JP2000211998A - Oxidation of silicon and production of single crystal silicon oxide film using the same - Google Patents

Oxidation of silicon and production of single crystal silicon oxide film using the same

Info

Publication number
JP2000211998A
JP2000211998A JP11015853A JP1585399A JP2000211998A JP 2000211998 A JP2000211998 A JP 2000211998A JP 11015853 A JP11015853 A JP 11015853A JP 1585399 A JP1585399 A JP 1585399A JP 2000211998 A JP2000211998 A JP 2000211998A
Authority
JP
Japan
Prior art keywords
silicon
single crystal
oxide film
silicon oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11015853A
Other languages
Japanese (ja)
Inventor
Yoshimasa Murata
好正 村田
Masashi Ozeki
雅志 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Angstrom Technology Partnership
Original Assignee
Fujitsu Ltd
Angstrom Technology Partnership
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Angstrom Technology Partnership filed Critical Fujitsu Ltd
Priority to JP11015853A priority Critical patent/JP2000211998A/en
Publication of JP2000211998A publication Critical patent/JP2000211998A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce electrons existing in a film or concentration of positive hole trapping center, to improve interfacial characteristics and to attain high integration and speed-up of circuit by bringing silicon supported on a single crystal substrate into contact with oxygen in the presence of atomic hydrogen to form an oxide film. SOLUTION: A single crystal substrate 2 is arranged in an ultrahigh vacuum apparatus 1. Silicon supplied from a silicon evaporation source is deposited on the surface of the single crystal substrate to form the single crystal substrate supporting a silicon film. Atomic hydrogen is supplied from a hydrogen atom source 3 and an oxygen gas from an oxygen feed opening 4 to the apparatus. The silicon film is oxidized at about 300-500 deg.C while exhausting from an exhaust vent 5. The obtained silicon film is annealed at about 800-1,200 deg.C to from a single crystal silicon oxide film. A hydroxyl group is bonded to the surface of silicon once by using both an oxygen gas and atomic hydrogen and is decomposed to form a high-quality silicon oxide film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規な酸化シリコ
ンの製造方法、さらに詳しくいえば、新規な単結晶シリ
コン酸化膜の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing silicon oxide, and more particularly, to a novel method for producing a single crystal silicon oxide film.

【0002】[0002]

【従来の技術】最近、MOSトランジスタを用いるシリ
コン集積回路に対する集積化、高速化の要求が一段と高
まってきているが、これにはゲート酸化膜の薄膜化が不
可欠であり、5nm以下の高品質ゲート酸化膜を得る方
法がこの分野における大きな課題となっている。これま
で、MOSトランジスタにおけるゲート酸化膜は、一般
に清浄化したシリコン結晶を乾燥酸素雰囲気中で100
0〜1200℃に加熱し、酸化することによって製造さ
れていた。しかしながら、このようにして得られるゲー
ト酸化膜は、薄膜化すると、ゲート漏れ電流が増加した
り、電気特性が不安定になるなど、信頼性が低下するの
を免れない上、酸化膜中に存在する電子又は正孔捕獲中
心も電気特性に重大な影響を及ぼすことになる。そし
て、これらのゲート酸化膜の薄膜化に伴う問題点の多く
は、これまでのゲート酸化膜が単結晶により形成されて
いないことに起因しており、酸化膜の単結晶化が可能に
なれば、高性能の極微細MOSトランジスタを得ること
ができる。
2. Description of the Related Art In recent years, demands for higher integration and higher speed of silicon integrated circuits using MOS transistors have been further increased. For this, it is essential to reduce the thickness of a gate oxide film, and a high quality gate of 5 nm or less is required. A method for obtaining an oxide film is a major issue in this field. Heretofore, a gate oxide film in a MOS transistor has generally been obtained by cleaning a cleaned silicon crystal in a dry oxygen atmosphere for 100 hours.
It was manufactured by heating to 0 to 1200 ° C and oxidizing. However, when the gate oxide film obtained in this manner is made thinner, the gate leakage current increases and the electrical characteristics become unstable. Electron or hole trapping centers also have a significant effect on electrical properties. Many of the problems associated with thinning the gate oxide film are due to the fact that the conventional gate oxide film has not been formed of a single crystal. , A high-performance ultra-fine MOS transistor can be obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明は、これまで実
現されていなかったゲート酸化膜としてのシリコン酸化
膜を単結晶化することにより、膜中に存在する電子又は
正孔捕獲中心濃度を大幅に減少させ、かつ界面特性を向
上させて、シリコン集積回路の高集積化、高速化、高信
頼化を達成することを目的としてなされたものである。
SUMMARY OF THE INVENTION According to the present invention, the concentration of electron or hole trapping centers existing in a silicon oxide film as a gate oxide film, which has not been realized until now, is greatly increased by single crystallization. The object of the present invention is to achieve high integration, high speed, and high reliability of a silicon integrated circuit by reducing the interface characteristics and improving the interface characteristics.

