JP2000211921A - Preparation of oxide superconductor - Google Patents

Preparation of oxide superconductor

Info

Publication number
JP2000211921A
JP2000211921A JP11055982A JP5598299A JP2000211921A JP 2000211921 A JP2000211921 A JP 2000211921A JP 11055982 A JP11055982 A JP 11055982A JP 5598299 A JP5598299 A JP 5598299A JP 2000211921 A JP2000211921 A JP 2000211921A
Authority
JP
Japan
Prior art keywords
superconductor
oxide
alloy
barium
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11055982A
Other languages
Japanese (ja)
Inventor
Kazushi Sugawara
和士 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11055982A priority Critical patent/JP2000211921A/en
Publication of JP2000211921A publication Critical patent/JP2000211921A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a superconductor electric wire or a large-area superconductor by diffusing or implanting Ba and O into an alloy containing at least Y or a rare earth element and Cu. SOLUTION: A powder of an oxide 7 containing Ba such as BaCO3 or BaO is placed in a high temperature-resistant vessel 12, which is then heated in oxygen or air 10 with a heater 11. In the heated state an RCu3 alloy wire 13 is slowly moved. Thereby, a Ba diffusion layer is formed on the RCu3 alloy wire 13 to provide a superconductor. A gas 14 of a metalorganic substance containing Ba in place of the oxide 7 containing the Ba such as the BaCO3 and oxygen or air 10 can be made to flow through the high temperature- resistant vessel 12 and heated to form a superconductor. Diethoxybarium, bisacetylacetonatobarium, barium naphthoate, barium octylate, etc., are cited as the metalorganic substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明に属する技術分野】本発明は、酸化物超電導体の
作製方法に関する。
[0001] The present invention relates to a method for producing an oxide superconductor.

【0002】[0002]

【従来の技術】酸化物超電導体には、例えばイットリウ
ム(Y)、バリウム(Ba)、銅(Cu)、 超電導体として、Yを他の希土類元素のネオジム(N
d)、サマリウム(Sm)、ユウロピウム(Eu)、ガ
ドリニウム(Gd)、テルビウム(Tb)、ジスプロシ
ウム(Dy)、ホルミウム(Ho)、エルビウム(E
r)、ツリウム(Tm)又はイッテルビウム(Yb)な
どで置換したものもある。以下、Y又は希土類元素をR
で示す。このような 、BaCO、CuO等の粉末をR、Ba、C
uの組成比がR:Ba:Cu=1:2:3になる様に混
合し、圧力を印加することにより、ペレットを作製し、
しかる後、当該ペレットを大気中又は酸素雰囲気中で焼
結して作製する方法がある。
2. Description of the Related Art Oxide superconductors include, for example, yttrium (Y), barium (Ba), copper (Cu), As a superconductor, Y is another rare earth element neodymium (N
d), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (E)
r), thulium (Tm) or ytterbium (Yb). Hereinafter, Y or a rare earth element is represented by R
Indicated by like this Powders of R 2 O 3 , BaCO 3 , CuO, etc. are converted to R, Ba, C
The mixture is mixed so that the composition ratio of u becomes R: Ba: Cu = 1: 2: 3, and a pressure is applied to produce a pellet.
Thereafter, there is a method of manufacturing by sintering the pellet in the air or oxygen atmosphere.

【0003】[0003]

【発明が解決しようとする課題】従来の方法で作製した
超電導体は、セラミック形態で、機械的に脆く、線状の
超電導体や大面積超電導体の作製が困難である。本発明
はこの様な欠点を解決し、超電導体電線や大面積超電導
体の作製を可能にする。
The superconductor produced by the conventional method is in a ceramic form, is mechanically brittle, and it is difficult to produce a linear superconductor or a large-area superconductor. The present invention solves such drawbacks and enables the production of superconductor wires and large-area superconductors.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

RとCuを含む合金RCuを作製し、しかる後、当該
合金にBa及びO元素を拡散又はイオン注入等の手段で
添加せしめる。この方法により、超電導線や大面積超電
導体の作製が可能となる。
An alloy RCu 3 containing R and Cu is produced, and thereafter, Ba and O elements are added to the alloy by means such as diffusion or ion implantation. By this method, a superconducting wire or a large-area superconductor can be manufactured.

