JP2000210377A - Amorphous biodegradable-absorptive implant material - Google Patents

Amorphous biodegradable-absorptive implant material

Info

Publication number
JP2000210377A
JP2000210377A JP10366102A JP36610298A JP2000210377A JP 2000210377 A JP2000210377 A JP 2000210377A JP 10366102 A JP10366102 A JP 10366102A JP 36610298 A JP36610298 A JP 36610298A JP 2000210377 A JP2000210377 A JP 2000210377A
Authority
JP
Japan
Prior art keywords
amorphous
implant material
molding
crystallinity
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10366102A
Other languages
Japanese (ja)
Other versions
JP3597716B2 (en
Inventor
Yasuo Shikinami
保夫 敷波
Masaki Okuno
政樹 奥野
Masayuki Ejiri
雅之 江尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP36610298A priority Critical patent/JP3597716B2/en
Publication of JP2000210377A publication Critical patent/JP2000210377A/en
Application granted granted Critical
Publication of JP3597716B2 publication Critical patent/JP3597716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject implant material which has the decreased anisotropy in terms of strength accompanying the orientation of crystals, is highly tough as an amorphous material, is dense and has enhanced strength and fast hydrolyzability by forming the implant material of a dense molding which is an amorphous molding having specific % or below of degree of crystallinity and has the density higher than before molding. SOLUTION: This biodegradable-absorptive implant material is formed of the dense molding which is the amorphous molding having the degree of crystallinity of <5% and has the density higher than before molding. The implant material is formed of the amorphous molding of a biodegradable-absorptive polymer and, therefore, the absolute strength thereof is generally inferior compared with the crystalline implant material (the degree of crystallinity of >=70%) having the extremely high degree of crystallinity but the material is free of the brittleness derived from the excessive degree of crystallinity and the hardness accompanying the orientation thereof, is highly tough and hardly gives rise to cracking and chipping even when the material is subjected to impact force. Even more, the material is the dense molding having the density higher than before molding and, therefore, the strength of the molding itself is improved and the easy destruction does not occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば骨接合術、
骨移植術、骨切り術、骨再建術、靱帯再建術、関節固定
術、開窓部の固定や充填等に好適に使用される、アモル
ファスの生体内分解吸収性インプラント材に関する。
The present invention relates to, for example, osteosynthesis,
The present invention relates to an amorphous biodegradable and absorbable implant material suitably used for bone grafting, osteotomy, bone reconstruction, ligament reconstruction, joint fusion, fixation and filling of fenestrations, and the like.

【0002】[0002]

【従来の技術】近年、生体内で分解、吸収されるインプ
ラント材が研究され、整形外科、形成外科、胸部外科、
口腔外科、脳外科などの外科分野では、従来の金属製又
はセラミックス製の骨接合用プレート、スクリュー、ピ
ン、シート(メッシュ)、ブロックなどのインプラント
材に代えて、ポリグリコール酸、ポリ乳酸などの生体内
分解吸収性のポリマーからなるインプラント材が開発さ
れた。
2. Description of the Related Art In recent years, implant materials that are decomposed and absorbed in vivo have been studied, and orthopedic surgery, plastic surgery, thoracic surgery,
In the field of surgery such as oral surgery and neurosurgery, instead of conventional implant materials such as metal or ceramic osteosynthesis plates, screws, pins, sheets (mesh) and blocks, raw materials such as polyglycolic acid and polylactic acid are used. Implant materials consisting of biodegradable and absorbable polymers have been developed.

【0003】このような生体内分解吸収性のインプラン
ト材は、金属製のものに比べると強度が弱いので、一軸
方向に延伸して分子鎖及び結晶を一軸配向させたり、繊
維により自己強化させたり、高分子量のポリマーを使用
して、強度を向上させて使用しているのが従来の技術で
ある。
[0003] Since such biodegradable and absorbable implant materials are weaker than metal materials, they are stretched uniaxially to uniaxially orient molecular chains and crystals or self-reinforced by fibers. The prior art uses a high molecular weight polymer to improve the strength.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ポリL
−乳酸等から成る結晶性のインプラント材を上記のよう
に一軸配向させて強度を高めたものは、確かに生体の皮
質骨(曲げ強度:約200MPa)以上の曲げ強度を示
すが、結晶性であるが故に加水分解による生体内での分
解が遅く、その大きさや厚みあるいは埋入部位によって
は5〜7年もの長い期間が完全分解と吸収に必要である
という問題を残していた。
However, the poly L
-A crystalline implant material made of lactic acid or the like, which is uniaxially oriented as described above to increase the strength, certainly exhibits a flexural strength higher than that of the cortical bone (flexural strength: about 200 MPa) of a living body. For this reason, decomposition in vivo by hydrolysis is slow, and a problem that a long period of 5 to 7 years is required for complete decomposition and absorption depending on the size, thickness or implantation site remains.

【0005】本発明は上記の問題に鑑みなされたもの
で、その目的とするところは、結晶の配向に伴う強度的
な異方性が少なく、非晶性の材料としては靱性に富み、
緻密で強度が高められた、加水分解の速い生体内分解吸
収性インプラント材を提供することにある。
The present invention has been made in view of the above-mentioned problems, and has as its object to reduce the anisotropy in strength associated with the crystal orientation and to provide a toughness as an amorphous material.
It is an object of the present invention to provide a biodegradable and absorbable implant material that is dense and has high strength and that is rapidly hydrolyzed.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
め、本発明の請求項1に係る生体内分解吸収性インプラ
ント材は、結晶化度が5%未満のアモルファス成形体で
あって、成形前の密度よりも高い密度を有する緻密な成
形体から成ることを特徴としている。
In order to achieve the above object, the biodegradable and absorbable implant material according to claim 1 of the present invention is an amorphous molded article having a degree of crystallinity of less than 5%. It is characterized by comprising a dense compact having a higher density than the previous density.