【0004】[0004]

【課題を解決するための手段】本発明者らは、シリコン
酸化膜の形成について種々研究を重ねた結果、水素原子
の存在下、比較的低い温度に保持した状態でシリコンを
酸化することにより、相転移しやすい酸化シリコンが得
られること及びこのようにして単結晶基板上に形成させ
たシリコン酸化薄膜をさらにアニールして相転移を起さ
せることにより高品質の単結晶シリコン酸化膜が得られ
ることを見出し、この知見に基づいて本発明をなすに至
った。
The present inventors have conducted various studies on the formation of a silicon oxide film. As a result, by oxidizing silicon in the presence of hydrogen atoms at a relatively low temperature, That a silicon oxide that easily undergoes a phase transition can be obtained, and that a silicon oxide thin film thus formed on a single crystal substrate is further annealed to cause a phase transition to obtain a high-quality single crystal silicon oxide film And found the present invention based on this finding.

【0005】すなわち、本発明は、シリコンを原子状水
素の存在下で酸素と接触させることを特徴とするシリコ
ンの酸化方法及び単結晶基板上に担持させたシリコン膜
を原子状水素の存在下酸化してシリコン酸化膜を形成さ
せたのち、アニールして単結晶化させることを特徴とす
る単結晶シリコン酸化膜の製造方法を提供するものであ
る。
That is, the present invention provides a method for oxidizing silicon, comprising contacting silicon with oxygen in the presence of atomic hydrogen, and oxidizing a silicon film carried on a single crystal substrate in the presence of atomic hydrogen. And forming a silicon oxide film, followed by annealing to form a single crystal, thereby providing a method of manufacturing a single crystal silicon oxide film.

【0006】[0006]

【発明の実施の形態】次に、添付図面に従って本発明を
詳細に説明する。図1は、本発明方法を行うための装置
の1例を示す略解断面図であって、超高真空装置1中の
適所に単結晶基板2を配置し、シリコン蒸発源から供給
されるシリコンをその表面に蒸着させ、シリコン膜を担
持した単結晶基板を形成させる。次に、水素原子源3か
ら原子状水素を、また酸素供給口4から酸素ガスをそれ
ぞれ供給し、排気口5より排気しながらシリコン膜を酸
化することにより、シリコン酸化膜が得られる。このよ
うにして得たシリコン酸化膜をさらにアニールすれば、
単結晶化が起り、単結晶シリコン酸化膜となる。本発明
方法における単結晶基板としては、シリコンを用いるの
が好ましいが、そのほかシリコンと整合性を有する金属
単結晶を用いることもできる。ここで、整合性を有する
とは、シリコン単結晶と対称性及び結晶格子間隔が一致
するか、一致していない場合でもその差が5%以内の範
囲内にあるものを意味する。このような金属としては、
ニッケルやコバルトが挙げられるが、特にシリコンとな
じみやすい点でニッケルが好ましい。
Next, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing an example of an apparatus for performing the method of the present invention, in which a single crystal substrate 2 is arranged at an appropriate position in an ultrahigh vacuum apparatus 1 and silicon supplied from a silicon evaporation source is supplied. A single crystal substrate carrying a silicon film is formed by vapor deposition on the surface. Next, a silicon oxide film is obtained by supplying atomic hydrogen from the hydrogen atom source 3 and supplying oxygen gas from the oxygen supply port 4 and oxidizing the silicon film while exhausting from the exhaust port 5. If the silicon oxide film thus obtained is further annealed,
Single crystallization occurs to form a single crystal silicon oxide film. It is preferable to use silicon as the single crystal substrate in the method of the present invention, but it is also possible to use a metal single crystal having compatibility with silicon. Here, having matching means that the symmetry and the crystal lattice spacing of the silicon single crystal match, or even if they do not match, the difference is within 5%. Such metals include
Nickel and cobalt are mentioned, but nickel is particularly preferable because it is easily compatible with silicon.