【0005】[0005]

【発明の実施の形態】第1例 本発明においては、図1に示した様に、高周波加熱機コ
イル(4)等で金属製ルツボ(5)を加熱する。金属製
ルツボ(5)内には、予め、RとCuを、例えば、R:
Cu=1:3の比率で混合して入れておく。酸化を防止
するために、金属製ルツボ(5)の加熱中には、Arガ
ス(又は、Heガス等の希ガス)(3)を流す。金属製
ルツボ(5)を温度1500℃位に加熱すると、RとC
uは溶け、合金となる。金属製ルツボ(5)の温度はR
とCuが溶け合う温度であれば1500℃以外でもよ
い。冷却後、金属製ルツボ(5)を取り出し、旋盤等を
利用して、金属製ルツボ(5)を切削することにより、
棒状の合金、RCu、を取り出すことが出来る。その
後、当該合金を、再び旋盤で、かんなくず状に薄くす
る。次に、当かんなくず状の合金とBaCOをR:B
a:Cu=1:2:3の比率になるように、混合し加圧
することにより、ペレットを作製し、当ペッレトを大気
中で、例えば、900℃、24時間、焼成することによ
り、セラミック超電導体を作製できる。この様にして作
製した超電導体の臨界温度(即ち、電気抵抗が零となる
温度)は、約90Kである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment In the present invention, as shown in FIG. 1, a metal crucible (5) is heated by a high-frequency heater coil (4) or the like. In the metal crucible (5), R and Cu, for example, R:
Cu is mixed and put in a ratio of 1: 3. In order to prevent oxidation, an Ar gas (or a rare gas such as a He gas) (3) is flown during the heating of the metal crucible (5). When a metal crucible (5) is heated to a temperature of about 1500 ° C., R and C
u melts and becomes an alloy. The temperature of the metal crucible (5) is R
The temperature may be other than 1500 ° C. as long as the temperature is such that Cu and Cu melt. After cooling, the metal crucible (5) is taken out, and the metal crucible (5) is cut using a lathe or the like.
A rod-shaped alloy, RCu 3 , can be taken out. Thereafter, the alloy is thinned in a lathe again into a smooth shape. Next, a straight alloy and BaCO 3 were mixed with R: B.
a: Cu = 1: 2: 3 is mixed and pressurized to produce pellets, and the pellets are baked in air at, for example, 900 ° C. for 24 hours to obtain ceramic superconductivity. Body can be made. The critical temperature of the superconductor fabricated in this way (that is, the temperature at which the electric resistance becomes zero) is about 90K.

【0006】第2例 第1例で作製した合金(RCu)(6)を、図2に示
した様に、予めBaCO又はBaO等Baを含む酸化
物(7)を入れた石英製容器(8)に入れる。しかる
後、石英製容器(8)全体を大気圧中又は酸素雰囲気中
で、例えば、900℃、24時間、焼成する。当熱処理
より、BaCO又はBaO等Baを含む酸化物(7)
のBaが合金RCu(6)に拡散し、図3に示した様
に、Ba拡散層(9)を形 る。Ba拡散層(9)の深さやBaの濃度は、焼成時間
や焼成温度に依存する。大面積のRCuの合金を作製
することは現代技術で、容易である。従って、本発明の
方法を用いることにより、大面積超電導体の作製が可能
になる。
Second Example As shown in FIG. 2, the alloy (RCu 3 ) (6) produced in the first example is made of quartz containing a BaCO 3 or an oxide (7) containing Ba, such as BaO, in advance. Put in (8). Thereafter, the entire quartz container (8) is fired at atmospheric pressure or in an oxygen atmosphere, for example, at 900 ° C. for 24 hours. Oxide containing Ba such as BaCO 3 or BaO by this heat treatment (7)
Ba diffuses into the alloy RCu 3 (6) to form a Ba diffusion layer (9) as shown in FIG. You. The depth of the Ba diffusion layer (9) and the concentration of Ba depend on the firing time and the firing temperature. Making large area RCu 3 alloys is a modern technology and easy. Therefore, by using the method of the present invention, a large-area superconductor can be manufactured.