【0007】そして、請求項2に係るインプラント材
は、上記アモルファス成形体が鍛造成形されたものであ
ることを特徴とし、請求項3に係るインプラント材は、
上記アモルファス成形体がL−乳酸とD−乳酸の共重合
体、又は、L−ラクチドとD−ラクチドの共重合体で成
形されたものであることを特徴とし、請求項4に係るイ
ンプラント材は、上記共重合体がランダム共重合体であ
って、L−乳酸又はL−ラクチドの占める割合が20〜
80モル%であることを特徴とし、請求項5に係るイン
プラント材は、上記アモルファス成形体がポリL−乳酸
又はポリD−乳酸の非晶質の単一重合体で成形されたも
のであることを特徴とし、請求項6に係るインプラント
材は、バイオセラミックス粉体が含有されていることを
特徴とするものである。
The implant material according to claim 2 is characterized in that the amorphous molded body is forged. The implant material according to claim 3 is
The implant material according to claim 4, wherein the amorphous molded body is formed of a copolymer of L-lactic acid and D-lactic acid, or a copolymer of L-lactide and D-lactide. The copolymer is a random copolymer, and the ratio of L-lactic acid or L-lactide is 20 to
The implant material according to claim 5, characterized in that the amorphous molded body is formed of an amorphous homopolymer of poly L-lactic acid or poly D-lactic acid. The implant material according to claim 6 is characterized in that it contains a bioceramics powder.

【0008】本発明に言う「アモルファス」とは、上記
のように結晶化度が5%未満のものを意味し、必ずしも
完全な非晶質である必要はない。また、本発明にいう
「ポリL−乳酸」とは、L−乳酸の環状二量体であるL
−ラクチドの重合体であるポリL−ラクチドも含む概念
であり、「ポリD−乳酸」とは、D−乳酸の環状二量体
であるD−ラクチドの重合体であるポリD−ラクチドも
含む概念である。
The term "amorphous" as used in the present invention means that the degree of crystallinity is less than 5% as described above, and it is not always necessary to be completely amorphous. In the present invention, “poly L-lactic acid” refers to L-lactic acid, a cyclic dimer of L-lactic acid.
-Is a concept including poly-L-lactide which is a polymer of lactide, and "poly-D-lactic acid" also includes poly-D-lactide which is a polymer of D-lactide which is a cyclic dimer of D-lactic acid It is a concept.

【0009】本発明の請求項1のインプラント材は、生
体内分解吸収性ポリマーのアモルファス成形体からなる
ものであるから、結晶化度の頗る高い結晶性インプラン
ト材(結晶化度70%以上)に比べると、絶対的強度は
総じて劣るものの、過度の結晶化度とその配向に伴う硬
さに由来する脆さがなく靱性に富んでおり、衝撃力を受
けても割れ・欠けを生じることがまれである。しかも、
このアモルファス成形体は、成形前の密度よりも高い密
度を有する緻密な成形体であるため、成形体自体の強度
が向上しており、容易に破壊されることはない。また、
非晶質であるために形態的に結晶質のものよりも親水的
であり、加水分解の機会が分解の初期から恵まれている
ので、場合によっては1年以内で分解、吸収されて、消
失する。
The implant material according to the first aspect of the present invention is made of an amorphous molded article of a biodegradable and absorbable polymer, so that it can be used as a crystalline implant material having a very high crystallinity (crystallinity of 70% or more). In comparison, although the absolute strength is generally inferior, it is rich in toughness without brittleness due to excessive crystallinity and hardness accompanying its orientation, and rarely cracks or chips even when subjected to impact force. It is. Moreover,
Since this amorphous molded body is a dense molded body having a higher density than that before molding, the strength of the molded body itself is improved, and the amorphous molded body is not easily broken. Also,
Because it is amorphous, it is morphologically more hydrophilic than crystalline one, and the opportunity for hydrolysis is blessed from the beginning of decomposition, so it may be decomposed, absorbed, and disappeared within one year in some cases. .

【0010】特に、請求項2のインプラント材のよう
に、アモルファス成形体が鍛造成形されたものである
と、生体内分解吸収性ポリマーの分子鎖集合のドメイン
もしくはクラスター[分子レベルではポリマー鎖を形成
するL−乳酸(L−ラクチド)或はD−乳酸(D−ラク
チド)の互いに反するいくつかの連続した異性体で形成
されるシークエンスの間で、分子内又は分子間で立体規
則複合体(stereocomplex)を形成してこれが強度の向上
につながる]が軸方向の異なる多数の基準軸に沿って配
向した多軸配向体となるため、強度的な異方性が小さく
なって、どの方向からの力に対しても破壊し難くなり、
機械的強度が総体的に向上する。尚、鍛造成形について
は後で説明する。
[0010] In particular, when the amorphous molded body is forged, as in the case of the implant material according to the second aspect, the domain or cluster of the molecular chain assembly of the biodegradable and absorbable polymer [forms a polymer chain at the molecular level. Intramolecular or intermolecular stereocomplexes between sequences formed of several contiguous consecutive isomers of L-lactic acid (L-lactide) or D-lactic acid (D-lactide) ), Which leads to an improvement in the strength]. However, since the multiaxially oriented body is oriented along a number of reference axes having different axial directions, the strength anisotropy is reduced, and the force from any direction is reduced. Harder to destroy,
The mechanical strength is improved overall. The forging will be described later.