【0007】本発明方法において用いる場合、この単結
晶基板の表面を清浄化する必要がある。次いで、清浄化
された単結晶基板表面に、1200〜1300℃に加熱
したシリコンウエーハを蒸発源として熱蒸着させる。こ
のシリコンの層厚としては10〜40Å程度が適当であ
る。
When used in the method of the present invention, it is necessary to clean the surface of the single crystal substrate. Next, the silicon wafer heated to 1200 to 1300 ° C. is thermally vapor-deposited on the surface of the cleaned single crystal substrate using the silicon wafer as an evaporation source. An appropriate thickness of this silicon layer is about 10 to 40 °.

【0008】このようにして、シリコンを堆積した基板
を、次いで原子状水素を照射しながら、酸素と接触さ
せ、完全に酸化させる。この際の原子状水素は、これま
で原子状水素の生成に常用されている方法、例えば14
00〜1500℃に加熱した筒状又は網状タングステン
に水素ガスを接触させる方法によって形成される。反応
帯域中に導入される原子状水素と酸素ガスとの割合は、
容量比で1:1ないし10:1の範囲で選ばれる。ま
た、この酸化は、基板を300〜500℃の範囲の温度
に加熱して行われる。
[0008] The substrate on which silicon has been deposited in this manner is then brought into contact with oxygen while being irradiated with atomic hydrogen, thereby being completely oxidized. Atomic hydrogen at this time can be produced by a method conventionally used for producing atomic hydrogen, for example, 14
It is formed by a method in which hydrogen gas is brought into contact with tubular or reticulated tungsten heated to 00 to 1500 ° C. The ratio of atomic hydrogen and oxygen gas introduced into the reaction zone is
The volume ratio is selected in the range of 1: 1 to 10: 1. This oxidation is performed by heating the substrate to a temperature in the range of 300 to 500C.

【0009】このように酸化剤としての酸素ガスと原子
状水素を併用することにより、シリコンの表面に、いっ
たんヒドロキシル基(OH)が結合し、これが分解し
て、高品質のシリコン酸化膜が生成する。
As described above, by using oxygen gas as an oxidizing agent and atomic hydrogen together, a hydroxyl group (OH) is once bonded to the surface of silicon, and this is decomposed to form a high quality silicon oxide film. I do.

【0010】このようにして得られたシリコン酸化膜
は、次に800〜1200℃の範囲の温度において、ア
ニールすることにより単結晶化する。このアニールは、
酸素雰囲気中、又は酸素と水素との混合雰囲気中で行わ
れる。このようにして、単結晶基板上に1〜5mmの単
結晶シリコン酸化膜が形成される。
[0010] The silicon oxide film thus obtained is then annealed at a temperature in the range of 800 to 1200 ° C to make it a single crystal. This annealing
This is performed in an oxygen atmosphere or a mixed atmosphere of oxygen and hydrogen. Thus, a single-crystal silicon oxide film of 1 to 5 mm is formed on the single-crystal substrate.

