal section 11 is as follows.
The crude gas passes through the water scrubber with the washing water supplied from the ash water separation unit 17 to remove solids and the like, and the COS conversion and ammonia removal unit 12 similarly removes the ash water separation unit 17.
A scrubber is formed with the wash water supplied from the plant where ammonia is absorbed.

【0022】湿式脱じん部11で除去された固形分等と
COS転換及びアンモニア除去部12で回収されたアン
モニアが灰水分離部17で分離される。まず固液分離を
行い、固形分を除去する。この固液分離での液中には、
アンモニア、炭酸ガス、硫化水素等が溶解しており、こ
れを脱気して、湿式精密脱硫部13で分離した脱硫オフ
ガス(H2 S,CO2 )と共に硫黄回収部18に供給
し、硫黄回収部18で硫黄分を回収すると共に排ガスと
して炭酸ガス等を分離する。
The solids removed in the wet dust removal section 11 and the ammonia recovered in the COS conversion and ammonia removal section 12 are separated in the ash water separation section 17. First, solid-liquid separation is performed to remove solid components. In the liquid in this solid-liquid separation,
Ammonia, carbon dioxide, hydrogen sulfide, etc. are dissolved, and are degassed and supplied to a sulfur recovery section 18 together with a desulfurization off-gas (H 2 S, CO 2 ) separated in a wet precision desulfurization section 13 to recover sulfur. The unit 18 collects sulfur and separates carbon dioxide gas and the like as exhaust gas.

【0023】本発明においては、このIGCCに、溶融
炭酸塩型燃料電池20を組み込むにおいて、硫黄回収部
18から分離された炭酸ガスを大気(空気)Aと共に燃
料電池20のカソード21に供給し、アノードガスは、
精製ガス分岐部14で分岐した精製ガスを、COシフト
部19を通してH2 リッチガスとしてアノード22に供
給し、アノード排ガスを湿式脱じん部11或いはCOS
転換及びアンモニア除去部12に戻すようにしたもので
ある。
In the present invention, when incorporating the molten carbonate fuel cell 20 into the IGCC, the carbon dioxide gas separated from the sulfur recovery section 18 is supplied to the cathode 21 of the fuel cell 20 together with the atmosphere (air) A, The anode gas is
The purified gas branched at the purified gas branching section 14 is supplied to the anode 22 as a H 2 -rich gas through the CO shift section 19, and the anode exhaust gas is subjected to the wet dust removal section 11 or COS
This is to return to the conversion and ammonia removal unit 12.

【0024】先ず、溶融炭酸塩型燃料電池20は、詳細
は図示していないが、電解質タイルをアノード電極とカ
ソード電極で挟み、これをアノード室とカソード室を区
画するセパレータで多段に積層して形成し、その積層体
を密閉容器に収容して構成される。
First, although not shown in detail, the molten carbonate fuel cell 20 is formed by sandwiching an electrolyte tile between an anode electrode and a cathode electrode, and stacking this in a multi-stage manner with a separator for dividing the anode chamber and the cathode chamber. The laminated body is formed in a sealed container.

【0025】IGCCで生成され湿式精密脱硫部13で
脱硫された精製ガスは、精製ガス分岐部14で分岐され
て一部がCOシフト部19に供給される。精製ガス中に
は、燃料電池20での反応に不要なCOが含まれている
ためCOシフト部19に蒸気Sを供給してCOと水蒸気
を触媒を用いて水素と炭酸ガスに改質する。このシフト
反応は発熱反応であるため、H2 リッチガスを昇温する
ことができる。
The purified gas generated by the IGCC and desulfurized in the wet precision desulfurization section 13 is branched in a purified gas branch section 14 and partly supplied to a CO shift section 19. Since the purified gas contains CO unnecessary for the reaction in the fuel cell 20, steam S is supplied to the CO shift unit 19 to reform CO and steam into hydrogen and carbon dioxide using a catalyst. Since this shift reaction is an exothermic reaction, it can be heated with H 2 rich gas.