【0011】生体内分解吸収性ポリマーは、本質的に非
晶性であるか結晶性であるかを問わず、成形条件を調整
することにより結晶化度が5%未満のアモルファス成形
体を得ることができるものであれば全て使用可能である
が、その中でも、請求項3のインプラント材に使用され
るL−乳酸とD−乳酸の共重合体やL−ラクチドとD−
ラクチドの共重合体、或は、請求項5のインプラント材
に使用されるポリL−乳酸、ポリD−乳酸などの単一重
合体が好適であり、特に、請求項4のインプラント材に
使用されるようなL−乳酸又はL−ラクチドが20〜8
0モル%を占めるランダム共重合体は極めて好適であ
る。
Regarding the biodegradable and absorbable polymer, regardless of whether it is essentially amorphous or crystalline, an amorphous molded article having a crystallinity of less than 5% can be obtained by adjusting the molding conditions. Any of the above can be used as long as it can be used. Among them, a copolymer of L-lactic acid and D-lactic acid or L-lactide and D-lactic acid used in the implant material according to claim 3 can be used.
Lactide copolymers or homopolymers such as poly-L-lactic acid and poly-D-lactic acid used for the implant material according to claim 5 are suitable, and particularly used for the implant material according to claim 4. Such L-lactic acid or L-lactide is 20 to 8
Random copolymers occupying 0 mol% are very suitable.

【0012】ポリマーの分子量は限定されないが、初期
の粘度平均分子量が10万〜70万のものを使用するこ
とが好ましい。初期の粘度平均分子量が10万未満のポ
リマーを使用すると、実用に充分耐え得る強度を備えた
インプラント材を得ることが難しくなり、一方、70万
を越えるポリマーを使用すると、分解に不必要な長期間
を要するといった不都合を生じる。ポリマーの更に好ま
しい粘度平均分子量は、15万〜50万の範囲である。
Although the molecular weight of the polymer is not limited, it is preferable to use a polymer having an initial viscosity average molecular weight of 100,000 to 700,000. When a polymer having an initial viscosity average molecular weight of less than 100,000 is used, it is difficult to obtain an implant material having sufficient strength for practical use. On the other hand, when a polymer having a viscosity of more than 700,000 is used, unnecessary length for decomposition is required. Inconvenience such as requiring a long period of time occurs. More preferred viscosity average molecular weight of the polymer is in the range of 150,000 to 500,000.

【0013】上記のポリL−乳酸やポリD−乳酸は、本
質的に結晶性のポリマーであるが、加熱溶融状態から急
冷して結晶化温度(Tc)を速やかに通過させ、ガラス
転移温度(Tg)以下の室温まで下げると、結晶化度が
5%未満のアモルファスの溶融成形体が得られる。一
方、L−乳酸とD−乳酸のランダム共重合体、又は、L
−ラクチドとD−ラクチドのランダム共重合体であっ
て、L−乳酸又はL−ラクチドが30〜70モル%を占
めるものは、ポリL−乳酸やポリD−乳酸のような規則
配列に伴う結晶性の発現がなく、本質的に非晶性である
ため、緩徐に冷却してもアモルファスの溶融成形体が得
られる。但し、L−乳酸又はL−ラクチドの占める割合
が20モル%から80モル%の共重合体は、緩徐に冷却
すると5%未満程度のL−乳酸(L−ラクチド)又はD
−乳酸(D−ラクチド)の繰返し鎖による結晶が発現す
ることがある。
The above-mentioned poly-L-lactic acid and poly-D-lactic acid are essentially crystalline polymers, but are rapidly cooled from a heated and melted state to quickly pass a crystallization temperature (Tc), and have a glass transition temperature (Tc). When the temperature is lowered to room temperature equal to or lower than Tg), an amorphous melt molded product having a crystallinity of less than 5% is obtained. On the other hand, a random copolymer of L-lactic acid and D-lactic acid, or L
-A random copolymer of lactide and D-lactide, wherein L-lactic acid or L-lactide occupies 30 to 70 mol%, is a crystal with an ordered sequence such as poly L-lactic acid or poly D-lactic acid Since it is essentially non-crystalline without exhibiting properties, an amorphous molten molded article can be obtained even when cooled slowly. However, the copolymer in which the proportion of L-lactic acid or L-lactide accounts for 20 to 80 mol% can be reduced to about 5% or less of L-lactic acid (L-lactide) or D when cooled slowly.
-Crystals due to repeating chains of lactic acid (D-lactide) may appear.

【0014】これらの溶融成形体はいずれもアモルファ
スであるが、緻密なアモルファス成形体ではない。従っ
て、より強度を高めるには、この溶融成形体を二次成形
して、高密度の緻密なアモルファス成形体(例えば密度
を2〜3%程度高めて1.25〜1.26g/cm3
度にしたもの)とする必要がある。緻密なアモルファス
成形体を得る方法としては、通常の圧縮成形などの方法
も採用され得るが、冷間(特に単一重合体の場合は結晶
化が進行しない程度の低温)で鍛造成形する方法が特に
好ましく採用される。
[0014] These melt molded articles are all amorphous, but are not dense amorphous molded articles. Therefore, in order to further increase the strength, the melt molded body is subjected to secondary molding to obtain a high-density dense amorphous molded body (for example, increasing the density by about 2 to 3% to about 1.25 to 1.26 g / cm 3). It is necessary to be). As a method for obtaining a dense amorphous molded body, a method such as ordinary compression molding may be adopted, but a method of forging molding in a cold state (in particular, in the case of a single polymer, at a low temperature at which crystallization does not proceed) is particularly preferred. It is preferably adopted.

【0015】この鍛造成形は、上記の溶融成形体(ビレ
ット)を有底の成形型内へ冷間で圧入充填して二次成形
することを言い、冷間の温度範囲や変形比(ビレットの
断面積/鍛造成形体の断面積)などの条件は、ポリマー
の種類によって調整する必要がある。
[0015] The forging means cold-press-filling the above-mentioned melt-formed body (billet) into a mold having a bottom to perform secondary forming. Conditions such as (cross-sectional area / cross-sectional area of forged product) need to be adjusted depending on the type of polymer.