【0011】本発明におけるシリコン酸化膜の形成は、
オージェ電子スペクトルにより確認することができ、ま
た単結晶シリコン酸化膜の形成は、低速電子線回折又は
走査型トンネル顕微鏡による観察で確認することができ
る。
In the present invention, the formation of the silicon oxide film is performed as follows.
It can be confirmed by an Auger electron spectrum, and the formation of the single crystal silicon oxide film can be confirmed by low-speed electron diffraction or observation with a scanning tunneling microscope.

【0012】[0012]

【発明の効果】本発明により得られる単結晶シリコン酸
化膜は、膜全体が単一のドメインからなる結晶から形成
され、5nm以下の薄膜にもかかわらず、極めて高品質
の特性を有する。したがって、シリコン集積回路を構成
するMOSトランジスタのゲート酸化膜として好適であ
る上、その他の新らしい機能をもつ素子材料としても利
用することができる。
The single crystal silicon oxide film obtained according to the present invention has a very high quality even though the whole film is formed of a single domain crystal and has a thickness of 5 nm or less. Therefore, it is suitable as a gate oxide film of a MOS transistor constituting a silicon integrated circuit, and can also be used as an element material having other new functions.

【0013】[0013]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。
Next, the present invention will be described in more detail with reference to examples.

【0014】実施例1 オージェ低速電子回折スペクトロメーターを備えたチャ
ンバーを10-9Torr以下に保ち、その中に石英と良
好な格子整合性を有するコバルトを金属基板として配置
した。この金属基板は、配向結晶ロッドから(000
1)面に沿って切断し、研磨して調製した。このコバル
ト表面を、先ずアルゴンイオンによりボンバードしたの
ち、チャンバー中、800℃においてアニールすること
により清浄化した。次いで、この清浄化したコバルト表
面に、1250℃に加熱したシリコンウエーハを蒸発さ
せてシリコン約2MLを堆積させた。このようにして得
たシリコン担持コバルト基板を、次に原子状水素の存在
下、350℃に加熱しながら酸化した。この際の原子状
水素分圧は2×10-6Torr、酸素分圧は2×10-7
Torrであった。低速電子回折パターンでは、コバル
ト表面上に形成されたシリコン酸化膜には無定形性の存
在は認められなかった。次いで、シリコン酸化膜を、酸
素雰囲気中、1100℃において2分間アニールし、コ
バルト(0001)面上で単結晶成長を行わせた。この
単結晶シリコン酸化膜を得るには、アニール温度を11
00℃にすることが必要である。理由は不明であるが、
このコバルトの融点が1494℃であるにもかかわらず
1100℃以上ではコバルトは多結晶となる。
Example 1 A chamber equipped with an Auger low-energy electron diffraction spectrometer was kept at 10 -9 Torr or less, and cobalt having good lattice matching with quartz was disposed therein as a metal substrate. This metal substrate was prepared from an oriented crystal rod (000
1) It was cut along the surface and polished. The cobalt surface was first bombarded with argon ions and then cleaned by annealing at 800 ° C. in a chamber. Next, the silicon wafer heated to 1250 ° C. was evaporated on the cleaned cobalt surface to deposit about 2 ML of silicon. The silicon-supported cobalt substrate thus obtained was then oxidized in the presence of atomic hydrogen while heating to 350 ° C. At this time, the atomic hydrogen partial pressure was 2 × 10 −6 Torr, and the oxygen partial pressure was 2 × 10 −7 Torr.
Torr. In the low-speed electron diffraction pattern, the amorphous nature was not recognized in the silicon oxide film formed on the cobalt surface. Next, the silicon oxide film was annealed in an oxygen atmosphere at 1100 ° C. for 2 minutes to grow a single crystal on the cobalt (0001) plane. To obtain this single crystal silicon oxide film, the annealing temperature is set to 11
It is necessary to be 00 ° C. For unknown reasons,
Although the melting point of cobalt is 1494 ° C., at 1100 ° C. or higher, cobalt becomes polycrystalline.