【0007】第3例 耐高温容器(12)を用いた超電導体の作製方法を図4
に示す。耐高温容器(12)にBaCO又はBaO等
Baを含む酸化物(7)の粉体を入れ、耐高温容器(1
2)をヒーター(11)で、酸素又は空気(10)中で
加熱する。加熱した状態で、RCu合金線(13)
を、ゆっくり移動させる。こうすることにより、第2例
で説明した通り、RCu合金線(13)にBa拡散層
(9)が形成し、超電導体となる。また、類似の方法と
して、耐高温容器(12)に、BaCOやBaO等B
aを含む酸化物(7)の代わりに、Baを含む金属有機
物のガス(14)と酸素又は空気(10)流し、加熱す
ることにより、超電導体を形成することもできる。ここ
で、金属有機物として、ジエトキシバリウム[Ba(O
]、ビスアセチルアセトナトバリウム[B
a(C]、ナフテン酸バリウム[Ba
(C2n−2]、オクチル酸バリウム[B
a(C15COO)]等がある。
Third Example A method of manufacturing a superconductor using a high temperature container (12) is shown in FIG.
Shown in A powder of an oxide (7) containing Ba, such as BaCO 3 or BaO, is placed in a high temperature resistant container (12),
2) is heated with a heater (11) in oxygen or air (10). While heated, RCu 3 alloy wire (13)
Is moved slowly. By doing so, as described in the second example, Ba diffusion layer (9) is formed in RCu 3 alloy wire (13), the superconductor. Also, as a similar method, a high temperature resistant container (12) is charged with B, such as BaCO 3 or BaO.
Instead of the oxide (7) containing a, a superconductor can also be formed by flowing a gas (14) of a metal organic material containing Ba and oxygen or air (10) and heating it. Here, as the metal organic material, diethoxybarium [Ba (O
C 2 H 5 ) 2 ], bisacetylacetonatobarium [B
a (C 5 H 7 O 2 ) 2 ], barium naphthenate [Ba
(C n H 2n-2 O 2) 2], barium octylate [B
a (C 7 H 15 COO) 2 ].

【0008】第4例 Baを含む金属有機物のガス(14)は、有機金属気相
成長法(MOCVD)によく使用される。図5に示した
様に、合金(RCu)(6)をサセプター(15)上
に設置し、高周波加熱コイル(4)によりサセプター
(15)を加熱する。次に、Baを含む金属有機物のガ
ス(14)及び酸素又は空気(10)を流すことによ
り、合金(RCu)(6)の一部にBa及び酸素が拡
散し、RBaCu
Fourth Example A metal organic gas (14) containing Ba is often used in metal organic chemical vapor deposition (MOCVD). As shown in FIG. 5, the alloy (RCu 3 ) (6) is placed on the susceptor (15), and the susceptor (15) is heated by the high-frequency heating coil (4). Then, by flowing a gas (14) and oxygen or air (10) of the metal-organic containing Ba, Ba and oxygen are diffused into a portion of the alloy (RCu 3) (6), RBa 2 Cu 3 O y

【0009】第5例 合金(RCu)(6)よりなる板又は膜を予め作製す
る。膜状のRCuは、スパッタ法、レーザーアブレー
ション、真空蒸着等、物理的方法を用いれば、例えば、
MgO基板上に容易に形成できる。当該RCuの板又
は膜に、Baをイオン注入や蒸着法にて注入し、熱処理
を施すことにより、RCuの一部を超電導体にするこ
とが出来る。
Fifth Example A plate or film made of the alloy (RCu 3 ) (6) is prepared in advance. RCu 3 in the form of a film can be formed by a physical method such as sputtering, laser ablation, or vacuum deposition, for example.
It can be easily formed on an MgO substrate. By injecting Ba into the RCu 3 plate or film by ion implantation or vapor deposition and performing heat treatment, a part of the RCu 3 can be made into a superconductor.