【0016】即ち、ポリL−乳酸又はポリD−乳酸のア
モルファス溶融成形体からなるビレットを鍛造成形する
場合は、ガラス転移温度(Tg)以上、110℃以下の
冷間温度でビレットを成形型内へ圧入充填する必要があ
り、その場合の変形比は1.2〜3.0の範囲に設定す
ることが好ましい。また、L−乳酸もしくはL−ラクチ
ドの占める割合が20モル%未満又は80モル%を越え
る共重合体のアモルファス溶融成形体からなるビレット
を鍛造成形する場合も、上記の本来的に結晶性であるポ
リマーと同様の温度範囲と変形比の範囲に設定される。
That is, when forging a billet made of an amorphous melt-molded product of poly-L-lactic acid or poly-D-lactic acid, the billet is formed in a mold at a cold temperature not lower than the glass transition temperature (Tg) and not higher than 110 ° C. In this case, it is preferable to set the deformation ratio in the range of 1.2 to 3.0. Also, when forging a billet composed of an amorphous melt-molded product of a copolymer in which L-lactic acid or L-lactide accounts for less than 20 mol% or more than 80 mol%, the above inherently crystalline nature is obtained. The temperature and the deformation ratio are set in the same range as the polymer.

【0017】これに対し、L−乳酸又はL−ラクチドの
占める割合が20〜80モル%であるランダム共重合体
のアモルファス溶融成形体からなるビレットを鍛造成形
する場合は、成形中に結晶化することがなく、加工時の
粘度も低いので、ガラス転移温度(Tg)以上、90℃
以下の温度でビレットを成形型内へ圧入充填すればよ
く、その場合の変形比は1.5〜5.0の範囲に設定す
ることが好ましい。
On the other hand, when forging a billet made of an amorphous melt-molded product of a random copolymer in which L-lactic acid or L-lactide occupies 20 to 80 mol%, crystallization occurs during the molding. And the viscosity during processing is low, so it is higher than the glass transition temperature (Tg) and 90 ° C.
What is necessary is just to press-fit a billet into a shaping | molding die at the following temperature, and in that case, it is preferable to set the deformation ratio in the range of 1.5-5.0.

【0018】上記のように鍛造成形すると、ポリマーの
成形前の密度よりも高い密度を有する緻密なアモルファ
ス成形体が得られ、この成形体は、既述したようにポリ
マーの分子鎖集合のドメインもしくはクラスターが軸方
向の異なる多数の基準軸に沿って配向した多軸配向体と
なっている。このように多軸配向した緻密なアモルファ
ス成形体からなるインプラント材は、鍛造成形前の溶融
成形体(ビレット)に比べると、強度が2〜5割程度向
上し、しかも、強度的な異方性が少ないため、どの方向
からの力に対しても破壊し難くなる。
By performing forging as described above, a dense amorphous molded body having a higher density than that of the polymer before molding is obtained. As described above, the molded body is composed of the domain of the molecular chain of the polymer or the domain. The cluster is a multiaxially oriented body in which the clusters are oriented along many reference axes having different axial directions. The implant material made of a dense amorphous molded body having such multiaxial orientation has a strength improved by about 20 to 50% as compared with a melt molded body (a billet) before forging, and has a strong anisotropy. , It is hard to be broken by force from any direction.

【0019】また、場合によっては、上記のように溶融
成形体のビレットを冷間で鍛造した後、更に機械方向を
変えて冷間で鍛造するようにしてもよい。このように機
械方向を変えて鍛造を複数回行うと、強度的な異方性が
更に減少し、繰返し曲げ強度等の耐疲労特性が顕著に向
上する。
In some cases, the billet of the melt-formed body may be cold forged as described above, and then the machine direction may be further changed to forge cold. When the forging is performed a plurality of times while changing the machine direction in this manner, the strength anisotropy is further reduced, and fatigue resistance characteristics such as repeated bending strength are remarkably improved.

【0020】以上のような本発明のインプラント材は、
生体内で体液と接触して表面から生体内分解吸収性ポリ
マーの加水分解が進行し、生体内に吸収されて体外に排
出されるが、アモルファスであるため結晶性のものより
も形態的に親水性(体液の浸入と濡れの機会が多い)が
高いので加水分解が速く、比較的短期間(例えば一年以
内)のうちに吸収されて消失するので、不必要な長期
間、体内に残ることはない。従って、金属製のインプラ
ント材のように再手術をして体外に取り出さなくてもよ
いので、患者の苦痛や経済的負担が軽減される。
The implant material of the present invention as described above is
Hydrolysis of the biodegradable absorbent polymer proceeds from the surface in contact with body fluids in the living body, is absorbed into the living body, and is excreted outside the body. It is highly hydrolyzed (has many chances of infiltration and wetting of bodily fluids), and is rapidly hydrolyzed. There is no. Therefore, it is not necessary to perform the operation again and remove the patient from the body like a metal implant material, so that the pain and the economic burden on the patient are reduced.

【0021】更に、請求項6のインプラント材のように
バイオセラミックス粉体を含有させると、表層部に顕在
しているバイオセラミックス粉体、或はポリマーの加水
分解に伴って露出してくるバイオセラミックス粉体が骨
組織をインプラント材の表層部に伝導形成するため、短
期間のうちにインプラント材が生体骨と結合する。そし
て、弛みやガタツキを生じなくなり、骨接合部等をしっ
かりと固定できるようになる。しかも、該ポリマーが分
解消失したところには、骨がこれらのセラミックス粉体
を核として形成される。
Further, when the bioceramic powder is contained as in the implant material of claim 6, the bioceramic powder which is exposed on the surface layer or the bioceramic which is exposed as the polymer is hydrolyzed. Since the powder conducts the bone tissue to the surface layer of the implant material, the implant material bonds with the living bone within a short period of time. Then, loosening and rattling do not occur, and the osteosynthesis and the like can be firmly fixed. Moreover, where the polymer decomposes and disappears, bone is formed with these ceramic powders as nuclei.