【0015】実施例2 コバルト(0001)面の代りにNi(111)面を基
板として用い、実施例1と同様にして単結晶シリコン酸
化膜を製造した。図2は、この際に用いたニッケル基板
の清浄表面のオージェ電子スペクトルであり、図3は、
シリコン膜を堆積したときのオージェ電子スペクトルで
ある。これらの図から分るように、図2においてシリコ
ンを堆積することにより61eVに現われているニッケ
ル由来のスペクトルは、図3においては減少し、代りに
91eVにシリコン由来のスペクトルが現われている。
次に、図4は酸素雰囲気中、350℃で原子状水素を照
射しながら堆積シリコンを完全に酸化したときのシリコ
ン酸化膜のオージェ電子スペクトルである。この図から
分るように、91eVに現われるシリコンによるスペク
トルは完全に消失し、新たに80eVにシリコンが酸化
されて生じたSiO2のオージェ電子スペクトルが現わ
れている。この際、ニッケルシリサイドなどの異種物質
の生成やニッケルが表面に偏析する現象は全く観測され
なかった。このようにして、膜厚約3nmのシリコン酸
化膜が得られた。次に、このシリコン酸化膜を800℃
で2分間熱処理することにより単結晶シリコン酸化膜を
製造することができた。
Example 2 A single crystal silicon oxide film was manufactured in the same manner as in Example 1 except that a Ni (111) plane was used as a substrate instead of a cobalt (0001) plane. FIG. 2 is an Auger electron spectrum of a clean surface of the nickel substrate used at this time, and FIG.
4 is an Auger electron spectrum when a silicon film is deposited. As can be seen from these figures, the nickel-derived spectrum appearing at 61 eV by depositing silicon in FIG. 2 is reduced in FIG. 3, and the silicon-derived spectrum appears at 91 eV instead.
Next, FIG. 4 is an Auger electron spectrum of the silicon oxide film when the deposited silicon is completely oxidized while irradiating atomic hydrogen at 350 ° C. in an oxygen atmosphere. As can be seen from this figure, the spectrum of silicon appearing at 91 eV completely disappears, and the Auger electron spectrum of SiO 2 generated by newly oxidizing silicon at 80 eV appears. At this time, the formation of foreign substances such as nickel silicide and the phenomenon of segregation of nickel on the surface were not observed at all. Thus, a silicon oxide film having a thickness of about 3 nm was obtained. Next, this silicon oxide film is
By performing the heat treatment for 2 minutes, a single crystal silicon oxide film could be manufactured.

【0016】実施例3 基板として単結晶シリコン(001)面を用い、実施例
1と同様にして、その上に約2MLのシリコンを堆積さ
せた。次いで、実施例1と同じ条件で基板を350℃に
加熱しながら、原子状水素の存在下で酸化処理した。こ
のようにして得た基板上のシリコン酸化膜について、低
速電子回折パターンを観察したところ、無定形性は全く
認められなかった。次に、このシリコン酸化膜を800
℃で2分間加熱し、酸素雰囲気中でアニールしたところ
単結晶化し、超薄型の単結晶シリコン酸化膜を得ること
ができた。
Example 3 Using a single crystal silicon (001) plane as a substrate, about 2 ML of silicon was deposited thereon in the same manner as in Example 1. Next, the substrate was oxidized in the presence of atomic hydrogen while heating the substrate to 350 ° C. under the same conditions as in Example 1. When the low-speed electron diffraction pattern of the silicon oxide film on the substrate thus obtained was observed, no amorphousness was observed. Next, this silicon oxide film is
Heating at 2 ° C. for 2 minutes and annealing in an oxygen atmosphere resulted in single crystallization, and an ultra-thin single crystal silicon oxide film was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法に用いる装置の1例を示す略解断
面図。
FIG. 1 is a schematic sectional view showing an example of an apparatus used in the method of the present invention.

【図2】 実施例2で得たニッケル清浄表面のオージェ
電子スペクトル。
FIG. 2 is an Auger electron spectrum of a clean nickel surface obtained in Example 2.