【0010】[0010]

【発明の効果】以上の例においてRCu合金を予め作
製することにより、種々の形状の超電導体を作製するこ
とが出来る。本発明の方法を用いることにより、大面積
超電導体や超電導線を作製することが出来る。
In the above examples, by preparing RCu 3 alloy in advance, superconductors of various shapes can be manufactured. By using the method of the present invention, a large-area superconductor or a superconducting wire can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】RCu合金の作製方法の断面図FIG. 1 is a cross-sectional view of a method for producing an RCu 3 alloy.

【図2】合金(RCu)にBaを拡散させる断面図FIG. 2 is a cross-sectional view in which Ba is diffused into an alloy (RCu 3 ).

【図3】Ba拡散層の断面図FIG. 3 is a sectional view of a Ba diffusion layer.

【図4】Baを含む酸化物又は金属有機物を用いた超電
導体作製方法の断面図
FIG. 4 is a cross-sectional view of a method for manufacturing a superconductor using an oxide or a metal organic material containing Ba.

【図5】Baを含む金属有機物のガスを用いた超電導体
作製方法の断面図
FIG. 5 is a cross-sectional view of a method for producing a superconductor using a metal organic material gas containing Ba.

【符号の説明】[Explanation of symbols]

1はR元素とCu元素の合金(RCu) 2は石英管 3はArガス(又は、Heガス等の希ガス) 4は高周波加熱機コイル(インダクションヒーター) 5は金属製ルツボ 6は合金(RCu) 7はBaCO又はBaO等Baを含む酸化物 8は石英製容器 9はBa拡散層 10は酸素又は空気 11はヒーター 12は耐高温容器 13はRCu合金線 14はBaを含む金属有機物のガス 15はサセプター1 is an alloy of an R element and a Cu element (RCu 3 ) 2 is a quartz tube 3 is an Ar gas (or a rare gas such as He gas) 4 is a high frequency heater coil (induction heater) 5 is a metal crucible 6 is an alloy ( RCu 3 ) 7 is an oxide containing Ba such as BaCO 3 or BaO 8 is a quartz vessel 9 is a Ba diffusion layer 10 is oxygen or air 11 is a heater 12 is a high temperature vessel 13 is an RCu 3 alloy wire 14 is a metal containing Ba Organic gas 15 is the susceptor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 12/00 ZAA H01B 12/00 ZAA 13/00 565 13/00 565D // C22C 9/00 C22C 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 12/00 ZAA H01B 12/00 ZAA 13/00 565 13/00 565D // C22C 9/00 C22C 9 / 00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくともイットリウム(Y)元素又は希
土類元素と銅(Cu)の元素を含有する合金に、バリウ
ム(Ba)元素および酸素(O)元素を拡散又は注入せ
しめて作製することを特徴とする超電導体の作製方法。
An alloy containing at least a yttrium (Y) element or a rare earth element and a copper (Cu) element is manufactured by diffusing or implanting a barium (Ba) element and an oxygen (O) element. To manufacture superconductors.
【請求項2】請求項1記載の合金において、Y元素又は
希土類元素とCuの組成比が約1:3であることを特徴
とする超電導体作製方法。
2. A method for producing a superconductor according to claim 1, wherein the composition ratio of Y element or rare earth element to Cu is about 1: 3.
【請求項3】請求項1又は請求項2において、Baを拡
散せしめるに使用する原料が、Baを構成元素の一部と
する酸化物であることを特徴とする超電導体作製方法。
3. The method for producing a superconductor according to claim 1, wherein the raw material used for diffusing Ba is an oxide containing Ba as a constituent element.
【請求項4】請求項3に記載の酸化物がBaCO又は
BaOのいずれかであり、当該酸化物と請求項1又は請
求項2記載の合金を接触せしめ、加熱することを特徴と
する超電導体の作製方法。
4. An oxide according to claim 3, wherein the oxide is either BaCO 3 or BaO, and the oxide and the alloy according to claim 1 or 2 are brought into contact with each other and heated. How to make the body.
【請求項5】請求項1記載のBa元素を拡散又は注入せ
しめるに、真空蒸着法、スパッタ法、イオン注入法、レ
ーザーアブレーション法、分子線ビーム蒸着法のいずれ
かの方法で行うことを特徴とする超電導体の作製方法。
5. The method according to claim 1, wherein the Ba element according to claim 1 is diffused or implanted by any one of a vacuum evaporation method, a sputtering method, an ion implantation method, a laser ablation method, and a molecular beam evaporation method. To manufacture superconductors.
【請求項6】請求項1又は請求項2において、Ba元素
を拡散せしめるに、Baを含む金属有機物の気体を使用
することを特徴とする超電導体の作製方法。
6. A method for producing a superconductor according to claim 1, wherein a Ba-containing metal organic gas is used to diffuse the Ba element.
【請求項7】請求項6記載の金属有機物が、ジエトキシ
バリウム[Ba(OC]、ビスアセチルアセ
トナイトバリウム[Ba(C]、ナフテ
ン酸バリウム[Ba(C2n−2]、オク
チル酸バリウム[Ba(C15COO)]、のい
ずれかであることを特徴とする超電導体の作製方法。
7. The metal organic substance according to claim 6, wherein the metal organic substance is diethoxybarium [Ba (OC 2 H 5 ) 2 ], bisacetylacetonite barium [Ba (C 5 H 7 O 2 ) 2 ], barium naphthenate [ Ba (C n H 2n-2 O 2) 2], a method for manufacturing a superconductor, characterized in that barium octylate [Ba (C 7 H 15 COO ) 2], is either.
JP11055982A 1999-01-26 1999-01-26 Preparation of oxide superconductor Pending JP2000211921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11055982A JP2000211921A (en) 1999-01-26 1999-01-26 Preparation of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11055982A JP2000211921A (en) 1999-01-26 1999-01-26 Preparation of oxide superconductor

Publications (1)

Publication Number Publication Date
JP2000211921A true JP2000211921A (en) 2000-08-02

Family

ID=13014300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11055982A Pending JP2000211921A (en) 1999-01-26 1999-01-26 Preparation of oxide superconductor

Country Status (1)

Country Link
JP (1) JP2000211921A (en)

Similar Documents

Publication Publication Date Title
EP0401461A2 (en) Oxide superconductor and method of manufacturing the same
EP0369464B1 (en) Method of producing superconducting ceramic wire
JP2671916B2 (en) Method for manufacturing superconductor and method for manufacturing superconducting circuit
JP2855614B2 (en) Method of forming superconducting circuit
JP2000211921A (en) Preparation of oxide superconductor
US5147847A (en) Method for manufacturing a pipe utilizing a superconducting ceramic material
US5217943A (en) Process for making composite ceramic superconducting wires
JPH0825742B2 (en) How to make superconducting material
JPS63236218A (en) Superconductive wire
JP2603688B2 (en) Superconducting material reforming method
JP2713343B2 (en) Superconducting circuit fabrication method
JPS63304678A (en) Manufacture of oxide superconducting circuit
JPH01256107A (en) Manufacture of oxide superconducting coil
JP2573964B2 (en) Manufacturing method of oxide superconducting wire
JP2583552B2 (en) Method for producing oxide superconducting thin film
JPS63241825A (en) Manufacture of superconductor
JP2742418B2 (en) Method for producing oxide superconducting thin film
JP2564897B2 (en) Manufacturing method of superconducting wire and coil with high critical current density
AU656665B2 (en) Method of producing superconducting ceramic wire
JP2727565B2 (en) Superconductor manufacturing method
US6531426B1 (en) Neodymium gallate surface barrier for melt-processed YBa2Cu3Ox conductor with nickel sheath
JPS63289726A (en) Manufacture of compound superconductive thin film
JPH02271506A (en) Manufacture of oxide superconducting sheet coil
JP2554660B2 (en) Method for producing compound superconducting wire
JPS63240005A (en) Manufacture of superconducting material