【0022】バイオセラミックス粉体としては、表面生
体活性を有する焼成ハイドロキシアパタイト、バイオガ
ラス系もしくは結晶化ガラス系の生体用ガラス、生体内
吸収性の非焼成ハイドロキシアパタイト、ジカルシウム
ホスフェート、トリカルシウムホスフェート、テトラカ
ルシウムホスフェート、オクタカルシウムホスフェー
ト、カルサイト、ジオプサイトなどのいずれか一種の粉
体又は二種以上の混合粉体が使用される。これらのう
ち、非焼成ハイドロキシアパタイトが最も好ましく用い
られる。ここに「非焼成」とは、焼成も仮焼成もしてい
ないものをいう。
Examples of the bioceramics powder include fired hydroxyapatite having surface bioactivity, bioglass or crystallized glass for living organisms, non-fired hydroxyapatite bioabsorbable, dicalcium phosphate, tricalcium phosphate, and the like. Any one kind of powder such as tetracalcium phosphate, octacalcium phosphate, calcite, and diopsite, or a mixed powder of two or more kinds is used. Of these, unfired hydroxyapatite is most preferably used. Here, "non-fired" refers to one that has not been fired or prefired.

【0023】バイオセラミックス粉体の含有割合は10
〜60重量%程度とするのが適当である。10重量%未
満ではバイオセラミックス粉体による骨組織の伝導形成
能が充分に発揮されず、60重量%を越えるとインプラ
ント材の靱性が低下して脆弱化するといった不都合を生
ずる。
The content ratio of the bioceramic powder is 10
It is appropriate to set it to about 60% by weight. If the amount is less than 10% by weight, the ability of the bioceramic powder to form conduction of bone tissue is not sufficiently exhibited. If the amount is more than 60% by weight, there is a disadvantage that the toughness of the implant material is reduced and the implant material becomes brittle.

【0024】以上説明した本発明のインプラント材は、
インターフェアランススクリュー、アンカースーチャー
など、剛性よりも粘弾性に優れた靱性が要求される用途
のインプラント材として好ましく適用できるものであ
る。
The implant material of the present invention described above is
It is preferably applicable as an implant material for applications requiring toughness superior to viscoelasticity rather than rigidity, such as an interference screw and an anchor sooter.

【0025】[0025]

【実施例】次に、本発明の具体的な実施例と比較例につ
いて説明する。
Next, specific examples of the present invention and comparative examples will be described.

【0026】[実施例1]粘度平均分子量が30万のポ
リL−乳酸(PLLA)を溶融押出して、粘度平均分子
量が20万で直径が10mmの円柱状のアモルファスの
ビレットを得た。このビレットを70℃に加熱して鍛造
成形し、急冷することにより、直径が8mmの円柱状の
アモルファスの鍛造成形体(変形比:1.6)を得た。
Example 1 Poly L-lactic acid (PLLA) having a viscosity average molecular weight of 300,000 was melt-extruded to obtain a columnar amorphous billet having a viscosity average molecular weight of 200,000 and a diameter of 10 mm. This billet was heated to 70 ° C., forged, and quenched to obtain a columnar amorphous forged body having a diameter of 8 mm (deformation ratio: 1.6).

【0027】この鍛造成形体から直径3.2mm、長さ
40mmのロッドを作製し、曲げ強度と結晶化度と密度
を測定した結果を下記の表1に示す。また、鍛造成形す
る前のビレットから作製した同一寸法のロッドの曲げ強
度と結晶化度と密度も表1に示す。
A rod having a diameter of 3.2 mm and a length of 40 mm was prepared from this forged product, and the bending strength, crystallinity and density were measured. The results are shown in Table 1 below. Table 1 also shows the bending strength, crystallinity, and density of rods of the same dimensions made from the billet before forging.

【0028】鍛造成形体から作製したロッドは、表1に
示すように結晶化度が4.0%のロッドであって、鍛造
成形前のビレットから作製したロッドの密度よりも高い
密度を有し、鍛造成形によって曲げ強度が向上してい
た。これは、鍛造成形前のビレットに存在しているミク
ロボイドが鍛造による圧縮効果によって消失し全体的に
微密な成形体になったこと、および、鍛造成形によって
ポリマーの分子鎖集合のドメインもしくはクラスターが
成形時のポリマーの流れに沿った多数の基準軸に沿って
配向している多軸配向体となったからである。
As shown in Table 1, the rod produced from the forged product had a crystallinity of 4.0% and had a higher density than the rod produced from the billet before forging. The bending strength was improved by forging. This is because the microvoids present in the billet before forging were lost due to the compression effect of forging, resulting in a compact body as a whole, and the domains or clusters of the polymer molecular chain aggregates were formed by forging. This is because a multiaxially oriented body oriented along a number of reference axes along the flow of the polymer during molding was obtained.

【0029】このロッドを37℃のリン酸緩衝液中に浸
漬して、in vitroでの加水分解実験を行った。
その結果、ロッドの分子量は急激に低下し速やかな分解
を示した。けれども、本ロッドは分子量の低下と共に結
晶化が生じ、1年経過後には約50%になった。このこ
とは、完全吸収に至るまでの期間が本質的にアモルファ
スであるPDLLAと比較して長くなることを示唆して
いる。しかしながら、結晶化したインプラント材と比較
すると、分解は速やかであり、完全に吸収されるまでの
期間も短縮される。
The rod was immersed in a phosphate buffer at 37 ° C. to conduct an in vitro hydrolysis experiment.
As a result, the molecular weight of the rod sharply decreased and showed rapid decomposition. However, the rod crystallized with a decrease in molecular weight, and reached about 50% after one year. This suggests that the time to complete absorption is longer compared to PDLLA, which is essentially amorphous. However, when compared to crystallized implant materials, degradation is faster and the time to complete absorption is reduced.

【0030】[実施例2]粘度平均分子量が40万のL
−ラクチドとD−ラクチドとのランダム共重合体(PD
LLA)[D/L(モル比)=50/50]を溶融押出
して、粘度平均分子量が20万で直径が10mmの円柱
状のアモルファスのビレットを得た。
Example 2 L having a viscosity average molecular weight of 400,000
-A random copolymer of lactide and D-lactide (PD
LLA) [D / L (molar ratio) = 50/50] was melt-extruded to obtain a columnar amorphous billet having a viscosity average molecular weight of 200,000 and a diameter of 10 mm.