【図3】 実施例2で得たシリコン膜を堆積したニッケ
ル面のオージェ電子スペクトル。
FIG. 3 is an Auger electron spectrum of a nickel surface on which a silicon film obtained in Example 2 is deposited.

【図4】 実施例2で得たシリコン酸化膜のオージェ電
子スペクトル。
FIG. 4 is an Auger electron spectrum of the silicon oxide film obtained in Example 2.

【符号の説明】[Explanation of symbols]

1 超高真空装置 2 単結晶基板 3 水素原子源 4 酸素供給口 5 排気口 DESCRIPTION OF SYMBOLS 1 Ultra high vacuum apparatus 2 Single crystal substrate 3 Hydrogen atom source 4 Oxygen supply port 5 Exhaust port

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾関 雅志 茨城県つくば市東1−1−4 工業技術院 産業技術融合領域研究所内 Fターム(参考) 4G077 AA03 BB03 FE04 FE19 5F040 DC00 DC01 DC10 ED03 FC00 5F058 BA20 BC01 BC02 BE01 BE04 BF51 BF52 BF53 BF54 BF55 BF57 BF60 BF61 BF62 BF63 BH01 BH02 BH03 BJ01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masashi Ozeki 1-1-4 Higashi, Tsukuba, Ibaraki Pref. BC01 BC02 BE01 BE04 BF51 BF52 BF53 BF54 BF55 BF57 BF60 BF61 BF62 BF63 BH01 BH02 BH03 BJ01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリコンを原子状水素の存在下で酸素と
接触させることを特徴とするシリコンの酸化方法。
1. A method for oxidizing silicon, comprising bringing silicon into contact with oxygen in the presence of atomic hydrogen.
【請求項2】 シリコンが単結晶基板上に担持された膜
である請求項1記載の酸化方法。
2. The oxidation method according to claim 1, wherein the silicon is a film supported on a single crystal substrate.
【請求項3】 300〜500℃の温度において酸素と
接触させる請求項1又は2記載の酸化方法。
3. The oxidation method according to claim 1, wherein the oxidation is carried out at a temperature of 300 to 500 ° C. with oxygen.
【請求項4】 単結晶基板上に担持させたシリコン膜を
原子状水素の存在下酸化してシリコン酸化膜を形成させ
たのち、アニールして単結晶化させることを特徴とする
単結晶シリコン酸化膜の製造方法。
4. A single crystal silicon oxide, wherein a silicon film supported on a single crystal substrate is oxidized in the presence of atomic hydrogen to form a silicon oxide film, and then annealed to form a single crystal. Manufacturing method of membrane.
【請求項5】 酸化を300〜500℃の温度において
酸素と接触させて行う請求項4記載の製造方法。
5. The method according to claim 4, wherein the oxidation is carried out at a temperature of 300 to 500 ° C. by contacting with oxygen.
【請求項6】 アニールを800〜1200℃の温度に
保持して行う請求項4又は5記載の製造方法。
6. The method according to claim 4, wherein the annealing is performed while maintaining the temperature at 800 to 1200 ° C.
JP11015853A 1999-01-25 1999-01-25 Oxidation of silicon and production of single crystal silicon oxide film using the same Withdrawn JP2000211998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11015853A JP2000211998A (en) 1999-01-25 1999-01-25 Oxidation of silicon and production of single crystal silicon oxide film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11015853A JP2000211998A (en) 1999-01-25 1999-01-25 Oxidation of silicon and production of single crystal silicon oxide film using the same

Publications (1)

Publication Number Publication Date
JP2000211998A true JP2000211998A (en) 2000-08-02

Family

ID=11900378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11015853A Withdrawn JP2000211998A (en) 1999-01-25 1999-01-25 Oxidation of silicon and production of single crystal silicon oxide film using the same

Country Status (1)