【0026】このCOシフト部19で生成したH2 リッ
チガスは、IGCCの運転圧が20〜30気圧であり、
燃料電池20の運転圧は3気圧程度なので、COシフト
部19からのH2 リッチガスをライン23を介してエキ
スパンダ24に送って膨張させて減圧し、ライン25よ
りアノードガスガス熱交換器26を通して燃料電池20
のアノード22に供給する。
The H 2 -rich gas generated in the CO shift unit 19 has an IGCC operating pressure of 20 to 30 atm.
Since the operating pressure of the fuel cell 20 is about 3 atm, the H 2 -rich gas from the CO shift unit 19 is sent to the expander 24 via the line 23 to expand and reduce the pressure, and the fuel is passed through the anode gas gas heat exchanger 26 from the line 25. Battery 20
To the anode 22.

【0027】他方、硫黄回収部18から排出される炭酸
ガスを多く含むガスは、ライン27よりコンプレッサ2
8に供給されて昇圧されると共にコンプレッサ29で昇
圧された空気Aと混合されてライン30より蒸気ガス加
熱器31を通り、そこでHRSGからの蒸気で加熱さ
れ、さらにHRSG内のGT排ガス加熱器32で加熱さ
れ、カソードガスガス熱交換器33を介して更に加熱さ
れて燃料電池20のカソード21に供給される。
On the other hand, the gas containing a large amount of carbon dioxide discharged from the sulfur recovery section 18 is supplied from the line 27 to the compressor 2.
8 and mixed with the air A pressurized by the compressor 29 and passed through the steam gas heater 31 through the line 30 where it is heated by the steam from the HRSG and further heated by the GT exhaust gas heater 32 in the HRSG. , And further heated through the cathode gas heat exchanger 33 and supplied to the cathode 21 of the fuel cell 20.

【0028】燃料電池20では、アノード21とカソー
ド22に供給されたアノードガスとカソードガスとが電
解質タイルを介して反応して発電する。
In the fuel cell 20, the anode gas and the cathode gas supplied to the anode 21 and the cathode 22 react via the electrolyte tile to generate power.

【0029】この際、カソード排ガスはライン34よ
り、その一部が熱回収器35、コンプレッサ36を介し
てカソード21にリサイクルされ、残りがカソードガス
ガス熱交換器33を介して排熱回収ボイラ(HRSG)
に供給され、熱回収後排気される。
At this time, a part of the cathode exhaust gas is recycled to the cathode 21 through a line 34 through a heat recovery unit 35 and a compressor 36, and the remainder is discharged into a waste heat recovery boiler (HRSG) through a cathode gas heat exchanger 33. )
And exhausted after heat recovery.

【0030】また、アノード排ガスはライン37より、
アノードガスガス熱交換器26を通り熱回収がなされた
後、エキスパンダ24に連結されたコンプレッサ38に
よりIGCCの運転圧まで昇圧されて、アノードリサイ
クルガスライン39より湿式脱じん部11或いはライン
39よりライン40を介してCOS転換及びアンモニア
除去部12に戻される。
The anode exhaust gas is supplied from line 37
After the heat is recovered through the anode gas gas heat exchanger 26, the pressure is raised to the operating pressure of the IGCC by the compressor 38 connected to the expander 24, and the pressure is increased from the anode recycle gas line 39 to the wet dedusting unit 11 or the line 39. It is returned to the COS conversion and ammonia removal unit 12 via 40.

【0031】このコンプレッサ38による昇圧は、エキ
スパンダ24を通るH2 リッチガスの膨張エネルギでは
賄えないため、モータ41で不足分を補えるようにす
る。
Since the pressure increase by the compressor 38 cannot be covered by the expansion energy of the H 2 -rich gas passing through the expander 24, the shortage is made up by the motor 41.