【0031】このビレットを65℃に加熱して鍛造成形
した円柱状の鍛造成形体(変形比:3.0)から、実施
例1と同じ直径3.2mm、長さ40mmのロッドを作
製し、その曲げ強度と結晶化度と密度を測定した。その
結果を下記表1に示す。また鍛造成形する前のビレット
から作製した同一寸法のロッドの曲げ強度と結晶化度と
密度も表1に示す。
A rod having a diameter of 3.2 mm and a length of 40 mm, which is the same as that of Example 1, was prepared from a cylindrical forged product (deformation ratio: 3.0) obtained by heating the billet to 65 ° C. and forging. The bending strength, crystallinity and density were measured. The results are shown in Table 1 below. Table 1 also shows the bending strength, crystallinity, and density of rods of the same dimensions made from billets before forging.

【0032】実施例2の鍛造成形体から作製したロッド
は、表1に示すように結晶化度が0%のアモルファスの
ロッドであって、鍛造成形前のビレットから作製したロ
ッドの密度よりも高い密度を有し、鍛造成形によって曲
げ強度が向上していた。これは、実施例1の場合と同様
に、緻密な成形体となったからである。
The rod produced from the forged molded article of Example 2 is an amorphous rod having a crystallinity of 0% as shown in Table 1, and has a higher density than the rod produced from the billet before forging. It had a high density and the bending strength was improved by forging. This is because, as in the case of Example 1, a dense compact was obtained.

【0033】このロッドを用いて実施例1と同じ条件で
in vitro試験を行った。ロッドは速やかに分解
し、その速度は実施例1のアモルファスPLLAのロッ
ドと比較して非常に速かった。更に、本ロッドの粘度平
均分子量は、12週後で1万〜3万程度まで低下してい
た。従って、生体内では分解がより速くなるので、埋入
後1〜2年で完全に吸収される。
Using this rod, an in vitro test was performed under the same conditions as in Example 1. The rod decomposed rapidly, and its speed was much higher than that of the amorphous PLLA rod of Example 1. Further, the viscosity average molecular weight of the rod was reduced to about 10,000 to 30,000 after 12 weeks. Therefore, it is completely decomposed in one to two years after implantation, as it degrades faster in vivo.

【0034】[実施例3]粘度平均分子量が40万のL
−ラクチドとD−ラクチドとのランダム共重合体(PD
LLA)[D/L(モル比)=30/70]を溶融押出
して、粘度平均分子量が20万で直径が10mmの円柱
状のアモルファスのビレットを得た。
Example 3 L having a viscosity average molecular weight of 400,000
-A random copolymer of lactide and D-lactide (PD
LLA) [D / L (molar ratio) = 30/70] was melt-extruded to obtain a columnar amorphous billet having a viscosity average molecular weight of 200,000 and a diameter of 10 mm.

【0035】このビレットを65℃に加熱して鍛造成形
した円柱状の鍛造成形体(変形比:3.0)から、実施
例1と同じ直径3.2mm、長さ40mmのロッドを作
製し、その曲げ強度と結晶化度と密度を測定した。その
結果を下記表1に示す。また鍛造成形する前のビレット
から作製した同一寸法のロッドの曲げ強度と結晶化度と
密度も表1に示す。
A rod having a diameter of 3.2 mm and a length of 40 mm, which is the same as that of Example 1, was prepared from a cylindrical forged product (deformation ratio: 3.0) obtained by heating the billet to 65 ° C. and forging. The bending strength, crystallinity and density were measured. The results are shown in Table 1 below. Table 1 also shows the bending strength, crystallinity, and density of rods of the same dimensions made from billets before forging.

【0036】実施例3の鍛造成形体から作製したロッド
は、表1に示すように結晶化度が0%のアモルファスの
ロッドであって、鍛造成形前のビレットから作製したロ
ッドの密度よりも高い密度を有し、鍛造成形によって曲
げ強度が向上していた。
The rod produced from the forged molded article of Example 3 is an amorphous rod having a crystallinity of 0% as shown in Table 1, and has a higher density than the rod produced from the billet before forging. It had a high density and the bending strength was improved by forging.

【0037】このロッドもin vitroで速やかに
分解したが、その速度は実施例2のD/L=50/50
のものよりもやや遅い傾向を示した、これは、L−ラク
チドの含有率が高いので、ポリマーを構成する分子鎖中
のL−ラクチドの連続した分子鎖集合体のドメイン又は
クラスターがD/L=50/50のものよりも多く存在
し、その部分の分解が比較的ゆっくりとした速度で行わ
れるためと思われる。
This rod was also rapidly decomposed in vitro, but its speed was D / L = 50/50 in Example 2.
Which tended to be slightly slower than those of the above, because the content of L-lactide was high, so that the domain or cluster of the continuous molecular chain aggregate of L-lactide in the molecular chain constituting the polymer was D / L. = 50/50, presumably because the decomposition of that portion occurs at a relatively slow rate.

【0038】[実施例4]粘度平均分子量が20万のL
−ラクチドとD−ラクチドとのランダム共重合体(PD
LLA)[D/L(モル比)=15/85]を溶融押出
し後、急冷して、粘度平均分子量が10万で直径が10
mmの円柱状のアモルファスのビレットを得た。
Example 4 L having a viscosity average molecular weight of 200,000
-A random copolymer of lactide and D-lactide (PD
LLA) [D / L (molar ratio) = 15/85] is melt-extruded and then quenched to give a viscosity average molecular weight of 100,000 and a diameter of 10
Thus, an amorphous billet having a columnar shape of mm was obtained.