Country Link
JP (1) JP2000211998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075026A1 (en) * 2001-03-16 2002-09-26 Nippon Sheet Glass Co., Ltd. Metallic very thin film, metallic very thin film multilayer body, and method for manufacturing the metallic very thin film or the metallic very thin film laminate
WO2006095752A1 (en) * 2005-03-08 2006-09-14 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate treatment device
US7605095B2 (en) 2007-02-14 2009-10-20 Tokyo Electron Limited Heat processing method and apparatus for semiconductor process
KR101201652B1 (en) * 2007-02-14 2012-11-14 도쿄엘렉트론가부시키가이샤 Heat processing method for semiconductor process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075026A1 (en) * 2001-03-16 2002-09-26 Nippon Sheet Glass Co., Ltd. Metallic very thin film, metallic very thin film multilayer body, and method for manufacturing the metallic very thin film or the metallic very thin film laminate
US7015495B2 (en) 2001-03-16 2006-03-21 Nippon Sheet Glass Co., Japan Metallic very thin film, metallic very thin film multilayer body, and method for manufacturing the metallic very thin film or the metallic very thin film laminate
WO2006095752A1 (en) * 2005-03-08 2006-09-14 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate treatment device
JPWO2006095752A1 (en) * 2005-03-08 2008-08-14 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
KR100909697B1 (en) * 2005-03-08 2009-07-29 가부시키가이샤 히다치 고쿠사이 덴키 Semiconductor Device Manufacturing Method and Substrate Processing Apparatus
US7713883B2 (en) 2005-03-08 2010-05-11 Hitachi Kokusai Electric Inc. Manufacturing method of a semiconductor device, and substrate processing apparatus
JP2011003915A (en) * 2005-03-08 2011-01-06 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and substrate treatment device
JP4672007B2 (en) * 2005-03-08 2011-04-20 株式会社日立国際電気 Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
US7605095B2 (en) 2007-02-14 2009-10-20 Tokyo Electron Limited Heat processing method and apparatus for semiconductor process
KR101201652B1 (en) * 2007-02-14 2012-11-14 도쿄엘렉트론가부시키가이샤 Heat processing method for semiconductor process
KR101232970B1 (en) * 2007-02-14 2013-02-13 도쿄엘렉트론가부시키가이샤 Heat processing method and apparatus for semiconductor process, and computer readable medium

Similar Documents

Publication Publication Date Title
TWI447908B (en) Replacement metal gate transistors with reduced gate oxide leakage
US4777150A (en) Process for the formation of a refractory metal silicide layer on a substrate for producing interconnection
JPH04133313A (en) Manufacture of semiconductor
TWI300249B (en)
JP2001007204A (en) Structure of multilayer wiring and manufacture thereof
JP2000353666A (en) Semiconductor thin film and manufacture thereof
JPS6217026B2 (en)
US6825538B2 (en) Semiconductor device using an insulating layer having a seed layer
JP2000211998A (en) Oxidation of silicon and production of single crystal silicon oxide film using the same
JPH10223551A (en) Method for manufacturing soi substrate
JP4768967B2 (en) Stencil mask for ion implantation and manufacturing method thereof
JPS6226575B2 (en)
JPH10270434A (en) Semiconductor wafer cleaning method for oxide film forming method
JP2855903B2 (en) Method for manufacturing semiconductor device
WO2013048270A1 (en) Method for forming palladium silicide nanowires
JPH0360123A (en) Surface treatment and device therefor
JP4031021B2 (en) Method for manufacturing thin film transistor
JPS6136374B2 (en)
WO2024095887A1 (en) Method for manufacturing semiconductor device, manufacturing device for semiconductor device, and semiconductor device
JP3614333B2 (en) Insulated gate type field effect transistor fabrication method
JPH11111713A (en) Improvement of insulating film and manufacture of semi conductor device
JPH0393223A (en) Manufacture of semiconductor device
JPH0461218A (en) Semiconductor device, its manufacture and alignment method
JP3507108B2 (en) Method of forming deposited film by bias sputtering method
KR100395912B1 (en) Method for forming the gate electrode in semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20051108

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404