【0032】以上において、アミン系脱硫液を用いて湿
式精密脱硫部13で精密脱硫する際、脱硫率を上げると
脱硫液中に、ガス化ガス中の硫化水素と共に炭酸ガスが
大量に吸収されてしまうため、炭酸ガスを多く含んだガ
スとなる硫黄回収部18の硫黄回収後の排ガスを、燃料
電池20のカソード21に供給することで、脱硫率を上
げながら炭酸ガスを有効に利用でき、かつ高効率を保つ
ことができる。
In the above, when precision desulfurization is performed in the wet precision desulfurization unit 13 using an amine-based desulfurization solution, when the desulfurization rate is increased, a large amount of carbon dioxide gas is absorbed into the desulfurization solution along with hydrogen sulfide in the gasified gas. Therefore, by supplying the exhaust gas after sulfur recovery of the sulfur recovery unit 18 which becomes a gas containing a large amount of carbon dioxide to the cathode 21 of the fuel cell 20, the carbon dioxide gas can be effectively used while increasing the desulfurization rate, and High efficiency can be maintained.

【0033】またIGCCで生じた水素をエキスパンダ
24で膨張させて燃料電池20のアノード22に供給
し、そのアノード排ガスを、熱回収後、エキスパンダ2
4に連結したコンプレッサ38で昇圧して、脱じん部1
1或いはCOS転換及びアンモニア除去部12に戻して
粗ガスに混入することで、燃料電池20での水素利用率
を低く設定することができる。またアノード排ガス中に
は、未反応の水素の他に炭酸塩が混入すると考えられる
ため、これを脱じん部11あるいはCOS転換およびア
ンモニア除去部12の水スクラバを通すことで、炭酸塩
を除去することができ、GTに供給する際の問題を防止
できる。
The hydrogen generated in the IGCC is expanded by an expander 24 and supplied to the anode 22 of the fuel cell 20. The anode exhaust gas is recovered after heat recovery.
The pressure is increased by the compressor 38 connected to the
1 or by returning to the COS conversion and ammonia removal unit 12 and mixing it with the crude gas, the hydrogen utilization rate in the fuel cell 20 can be set low. In addition, since carbonate is considered to be mixed in the anode exhaust gas in addition to unreacted hydrogen, the carbonate is removed by passing this through a water scrubber in a dust removing section 11 or a COS conversion and ammonia removing section 12. This can prevent problems when supplying to the GT.

【0034】さらに、アノード排ガスにより、粗ガス中
の炭酸ガス濃度が上がると、脱硫時に回収される炭酸ガ
ス量も増えるため、燃料電池20の容量および効率を上
げることが可能となる。
Further, when the concentration of carbon dioxide in the crude gas increases due to the anode exhaust gas, the amount of carbon dioxide recovered during desulfurization also increases, so that the capacity and efficiency of the fuel cell 20 can be increased.

【0035】[0035]

【発明の効果】以上要するに本発明によれば、ガス化ガ
スの湿式精密脱硫で副次的に回収した炭酸ガスを燃料電
池に有効利用することができると共にアノード排ガスを
脱じん部等の水スクラバを通してガス化ガスに循環する
ことで、燃料電池の水素利用率を下げても全体のプラン
ト効率に影響を与えることがなく、結果的に水素の有効
利用が図れる。またアノード排ガスを水スクラバを通す
ことで、ガス中に含まれる炭酸塩を除去できGTに悪影
響を与えることがない。
In summary, according to the present invention, it is possible to effectively use carbon dioxide gas, which has been secondaryly recovered by wet precision desulfurization of gasified gas, in a fuel cell and to remove anode exhaust gas from a water scrubber such as a dust removing section. By circulating the gas into the gasified gas, even if the hydrogen utilization rate of the fuel cell is reduced, the overall plant efficiency is not affected, and as a result, effective utilization of hydrogen can be achieved. Further, by passing the anode exhaust gas through a water scrubber, the carbonate contained in the gas can be removed, so that the GT is not adversely affected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示すブロックフロー図
である。
FIG. 1 is a block flow diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 燃料ガス化部 11 湿式脱じん部 12 COS転換部及びアンモニア除去部 13 湿式精密脱硫部 18 硫黄回収部 20 溶融炭酸塩型燃料電池 21 カソード 22 アノード 39 アノードリサイクルガスライン Reference Signs List 10 fuel gasification unit 11 wet dust removal unit 12 COS conversion unit and ammonia removal unit 13 wet precision desulfurization unit 18 sulfur recovery unit 20 molten carbonate fuel cell 21 cathode 22 anode 39 anode recycle gas line

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C10K 1/34 C10K 1/34 3/04 3/04 H01M 8/00 H01M 8/00 A 8/04 8/04 J 8/06 8/06 R 8/14 8/14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) C10K 1/34 C10K 1/34 3/04 3/04 H01M 8/00 H01M 8/00 A 8/04 8 / 04 J 8/06 8/06 R 8/14 8/14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガス化複合発電システムに溶融炭酸塩型
燃料電池を組み込んだガス化燃料電池複合発電システム
において、生成したガス化ガス中の硫黄分を、湿式精密
脱硫で脱硫し、その脱硫液中に吸収された炭酸ガスを分
離して溶融炭酸塩型燃料電池のカソードに供給すると共
に脱硫後のガス化ガスの一部をアノードに供給し、その
アノードから排出されるアノード排ガスを、湿式脱じん
等の水スクラバを通して湿式精密脱硫に戻すことを特徴
とするガス化燃料電池複合発電システム。
1. A gasification combined cycle power generation system in which a molten carbonate fuel cell is incorporated in a combined gasification combined cycle system, desulfurization of sulfur in the generated gasified gas by wet precision desulfurization, and the desulfurization liquid The carbon dioxide gas absorbed therein is separated and supplied to the cathode of the molten carbonate fuel cell, and a part of the gasified gas after desulfurization is supplied to the anode. The anode exhaust gas discharged from the anode is subjected to wet degassing. A gasification fuel cell combined cycle system characterized by returning to wet precision desulfurization through a water scrubber such as dust.
【請求項2】 生成したガス化ガスは、脱じん部からC
OS転換及びアンモニア除去部を通して湿式精密脱硫部
に供給され、アノード排ガスは、脱じん部又はアンモニ
ア除去部の水スクラバに戻される請求項1記載のガス化
燃料電池複合発電システム。
2. The generated gasified gas is discharged from
The combined gasification fuel cell power generation system according to claim 1, wherein the anode exhaust gas is supplied to the wet precision desulfurization unit through the OS conversion and ammonia removal unit, and the anode exhaust gas is returned to the water scrubber in the dust removal unit or the ammonia removal unit.
【請求項3】 アノードに供給するガス化ガス中の一酸
化炭素と蒸気を触媒を用いて水素と炭酸ガスに改質して
水素リッチガスとしてアノードに供給する請求項1記載
のガス化燃料電池複合発電システム。
3. The gasified fuel cell composite according to claim 1, wherein carbon monoxide and vapor in the gasified gas supplied to the anode are reformed into hydrogen and carbon dioxide using a catalyst and supplied to the anode as a hydrogen-rich gas. Power generation system.
【請求項4】 高圧の上記水素リッチガスをエキスパン
ダで膨張させてアノードに供給し、アノード排ガスを上
記エキスパンダに連結されたコンプレッサで昇圧して湿
式脱じん部又はアンモニア除去部に戻す請求項2記載の
ガス化燃料電池複合発電システム。
4. The high-pressure hydrogen-rich gas is expanded by an expander and supplied to an anode, and the anode exhaust gas is pressurized by a compressor connected to the expander and returned to a wet dust removing section or an ammonia removing section. The combined gasification fuel cell power generation system according to the above.
【請求項5】 脱硫液から分離された炭酸ガスを昇圧
し、これを昇圧した大気と混合してカソードに供給する
請求項1記載のガス化燃料電池複合発電システム。
5. The gasification fuel cell combined cycle system according to claim 1, wherein the pressure of the carbon dioxide gas separated from the desulfurization liquid is increased, and the mixed gas is mixed with the increased air and supplied to the cathode.
JP11014482A 1999-01-22 1999-01-22 Integrated gasification fuel cell power generation system Pending JP2000212580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11014482A JP2000212580A (en) 1999-01-22 1999-01-22 Integrated gasification fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11014482A JP2000212580A (en) 1999-01-22 1999-01-22 Integrated gasification fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2000212580A true JP2000212580A (en) 2000-08-02

Family

ID=11862282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11014482A Pending JP2000212580A (en) 1999-01-22 1999-01-22 Integrated gasification fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2000212580A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133436A (en) * 2006-09-07 2008-06-12 General Electric Co <Ge> Apparatus for reducing emissions in integrated gasification combined cycle
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JP2015113265A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Hydrogen production apparatus and hydrogen production method
CN114094242A (en) * 2021-12-29 2022-02-25 重庆大学 Flow type photoelectrochemical cell for treating desulfurization wastewater and reducing carbon dioxide simultaneously

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133436A (en) * 2006-09-07 2008-06-12 General Electric Co <Ge> Apparatus for reducing emissions in integrated gasification combined cycle
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JPWO2008096623A1 (en) * 2007-02-07 2010-05-20 財団法人電力中央研究所 Power generation equipment
US8110310B2 (en) 2007-02-07 2012-02-07 Central Research Institute Of Electric Power Industry Power generating plant
JP2015113265A (en) * 2013-12-13 2015-06-22 三菱日立パワーシステムズ株式会社 Hydrogen production apparatus and hydrogen production method
CN114094242A (en) * 2021-12-29 2022-02-25 重庆大学 Flow type photoelectrochemical cell for treating desulfurization wastewater and reducing carbon dioxide simultaneously
CN114094242B (en) * 2021-12-29 2023-09-15 重庆大学 Flow type photoelectrochemical cell for treating desulfurization wastewater and simultaneously reducing carbon dioxide

Similar Documents

Publication Publication Date Title
US9373856B2 (en) Method of recycling and tapping off hydrogen for power generation apparatus
US8727821B2 (en) Apparatus and method for generating electricity in liquefied natural gas carrier
JP5801141B2 (en) Carbon dioxide recovery fuel cell system
EP2320049B1 (en) Gasification power generation system provided with carbon dioxide separation and recovery device
JP2674850B2 (en) Ammonia production method
CN102695670A (en) Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
CN100461516C (en) Natural gas melting carbonate fuel cell generation system
EP1790027A2 (en) Integrated high efficiency fossil fuel power plan/fuel cell system with co2 emissions abatement
US9278312B2 (en) System for recovering high-purity CO2 from gasification gas containing CO, CO2, COS and H2S
CN109301283A (en) A kind of band CO2The integral coal gasification fuel cell system of trapping
JP2008287940A (en) Power generation equipment
JP2004079495A (en) Fuel cell power generation system using gasified refuse gas
JPH11297336A (en) Composite power generating system
JPH1126004A (en) Power generating system
KR101441491B1 (en) Intergrated gasification combined cycle coupled fuel cells system and gas supplying method thereto
JP2004014124A (en) Method for power generation and generator
JP4744971B2 (en) Low quality waste heat recovery system
US10283793B2 (en) Combined generation system and method for collecting carbon dioxide for combined generation system
US20160365593A1 (en) System for gasification of solid waste and method of operation
JP2000212580A (en) Integrated gasification fuel cell power generation system
JP7292474B2 (en) Hybrid power plant with CO2 capture
JP6755424B1 (en) Fuel cell system
US20160365591A1 (en) System for gasification of solid waste and generation of electrical power with a fuel cell
JP2018060732A (en) Power generation system
CN113982753A (en) Coal gasification and SOFC-HAT integrated hybrid power generation system