【0039】このビレットを65℃に加熱して鍛造成形
した円柱状の鍛造成形体(変形比:1.6)から、実施
例1と同じ直径3.2mm、長さ40mmのロッドを作
製し、その曲げ強度と結晶化度と密度を測定した。その
結果を下記表1に示す。また鍛造成形する前のビレット
から作製した同一寸法のロッドの曲げ強度と結晶化度と
密度も表1に示す。
A rod having a diameter of 3.2 mm and a length of 40 mm, which is the same as that of Example 1, was prepared from a cylindrical forged product (deformation ratio: 1.6) obtained by heating the billet to 65 ° C. and forging. The bending strength, crystallinity and density were measured. The results are shown in Table 1 below. Table 1 also shows the bending strength, crystallinity, and density of rods of the same dimensions made from billets before forging.

【0040】実施例4の鍛造成形体から作製したロッド
は、表1に示すように、結晶化度が2.0%の本質的に
アモルファスのロッドであって、鍛造成形前のビレット
から作製したロッドの密度よりも僅かに高い密度を有
し、鍛造成形によって曲げ強度が向上した。
As shown in Table 1, the rod produced from the forged body of Example 4 was an essentially amorphous rod having a crystallinity of 2.0%, and was produced from a billet before forging. It has a density slightly higher than that of the rod, and the bending strength has been improved by forging.

【0041】以上の実施例2〜4の測定結果から、L−
ラクチドとD−ラクチドのランダム共重合体の鍛造成形
体からなるアモルファスロッドにおいては、L−ラクチ
ドのモル比が多くなるほど、曲げ強度は増加し、加水分
解速度は遅くなる傾向が見られる。当然ながら、この傾
向はD−ラクチドのモル比が多くなる場合も同様であ
る。しかし、D−ラクチド又はL−ラクチドの比率が8
0%以上になると、ポリマーに本質的に結晶相が介入す
る。
From the above measurement results of Examples 2 to 4, L-
In an amorphous rod made of a forged product of a random copolymer of lactide and D-lactide, the bending strength increases and the hydrolysis rate tends to decrease as the molar ratio of L-lactide increases. Of course, this tendency is the same when the molar ratio of D-lactide is increased. However, when the ratio of D-lactide or L-lactide is 8
Above 0%, essentially crystalline phases intervene in the polymer.

【0042】[0042]

【表1】 [Table 1]

【0043】[実施例5]粘度平均分子量が40万で、
D/L(モル比)がそれぞれ50/50と30/70で
あるPDLLA、および、これらのPDLLAに非焼成
のハイドロキシアパタイト(HA)を30重量%の割合
で均一に分散させたHA/PDLLAコンポジットを使
用し、これらをそれぞれ加熱圧縮成形して、粘度平均分
子量が20万で直径が8mmの円柱状のアモルファスの
ビレットを得た。
Example 5 The viscosity average molecular weight was 400,000, and
PDLLA having a D / L (molar ratio) of 50/50 and 30/70, respectively, and an HA / PDLLA composite in which non-calcined hydroxyapatite (HA) is uniformly dispersed in these PDLLA at a ratio of 30% by weight. These were each subjected to heat compression molding to obtain columnar amorphous billets having a viscosity average molecular weight of 200,000 and a diameter of 8 mm.

【0044】次に、これらのビレットをそれぞれ75℃
に加熱して鍛造成形し、直径が4.6の円柱状のアモル
ファス(結晶化度:0%)の鍛造成形体(変形比:3)
を得た。
Next, each of these billets was heated to 75 ° C.
And forged by heating to a columnar amorphous (crystallinity: 0%) cylindrical forged body with a diameter of 4.6 (deformation ratio: 3)
I got

【0045】そして、各鍛造成形体から直径3.2m
m、長さ40mmのロッドをそれぞれ作製して、各ロッ
ドの曲げ強度を測定した。その結果を下記表2に示す。
また、鍛造成形前の各ビレットから作製した同一寸法の
ロッドの曲げ強度も下記表2に示す。
Then, a diameter of 3.2 m is obtained from each forged product.
Each rod having a length of m and a length of 40 mm was prepared, and the bending strength of each rod was measured. The results are shown in Table 2 below.
Table 2 below also shows the bending strength of rods of the same dimensions produced from each billet before forging.

【0046】HAを含む各鍛造成形体から作製したロッ
ドはいずれも、表2に示すように曲げ強度が飛躍的に向
上した。
As shown in Table 2, the bending strength of each of the rods produced from the forged products containing HA was dramatically improved.

【0047】この鍛造成形体から作製したロッドでそれ
ぞれin vitro試験を行った結果、実施例2又は
実施例3と同様に速やかに凡そ1年で分解した。本ロッ
ドは材料中にHAを含むので、ポリマーのみより成る同
一形状のロッドと比較してポリマー量が少なくなる。そ
のため、完全吸収に至るまでの期間は、更に短縮され
る。加えて、非焼成HAは吸収性のHAであり、骨伝導
性を有しているため、PDLLAの分解の進行と共に、
HA粒子が連続的に表面化し、骨芽細胞がインプラント
材内部に浸入しやすくなるので、骨欠損部の修復も非常
に速くなる。
As a result of performing an in vitro test on each of the rods produced from the forged products, the rods were promptly decomposed in about one year as in Example 2 or Example 3. Since the rod contains HA in the material, the amount of the polymer is smaller than that of a rod of the same shape consisting of only a polymer. Therefore, the period until complete absorption is further reduced. In addition, the non-fired HA is a resorbable HA and has osteoconductivity, so that as PDLLA decomposes,
Since the HA particles are continuously surfaced and osteoblasts can easily penetrate into the implant material, the bone defect can be repaired very quickly.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】本発明のアモルファスの生体内分解吸収
性インプラント材は、緻密であるため強度が向上し、強
度的な異方性が少ないため、どの方向からの力に対して
も破壊し難く、靱性に富むため、衝撃力を受けても割れ
・欠けを生じることがなく、加水分解が速いので生体内
で比較的短期間のうちに吸収されて消失する等の顕著な
効果を奏し、大きい剛性や強度よりも靱性が要求される
部位に好ましく適用されるものである。
EFFECT OF THE INVENTION The amorphous biodegradable and absorbable implant material of the present invention is dense and has improved strength, and has little strength anisotropy, so that it is hard to be broken by a force from any direction. Because of its high toughness, it does not crack or chip even when subjected to an impact force, and has a remarkable effect such as absorption and disappearance in a relatively short period of time in a living body because of rapid hydrolysis. It is preferably applied to a part where toughness is required rather than rigidity or strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江尻 雅之 大阪市中央区安土町2丁目3番13号 タキ ロン株式会社内 Fターム(参考) 4C081 AB04 AC03 BA16 BB07 BB08 CA171 CC01 CC08 CF012 CF032 CF062 DA01 DA11 DC13 EA03  ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masayuki Ejiri 2-3-3 Azuchicho, Chuo-ku, Osaka-shi F-Term in Takiron Co., Ltd. 4C081 AB04 AC03 BA16 BB07 BB08 CA171 CC01 CC08 CF012 CF032 CF062 DA01 DA11 DC13 EA03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】結晶化度が5%未満のアモルファス成形体
であって、成形前の密度よりも高い密度を有する緻密な
成形体から成ることを特徴とする生体内分解吸収性イン
プラント材。
1. A biodegradable and absorbable implant material comprising an amorphous molded body having a crystallinity of less than 5% and comprising a dense molded body having a density higher than that before molding.
【請求項2】アモルファス成形体が鍛造成形されたもの
である請求項1に記載の生体内分解吸収性インプラント
材。
2. The biodegradable and absorbable implant material according to claim 1, wherein the amorphous molded body is forged.
【請求項3】アモルファス成形体がL−乳酸とD−乳酸
の共重合体、又は、L−ラクチドとD−ラクチドの共重
合体で成形されたものである請求項1又は請求項2に記
載の生体内分解吸収性インプラント材。
3. The amorphous molded article according to claim 1 or 2, wherein the amorphous molded article is formed from a copolymer of L-lactic acid and D-lactic acid or a copolymer of L-lactide and D-lactide. Biodegradable and absorbable implant material.
【請求項4】共重合体がランダム共重合体であって、L
−乳酸又はL−ラクチドの占める割合が20〜80モル
%である請求項3に記載の生体内分解吸収性インプラン
ト材。
4. The method according to claim 1, wherein the copolymer is a random copolymer.
The biodegradable and absorbable implant material according to claim 3, wherein the proportion of lactic acid or L-lactide is 20 to 80 mol%.
【請求項5】アモルファス成形体がポリL−乳酸又はポ
リD−乳酸の非晶質の単一重合体で成形されたものであ
る請求項1又は請求項2に記載の生体内分解吸収性イン
プラント材。
5. The biodegradable and absorbable implant material according to claim 1, wherein the amorphous molded body is formed of an amorphous homopolymer of poly-L-lactic acid or poly-D-lactic acid. .
【請求項6】バイオセラミックス粉体が含有されている
請求項1ないし請求項5のいずれかに記載のインプラン
ト材。
6. The implant material according to claim 1, further comprising a bioceramic powder.
JP36610298A 1998-12-08 1998-12-08 Amorphous biodegradable and absorbable implant material Expired - Fee Related JP3597716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36610298A JP3597716B2 (en) 1998-12-08 1998-12-08 Amorphous biodegradable and absorbable implant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36610298A JP3597716B2 (en) 1998-12-08 1998-12-08 Amorphous biodegradable and absorbable implant material

Publications (2)

Publication Number Publication Date
JP2000210377A true JP2000210377A (en) 2000-08-02
JP3597716B2 JP3597716B2 (en) 2004-12-08

Family

ID=18485935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36610298A Expired - Fee Related JP3597716B2 (en) 1998-12-08 1998-12-08 Amorphous biodegradable and absorbable implant material

Country Status (1)

Country Link
JP (1) JP3597716B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073849A (en) * 2002-06-18 2004-03-11 National Institute Of Advanced Industrial & Technology Globular calcium phosphate coated with biodegradable plastic and its application
JP2008539002A (en) * 2005-04-29 2008-11-13 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Amorphous poly (D, L-lactide) coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004073849A (en) * 2002-06-18 2004-03-11 National Institute Of Advanced Industrial & Technology Globular calcium phosphate coated with biodegradable plastic and its application
JP2008539002A (en) * 2005-04-29 2008-11-13 アボット カーディオヴァスキュラー システムズ インコーポレイテッド Amorphous poly (D, L-lactide) coating
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating

Also Published As

Publication number Publication date
JP3597716B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3779327B2 (en) Degradable material under tissue conditions and method for producing the same
JP3633909B2 (en) Composite high-strength implant material
JP3418350B2 (en) Biodegradable and absorbable implant material and its shape adjusting method
US6692497B1 (en) Bioabsorbable, deformable fixation plate
JP3043778B2 (en) Decomposition-absorbent molded article and method for producing the molded article
JP2001514048A (en) Bioactive and biodegradable composite of polymer and ceramic or glass and method for producing the same
JP3571560B2 (en) Concentration gradient material
AU2815001A (en) Thermoforming of absorbable medical devices
JP3239127B2 (en) Composite high-strength implant material and method for producing the same
AU2012360738B2 (en) Composite containing polymer and additive as well as its use
JP3597716B2 (en) Amorphous biodegradable and absorbable implant material
WO2007110611A1 (en) Composite material
KR100772966B1 (en) Biodegradable polymer material for fixing bone which has high flexibility and strength and method for the preparation thereof
JP2005066354A (en) Composite osteosynthesis material
JPH09234242A (en) Production method of bone jointing material
Felfel Manufacture and characterisation of bioresorbable fibre reinforced composite rods and screws for bone fracture fixation applications
JP3023470B2 (en) Method for producing osteosynthesis material having through holes
Gogolewski Devices-Mechanical Properties

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees