JP2000208855A - Method and device for mounting optical semiconductor element - Google Patents

Method and device for mounting optical semiconductor element

Info

Publication number
JP2000208855A
JP2000208855A JP11006066A JP606699A JP2000208855A JP 2000208855 A JP2000208855 A JP 2000208855A JP 11006066 A JP11006066 A JP 11006066A JP 606699 A JP606699 A JP 606699A JP 2000208855 A JP2000208855 A JP 2000208855A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
base substrate
mounting
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11006066A
Other languages
Japanese (ja)
Inventor
Toshiyuki Mogi
俊行 茂木
Hiroyasu Sasaki
博康 佐々木
Kazutami Kawamoto
和民 川本
Hiroyuki Ota
洋幸 太田
Shigefumi Kito
繁文 鬼頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11006066A priority Critical patent/JP2000208855A/en
Publication of JP2000208855A publication Critical patent/JP2000208855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for mounting on a base substrate with high precision without being influenced by a melting condition of solder by melting solder under a condition where an optical semiconductor element is held with a chuck. SOLUTION: An optical semiconductor element 1 is positioned over a base substrate 3 and solder 2, and the optical semiconductor element 1 is applied as load, to an optical semiconductor element chuck 14 holding the optical semiconductor element 1, pressed against the base substrate 3 with uniform load with the solder 2 in between. Light is projected as heating light from a heating emission lens 31 provided below the base substrate 3, and transmitted through a base heating aperture 23 formed of quartz glass and a base absorption part 21, and supplied to the base substrate 3, to melt solder 2. As a result, a method for mounting onto the base substrate 3 with high precision without being influenced by a melting condition of the solder 2 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光半導体素子の実
装方法に関し、特に光通信分野等などで使用される光半
導体素子をベース基板に接合する実装方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mounting an optical semiconductor device, and more particularly to a method for bonding an optical semiconductor device used in an optical communication field or the like to a base substrate.

【0002】[0002]

【従来の技術】近年、情報サービス網の拡充のため、光
通信分野において低コスト化が望まれている。その中で
も、光通信システムを低価格で構築するために、光信号
と電気信号の変換を行う光モジュールの低コスト化が課
題となっている。この課題の実現のためには、同一基板
上に平易な実装方式で、高精度に光部品を集積化できる
光モジュールが必要となる。
2. Description of the Related Art In recent years, cost reduction has been desired in the field of optical communication in order to expand information service networks. Above all, in order to construct an optical communication system at low cost, there is a problem of reducing the cost of an optical module that converts an optical signal and an electric signal. In order to achieve this object, an optical module that can integrate optical components with high precision by a simple mounting method on the same substrate is required.

【0003】半導体レーザダイオード、端面入射型半導
体受光素子、光スイッチに代表される光部品は一般に、
光を基板面内平行方向に入出射するものである。特に、
端面入射型の半導体レーザダイオード、半導体受光素子
に代表される光半導体素子は、光デバイスからの光の入
出射位置と、光半導体素子の発光面や受光面との位置関
係が、組み上げた光モジュールの入出力に大きく影響す
る。その為従来は、はんだバンプ法(特開平7−581
49号公報)や薄膜半田リフロー式(特開平9−542
29号公報)により、はんだ溶融前の光半導体素子の位
置制御を行うことで、基板上に光半導体素子を固定して
いた。
Optical components such as semiconductor laser diodes, edge-illuminated semiconductor light receiving elements, and optical switches are generally
Light enters and exits in a direction parallel to the plane of the substrate. In particular,
Optical semiconductor devices typified by edge-illuminated semiconductor laser diodes and semiconductor light-receiving devices are optical modules in which the positional relationship between the incoming and outgoing positions of light from optical devices and the light-emitting surface and light-receiving surface of the optical semiconductor device is assembled. Greatly affects the input and output of Therefore, conventionally, the solder bump method (Japanese Unexamined Patent Publication No.
No. 49) or a thin-film solder reflow method (JP-A-9-542).
No. 29), the optical semiconductor element was fixed on the substrate by controlling the position of the optical semiconductor element before the solder was melted.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、端
面入射型光半導体素子を光モジュールに実装する際、無
負荷状態で半田溶融を行うため、はんだ溶融後の半田層
の厚みや実装する部品の姿勢を制御することは難しい。
また、無拘束状態での半田溶融時には、半田のセルフア
ライメント効果による部品移動が発生する、しかし、光
部品をウエハからチップ化する際の劈開精度によって
は、セルフアライメント効果が精度を悪化させる方向に
作用し、その際の位置ズレも無視することはできない。
In the prior art described above, when mounting an edge-illuminated type optical semiconductor element on an optical module, the solder is melted under no load, so that the thickness of the solder layer after solder melting and the components to be mounted are reduced. Is difficult to control.
In addition, when the solder is melted in an unconstrained state, component movement occurs due to the self-alignment effect of the solder. However, depending on the cleavage accuracy when the optical component is chipped from the wafer, the self-alignment effect may deteriorate the accuracy. It works, and the displacement at that time cannot be ignored.

【0005】本発明の目的は、光半導体素子をベース基
板に実装する際、接続に使用される半田が溶融した状態
でも、光素子の位置を拘束し、実装することで、半田の
厚みや姿勢を制御し、水平位置及び垂直方向を高精度に
実装できる方法及び装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to restrain the position of an optical element when mounting an optical semiconductor element on a base substrate, even if the solder used for connection is molten, to thereby achieve the thickness and posture of the solder. And a method and apparatus for controlling the horizontal position and the vertical direction with high accuracy.

【0006】[0006]

【課題を解決するための手段】本発明では、上記課題を
解決するために、光部品である光半導体素子とベース基
板との実装において、光半導体素子をチャックで把持し
た状態で半田を溶融させることで、半田の溶融状態に左
右されることのない、高精度なベース基板上への実装方
法を実現することを目的とする。その為、光半導体素子
を把持し、上方からその位置を観察できる窓を設けた光
半導体素子チャックと、光半導体素子チャックにかかる
荷重を正確に検出できる荷重検出部と、光半導体素子を
搭載する対象となる光デバイスを固定する光デバイス固
定部と、光半導体素子と光デバイス間の半田を溶融して
両者を固定する加熱装置と、光半導体素子と光デバイス
との相対位置を観察する位置観察部と、光半導体素子、
光デバイスの位置関係を調整する位置調整部からなる装
置を提供する。
According to the present invention, in order to solve the above-mentioned problems, in mounting an optical semiconductor device as an optical component and a base substrate, the solder is melted while holding the optical semiconductor device with a chuck. Accordingly, it is an object of the present invention to realize a highly accurate mounting method on a base substrate which is not affected by the molten state of the solder. Therefore, an optical semiconductor element chuck provided with a window for grasping the optical semiconductor element and observing its position from above, a load detector capable of accurately detecting a load applied to the optical semiconductor element chuck, and an optical semiconductor element are mounted. An optical device fixing section for fixing an optical device as a target, a heating device for melting solder between the optical semiconductor element and the optical device to fix them, and a position observation for observing a relative position between the optical semiconductor element and the optical device. Part, an optical semiconductor element,
Provided is an apparatus including a position adjustment unit that adjusts a positional relationship between optical devices.

【0007】[0007]

【発明の実施の形態】以下に本発明による光半導体素子
の実装方法および該実装方法を使用した装置の実施形態
を、図を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for mounting an optical semiconductor device according to the present invention and an apparatus using the mounting method will be described below with reference to the drawings.

【0008】(実施形態1)図1は本発明の一実施形態
の断面図である。上下動する光半導体素子チャック14
は、石英ガラス(線膨張率1.0×10-6-1、熱伝導
率10W/m・K)による光半導体素子吸着部11と、
上方から光半導体素子1の位置を観察できる光半導体素
子観察窓13が設けられ、光半導体素子吸着部11と光
半導体素子観察窓13に挟まれた空間を、光半導体素子
吸着孔12より内部の空気を吸引し、内部気圧を大気圧
より下げることで、光部品のひとつである光半導体素子
1を吸着できる構造となっている。
(Embodiment 1) FIG. 1 is a sectional view of an embodiment of the present invention. Optical semiconductor element chuck 14 that moves up and down
Is an optical semiconductor element adsorption section 11 made of quartz glass (linear expansion coefficient: 1.0 × 10 −6 K −1 , thermal conductivity: 10 W / m · K);
An optical semiconductor element observation window 13 through which the position of the optical semiconductor element 1 can be observed from above is provided, and a space between the optical semiconductor element adsorption portion 11 and the optical semiconductor element observation window 13 is formed inside the optical semiconductor element adsorption hole 12 through the optical semiconductor element adsorption hole 12. By sucking air and lowering the internal air pressure below the atmospheric pressure, the optical semiconductor element 1 as one of the optical components can be adsorbed.

【0009】また、ベース基板3を固定するベース基板
吸着台24は、光半導体素子1を搭載するベース基板3
の位置直下をベース吸着穴22によって吸着するベース
吸着部21と、加熱光出射レンズ31からの加熱光34
を透過させるベース加熱窓23が設けられている。
The base substrate suction table 24 for fixing the base substrate 3 is provided on the base substrate 3 on which the optical semiconductor element 1 is mounted.
And a heating light 34 from the heating light emitting lens 31.
There is provided a base heating window 23 for transmitting light.

【0010】そして、光半導体素子1とベース基板3を
接続する半田2は、光半導体素子1、またはベース基板
3の接続側に蒸着しておくか、光半導体素子1とベース
基板3間にペレット形状の半田2を機械的に挟み込むこ
とにより供給する。次に、光半導体素子1とベース基板
3を半田2より固定する方法を、実際の工程に従い、順
を追って説明する。
The solder 2 for connecting the optical semiconductor element 1 and the base substrate 3 is vapor-deposited on the connection side of the optical semiconductor element 1 or the base substrate 3 or a pellet is provided between the optical semiconductor element 1 and the base substrate 3. The solder 2 is supplied by mechanically sandwiching the solder 2. Next, a method of fixing the optical semiconductor element 1 and the base substrate 3 with the solder 2 will be described step by step according to actual steps.

【0011】ベース基板3と半田2の上に位置決めされ
た光半導体素子1は、光半導体素子1を把持している光
半導体素子チャック14に、実装時の荷重を負荷するこ
とで、半田2を介して、ベース基板3に一定荷重で押し
付けられる。半田2を溶融する熱エネルギーは、ベース
基板3の下方に設置された加熱用出射レンズ31から加
熱光34として照射され、石英ガラスで作られたベース
加熱窓23及びベース吸着部21を透過し、ベース基板
3に供給される。
The optical semiconductor device 1 positioned on the base substrate 3 and the solder 2 applies the load at the time of mounting to the optical semiconductor device chuck 14 holding the optical semiconductor device 1 so that the solder 2 is mounted. Through the base substrate 3 with a constant load. The heat energy for melting the solder 2 is emitted as heating light 34 from a heating emission lens 31 provided below the base substrate 3, and passes through a base heating window 23 and a base suction part 21 made of quartz glass, It is supplied to the base substrate 3.

【0012】ここでベース基板3に照射される加熱光3
4は、ベース基板3の材質を、供給される加熱光34に
おける波長の反射率が低い材質とすることで、光エネル
ギを効果的に熱エネルギへと変化させ、ベース基板3を
効果的に加熱することができる。ベース基板3を加熱し
た熱エネルギーは溶融目的である半田2への伝熱と同時
に、光半導体素子1、光半導体素子吸着部11及びベー
ス吸着部21への伝熱が起こり、熱膨張による位置ズレ
の原因となる。
Here, the heating light 3 applied to the base substrate 3
Reference numeral 4 denotes that the material of the base substrate 3 is made of a material having a low reflectance of the wavelength of the supplied heating light 34, so that the light energy is effectively changed to heat energy, and the base substrate 3 is effectively heated. can do. The thermal energy that has heated the base substrate 3 is transferred to the optical semiconductor element 1, the optical semiconductor element suction section 11 and the base suction section 21 simultaneously with the heat transfer to the solder 2, which is the purpose of melting, and the position shift due to thermal expansion occurs. Cause.

【0013】そこで、光半導体素子吸着部11、ベース
吸着部21に関して、それぞれの中心位置に、光半導体
素子1及びベース基板3を固定する光半導体素子吸着穴
12、ベース吸着穴22を設定することで、伝熱による
熱量は光半導体素子吸着部11及びベース吸着部22に
均等に広がり、熱膨張による位置ズレを低減することが
できる。
Therefore, the optical semiconductor element adsorption section 11 and the base adsorption section 21 are provided with an optical semiconductor element adsorption hole 12 and a base adsorption hole 22 for fixing the optical semiconductor element 1 and the base substrate 3 at the respective center positions. Thus, the amount of heat due to the heat transfer is evenly spread to the optical semiconductor element suction part 11 and the base suction part 22, and the positional deviation due to thermal expansion can be reduced.

【0014】しかし、接触、加熱等の条件のばらつきに
より、吸着部にも多少の温度差が残る為、その温度差が
熱膨張の差違になり、光半導体素子1とベース基板3と
の位置ズレの原因となる。
However, due to variations in conditions such as contact and heating, a slight temperature difference also remains in the adsorption portion, and the temperature difference causes a difference in thermal expansion, and a positional shift between the optical semiconductor element 1 and the base substrate 3. Cause.

【0015】そこで、部材内に温度差が生じた場合、位
置ズレ量を許容値内の精度以内(光部品の主な要求精度
±1μm)に収めるために、光半導体素子吸着部11、
ベース吸着部21を線膨張係数20×10-6-1以下
(例えば、石英ガラス、パイレックス等)の材料、寸法
を10mm×10mm以下、中心に光半導体素子吸着部
11、またはベース吸着部21を設定した構造とする
と、同じ部材内での温度差が5K生じた場合の吸着位置
での位置ズレ量を以下の式で表すことができる。
Therefore, when a temperature difference occurs in the member, the optical semiconductor element suction unit 11 is used to keep the amount of positional deviation within the tolerance within tolerance (main required accuracy of optical parts ± 1 μm).
The base adsorbing portion 21 is made of a material having a linear expansion coefficient of 20 × 10 −6 K −1 or less (for example, quartz glass, Pyrex, etc.) and the dimension is 10 mm × 10 mm or less. Is set, the positional deviation amount at the suction position when a temperature difference of 5 K occurs in the same member can be expressed by the following equation.

【0016】[0016]

【数1】 20×10-6(K-1)×5(K)×5(mm)=0.0005mm=0.5μ m …(数1) 光半導体素子吸着部11、ベース吸着部21の相対距離
を実装時の位置ズレ量と考えると
20 × 10 −6 (K −1 ) × 5 (K) × 5 (mm) = 0.0005 mm = 0.5 μm (Equation 1) of the optical semiconductor element suction unit 11 and the base suction unit 21 Considering the relative distance as the amount of displacement during mounting

【0017】[0017]

【数2】0.5μm×2=1μm …(数2) この値は、例えば、ファイバの搭載されたベース基板3
上に光半導体素子1を搭載した場合でも、ファイバと光
半導体素子1を低い結合損失で実装することを可能とす
る。
(Equation 2) 0.5 μm × 2 = 1 μm (Equation 2) This value is, for example, the base substrate 3 on which the fiber is mounted.
Even when the optical semiconductor element 1 is mounted thereon, the fiber and the optical semiconductor element 1 can be mounted with low coupling loss.

【0018】また、光半導体素子1に加えられた熱エネ
ルギは、光半導体素子吸着部11及びベース吸着部21
に伝熱し、その伝熱量の増減により半田2の上昇温度を
左右する。そこで、光半導体素子吸着部11及びベース
吸着部21を、熱伝導率2W/m・K以下の材料によっ
て構成することで、光半導体素子吸着部11及びベース
吸着部21への伝熱量を全体熱量の20%以下にして、
接触熱抵抗等の原因による伝熱量の変化を減らし、安定
した光半導体素子1及びベース基板3の接続を保証する
ことができる。
The heat energy applied to the optical semiconductor element 1 is transferred to the optical semiconductor element adsorption section 11 and the base adsorption section 21.
The temperature of the solder 2 depends on the amount of heat transfer. Therefore, by forming the optical semiconductor element adsorption section 11 and the base adsorption section 21 from a material having a thermal conductivity of 2 W / m · K or less, the amount of heat transferred to the optical semiconductor element adsorption section 11 and the base adsorption section 21 is reduced by the total heat quantity. 20% or less of
A change in the amount of heat transfer due to a contact thermal resistance or the like can be reduced, and stable connection between the optical semiconductor element 1 and the base substrate 3 can be ensured.

【0019】(実態形態2)実施形態1の実装方法を使
用し、光半導体素子1を実装する装置の一例を図2に示
す。実装装置は、ベース基板3を石英ガラスの吸着部を
持つベース基板吸着台24に真空吸着する。この時、ベ
ース基板3上での光半導体素子1の実装位置を、真空吸
着穴22の中心と一致するように、ベース基板3の位置
を合わせておく。また、光半導体素子チャック14で吸
着する光半導体素子1も、光半導体素子1の中心位置と
光半導体素子吸着穴12との相対位置が一致するように
真空吸着し、光半導体素子チャック14によって光半導
体素子移載部44からベース基板3の上空へと搬送され
る。
(Embodiment 2) FIG. 2 shows an example of an apparatus for mounting the optical semiconductor element 1 using the mounting method of Embodiment 1. The mounting apparatus vacuum-adsorbs the base substrate 3 to a base substrate adsorption table 24 having an adsorption portion made of quartz glass. At this time, the position of the base substrate 3 is adjusted so that the mounting position of the optical semiconductor element 1 on the base substrate 3 coincides with the center of the vacuum suction hole 22. Also, the optical semiconductor element 1 that is adsorbed by the optical semiconductor element chuck 14 is also vacuum-adsorbed so that the center position of the optical semiconductor element 1 and the relative position of the optical semiconductor element adsorption hole 12 coincide with each other. The semiconductor element is transported from the semiconductor element transfer section 44 to the space above the base substrate 3.

【0020】ベース基板3上に移動した光半導体素子1
は、ベース基板3の光半導体素子搭載位置の上空3〜5
μmまで下降し、停止する。光半導体素子1とベース基
板3との位置は、光半導体素子1とベース基板3に予め
つけた位置決め用マーカを、低出力にした光加熱装置3
3からの赤外線を含む参照光を、ファイバ32と加熱光
出射レンズ31によりベース基板3の下部に照射し、S
iまたは石英によるベース基板3、InP等で作られた
光半導体素子1を透過して、光半導体素子1の上空に設
置された光学系41によって観察する。
Optical semiconductor device 1 moved onto base substrate 3
Above the optical semiconductor element mounting position of the base substrate 3
It descends to μm and stops. The position of the optical semiconductor element 1 and the base substrate 3 is determined by setting the positioning marker previously attached to the optical semiconductor element 1 and the base substrate 3 to a low output.
Reference light including infrared light from the base substrate 3 is irradiated to the lower portion of the base substrate 3 by the fiber 32 and the heating light emitting lens 31,
The light passes through the base substrate 3 made of i or quartz, the optical semiconductor element 1 made of InP or the like, and is observed by the optical system 41 installed above the optical semiconductor element 1.

【0021】光半導体素子1、ベース基板3の位置決め
マーカを含む画像は、画像処理部42で位置データに変
換され、ホストコンピュータ43に送られる。ホストコ
ンピュータ43は、送られた位置データによって光半導
体素子1とベース基板3の相対位置を計測し、正常な実
装位置までベース微動部26を動作させ、光半導体素子
1とベース基板3の位置決めを行う。位置決めが行われ
た光半導体素子1は、光半導体素子チャック14を下降
させることで、半田2を挟んだベース基板3に実装時に
必要な荷重まで押し付けられる。
An image including the positioning markers of the optical semiconductor device 1 and the base substrate 3 is converted into position data by an image processing section 42 and sent to a host computer 43. The host computer 43 measures the relative position between the optical semiconductor element 1 and the base substrate 3 based on the transmitted position data, operates the base fine movement unit 26 to a normal mounting position, and positions the optical semiconductor element 1 and the base substrate 3. Do. By lowering the optical semiconductor element chuck 14, the positioned optical semiconductor element 1 is pressed against the base substrate 3 sandwiching the solder 2 to a load required for mounting.

【0022】次に、光半導体素子1とベース基板3に挟
まれた半田2は、光加熱装置33からファイバ32を介
して加熱光出射レンズ31から出射される加熱光34が
ベース基板3の裏面を加熱し、その伝熱によって溶融す
る。ここで、ベース基板3を加熱することでベース基板
3に生じる厚み方向の熱膨張は、荷重計18とホストコ
ンピュータ43により光半導体素子チャック14に生じ
る荷重変位をモニタし、常に同じ値を示すように制御す
ることで、一定荷重の実装、つまり安定した半田高さを
実現することができる。
Next, the solder 2 sandwiched between the optical semiconductor element 1 and the base substrate 3 is heated by the heating light 34 emitted from the heating light emitting lens 31 via the fiber 32 from the optical heating device 33 to the back surface of the base substrate 3. Is heated and melted by the heat transfer. Here, the thermal expansion in the thickness direction generated in the base substrate 3 by heating the base substrate 3 is such that the load displacement generated in the optical semiconductor element chuck 14 is monitored by the load meter 18 and the host computer 43 and always shows the same value. , It is possible to realize mounting with a constant load, that is, a stable solder height.

【0023】半田溶融後は、光加熱装置33を停止さ
せ、加熱光34の供給を停止することで、半田2の冷却
を行い、一定の半田高さでの光半導体素子1とベース基
板3の接続を計る。冷却後の光半導体素子1が実装され
たベース基板3は、光半導体素子チャック14の真空吸
着を停止し、光半導体素子チャック14を待避させた後
に、ベース基板吸着台34からの取り外しを行う。
After the solder is melted, the optical heating device 33 is stopped, and the supply of the heating light 34 is stopped, so that the solder 2 is cooled, and the optical semiconductor element 1 and the base substrate 3 at a constant solder height are cooled. Measure the connection. After the cooled optical semiconductor element 1 is mounted on the base substrate 3, the vacuum suction of the optical semiconductor element chuck 14 is stopped, the optical semiconductor element chuck 14 is evacuated, and then removed from the base substrate suction table 34.

【0024】また、複数の光半導体素子1を同一のベー
ス基板に搭載する場合は、最初に搭載する光半導体素子
1を、実装する複数の光半導体素子の中で最も高い溶融
温度を持つ半田2によって搭載し、搭載順序が後になる
ほど溶融温度の低い半田2を使用することで、同一基板
上での光半導体素子1を複数実装することを可能とす
る。
When a plurality of optical semiconductor elements 1 are mounted on the same base substrate, the first mounted optical semiconductor element 1 is replaced with a solder 2 having the highest melting temperature among the plurality of mounted optical semiconductor elements. By using the solder 2 having a lower melting temperature as the mounting order becomes later, it becomes possible to mount a plurality of optical semiconductor elements 1 on the same substrate.

【0025】(実施形態3)同一の半田により複数の光
半導体素子1を実装する例を、実施形態3として図3に
示す。熱伝導率の高い材質で構成されたベース基板3で
複数の光半導体素子1を同一半田2で搭載する場合、実
施形態1のような熱伝導率の低いベース吸着部21上
で、予め実装された光半導体素子4の半田2を溶かさず
に、新たに光半導体素子1を実装することは困難であ
る。
(Embodiment 3) FIG. 3 shows an embodiment 3 in which a plurality of optical semiconductor elements 1 are mounted by the same solder. When a plurality of optical semiconductor elements 1 are mounted with the same solder 2 on the base substrate 3 made of a material having a high thermal conductivity, the optical semiconductor elements 1 are mounted in advance on the base adsorption portion 21 having a low thermal conductivity as in the first embodiment. It is difficult to newly mount the optical semiconductor element 1 without melting the solder 2 of the optical semiconductor element 4.

【0026】そこで、ベース基板3上に温度差を設ける
ため、加熱する光半導体素子1以外の下面に、熱伝導率
の高い材料による放熱材26を設置し、放熱材26へ熱
エネルギを逃がすことで、ベース基板3内に大きな温度
差を付けることができる。
Therefore, in order to provide a temperature difference on the base substrate 3, a heat radiating material 26 made of a material having high thermal conductivity is provided on the lower surface other than the optical semiconductor element 1 to be heated, and heat energy is released to the heat radiating material 26. Thus, a large temperature difference can be provided in the base substrate 3.

【0027】(実施形態4)一つのベース基板3上での
実装する複数の光半導体素子1の位置が近傍にあり、実
施形態3の放熱材によるベース基板3上で必要な温度分
布も作れず、また、実装する半田2の組成も変更できな
い場合は、図4に示す構造により、複数の光半導体素子
を搭載することが可能である。
(Embodiment 4) The positions of a plurality of optical semiconductor elements 1 to be mounted on one base substrate 3 are close to each other, and a necessary temperature distribution on the base substrate 3 by the heat radiating material of Embodiment 3 cannot be created. When the composition of the solder 2 to be mounted cannot be changed, a plurality of optical semiconductor elements can be mounted by the structure shown in FIG.

【0028】実装する光半導体素子1を吸着している光
半導体素子チャック14に予備加熱ヒータ16を内蔵さ
せ、その熱を熱伝導体17により接触している光半導体
素子1のみを予備加熱することで、吸着していない光半
導体素子4と光半導体素子チャック14に吸着している
光半導体素子1に温度差を生じさせることができる。
A preheater 16 is built in the optical semiconductor element chuck 14 which holds the optical semiconductor element 1 to be mounted, and the heat is preheated only to the optical semiconductor element 1 which is in contact with the heat conductor 17. Thus, it is possible to cause a temperature difference between the optical semiconductor element 4 not adsorbed and the optical semiconductor element 1 adsorbed on the optical semiconductor element chuck 14.

【0029】ここでの予備加熱は半田の溶融温度以下
(例えばAuSnの共晶半田であれば280℃以下の温
度)が絶対条件となる。その後、ベース基板3を加熱光
出射レンズ31からの光により加熱することで、予備加
熱を行った光半導体素子1のみを選択して、光半導体素
子1の半田2を溶融することが可能となる。
The absolute condition of the preheating here is the melting temperature of the solder or lower (for example, a temperature of 280 ° C. or lower in the case of AuSn eutectic solder). After that, by heating the base substrate 3 with the light from the heating light emitting lens 31, only the pre-heated optical semiconductor element 1 can be selected, and the solder 2 of the optical semiconductor element 1 can be melted. .

【0030】[0030]

【発明の効果】本発明によれば、光半導体素子をベース
基板に高精度で位置決めすることが可能となり、光学レ
ンズ等を用いることなく容易に高い光結合をとることが
できる。したがって、本発明の方法及び装置を用いるこ
とにより、煩雑な実装工程をとらずに低コストな光モジ
ュールおよび光伝送装置を作製することが可能となる。
According to the present invention, the optical semiconductor element can be positioned on the base substrate with high precision, and high optical coupling can be easily achieved without using an optical lens or the like. Therefore, by using the method and the apparatus of the present invention, it is possible to manufacture a low-cost optical module and an optical transmission device without taking a complicated mounting process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1である光半導体素子の断面
構造図。
FIG. 1 is a sectional structural view of an optical semiconductor device according to a first embodiment of the present invention.

【図2】本発明の実施形態2である光半導体素子を実装
置する装置を示す全体構造断面図。
FIG. 2 is an overall structural cross-sectional view showing an apparatus for actually manufacturing an optical semiconductor element according to a second embodiment of the present invention.

【図3】本発明の実施形態3である光半導体素子の断面
構造図。
FIG. 3 is a sectional structural view of an optical semiconductor device according to a third embodiment of the present invention.

【図4】本発明の実施形態4である光半導体素子の断面
構造図。
FIG. 4 is a sectional structural view of an optical semiconductor device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…光半導体素子、2…半田、3…ベース基板、4…実
装済み光半導体素子、11…光半導体素子吸着部、12
…光半導体素子吸着穴、13…光半導体素子観察窓、1
4…光半導体素子チャック、15…真空ポンプ、16…
予備加熱ヒータ、17…熱伝導体、18…荷重計、21
…ベース吸着部、22…ベース吸着穴、23…ベース加
熱窓、24…ベース基板吸着台、25…ベース放熱部、
26…ベース微動部、31…加熱光出射レンズ、32…
ファイバ、33…光加熱装置、34…加熱光、41…光
学系、42…画像処理部、43…ホストコンピュータ、
44…光半導体素子移載部。
DESCRIPTION OF SYMBOLS 1 ... Optical semiconductor element, 2 ... Solder, 3 ... Base board, 4 ... Mounted optical semiconductor element, 11 ... Optical semiconductor element adsorption part, 12
... Optical semiconductor element suction holes, 13 ... Optical semiconductor element observation window, 1
4 ... Optical semiconductor element chuck, 15 ... Vacuum pump, 16 ...
Preheating heater, 17: thermal conductor, 18: load cell, 21
... Base suction part, 22 ... Base suction hole, 23 ... Base heating window, 24 ... Base substrate suction table, 25 ... Base heat radiation part,
26: base fine movement part, 31: heating light emitting lens, 32 ...
Fiber, 33: light heating device, 34: heating light, 41: optical system, 42: image processing unit, 43: host computer,
44 ... Optical semiconductor element transfer section.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川本 和民 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 (72)発明者 太田 洋幸 神奈川県横浜市戸塚区吉田町216番地 株 式会社日立製作所情報通信事業内 (72)発明者 鬼頭 繁文 神奈川県横浜市戸塚区吉田町216番地 株 式会社日立製作所情報通信事業内 Fターム(参考) 5F073 BA09 EA29 FA22 FA23  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazumi Kawamoto 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture Inside the Manufacturing Research Laboratory, Hitachi, Ltd. (72) Hiroyuki Ota 216, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. Information and Communication Business (72) Inventor Shigefumi Kito 216 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture F-term in Hitachi, Ltd. Information and Communication Business 5F073 BA09 EA29 FA22 FA23

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】光半導体素子をベース基板上に固定する表
面実装工程において、接続対象となる光半導体素子とベ
ース基板を、実装温度での熱伝導率2W/m・K以下、
線膨張係数20×10-6-1以下の特徴を持つ低膨張断
熱材により上下から挟みこみ、間接式加熱装置によって
光半導体素子とベース基板を加熱し、光半導体素子とベ
ース基板間の半田を溶融させる事で、光半導体素子とベ
ース基板を接続することを特徴とする光半導体素子の実
装方法。
In a surface mounting step of fixing an optical semiconductor element on a base substrate, the optical semiconductor element to be connected and the base substrate are heated at a mounting temperature of 2 W / m · K or less.
It is sandwiched from above and below by a low-expansion heat-insulating material having a characteristic of a linear expansion coefficient of 20 × 10 −6 K −1 or less, and the optical semiconductor element and the base substrate are heated by an indirect heating device, and the solder between the optical semiconductor element and the base substrate is heated. A method of mounting an optical semiconductor element, wherein the optical semiconductor element and the base substrate are connected by melting the optical semiconductor element.
【請求項2】請求項1の低膨張断熱材が石英ガラスであ
ることを特徴とする光半導体素子の実装方法。
2. The method for mounting an optical semiconductor device according to claim 1, wherein the low-expansion heat insulating material is quartz glass.
【請求項3】請求項1の低膨張断熱材がパイレックスガ
ラスであることを特徴とする光半導体素子の実装方法。
3. The method for mounting an optical semiconductor device according to claim 1, wherein the low expansion heat insulating material is Pyrex glass.
【請求項4】請求項1の間接式加熱装置がキセノンショ
ートアークランプによる加熱装置であることを特徴とす
る光半導体素子の実装方法。
4. A method according to claim 1, wherein the indirect heating device is a heating device using a xenon short arc lamp.
【請求項5】請求項1の間接式加熱装置がレーザ光を使
用した加熱装置であることを特徴とする光半導体素子の
実装方法。
5. The method of mounting an optical semiconductor device according to claim 1, wherein the indirect heating device according to claim 1 is a heating device using laser light.
【請求項6】請求項1のベース基板に接触する低膨張断
熱材の一部にベース基板内に温度差を設けるため、与え
られた熱量の一部を逃がす熱伝導体を設けたことを特徴
とする光半導体素子の実装方法。
6. A heat conductor for releasing a part of a given amount of heat to provide a temperature difference in the base substrate in a part of the low-expansion heat insulating material in contact with the base substrate according to claim 1. Mounting method of an optical semiconductor element.
【請求項7】請求項1の間接式加熱装置と光半導体素子
を直接加熱する予備加熱装置の2種類の加熱装置を同一
装置内に設けたことを特徴とする光半導体素子の実装方
法。
7. A method for mounting an optical semiconductor device, wherein two types of heating devices, the indirect heating device according to claim 1 and a preheating device for directly heating the optical semiconductor device, are provided in the same device.
【請求項8】請求項1の低膨張断熱材で作られた光半導
体素子とベース基板の上下を把持する治具と、光半導体
素子とベース基板を間接的に加熱する間接的加熱装置
と、光半導体素子とベース基板の相対位置を調整する位
置決め装置と、光半導体素子とベース基板の相対位置を
検出する検出装置を備えたことを特徴とする光半導体素
子の実装装置。
8. An optical semiconductor device made of the low-expansion heat insulating material according to claim 1, a jig for gripping upper and lower portions of the base substrate, an indirect heating device for indirectly heating the optical semiconductor device and the base substrate, An optical semiconductor device mounting device, comprising: a positioning device that adjusts a relative position between an optical semiconductor device and a base substrate; and a detection device that detects a relative position between the optical semiconductor device and the base substrate.
JP11006066A 1999-01-13 1999-01-13 Method and device for mounting optical semiconductor element Pending JP2000208855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11006066A JP2000208855A (en) 1999-01-13 1999-01-13 Method and device for mounting optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11006066A JP2000208855A (en) 1999-01-13 1999-01-13 Method and device for mounting optical semiconductor element

Publications (1)

Publication Number Publication Date
JP2000208855A true JP2000208855A (en) 2000-07-28

Family

ID=11628219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11006066A Pending JP2000208855A (en) 1999-01-13 1999-01-13 Method and device for mounting optical semiconductor element

Country Status (1)

Country Link
JP (1) JP2000208855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204017A (en) * 2000-12-27 2002-07-19 Kyocera Corp Heating device and packaging method of optical semiconductor element using the heating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204017A (en) * 2000-12-27 2002-07-19 Kyocera Corp Heating device and packaging method of optical semiconductor element using the heating device
JP4618885B2 (en) * 2000-12-27 2011-01-26 京セラ株式会社 Heating apparatus and optical module manufacturing method using the same

Similar Documents

Publication Publication Date Title
US4807956A (en) Opto-electronic head for the coupling of a semi-conductor device with an optic fiber, and a method to align this semi-conductor device with this fiber
CA1280876C (en) Optical component mounting
WO2019161755A1 (en) Optical secondary module and light module
JPH03102305A (en) Multiple fiber alignment type package for inclined surface type optoelectronics part
JPH09138325A (en) Optical fiber packaging structure and its production
US6151173A (en) Assembly of optical components optically aligned and method for making this assembly
WO2018074697A1 (en) Light homogenizing module and laser bonding apparatus comprising same
CN102182954A (en) Light source device, and backlight, exposure apparatus and exposure method using the same
JP4643891B2 (en) Positioning method for parallel optical system connection device
JPH06196816A (en) Laser diode with lens and manufacture thereof
JP2000208855A (en) Method and device for mounting optical semiconductor element
JPH11121517A (en) Device and method for mounting semiconductor device
JPH0396906A (en) Multi-fiber alignment type package for optoelectronics part
US6676305B2 (en) Apparatus and method of aligning optical fibers to optical devices
CN100523883C (en) Precision fiber attachment
KR20200129437A (en) Laser reflow method of laser reflow apparatus
KR102174929B1 (en) Laser reflow method of laser reflow apparatus
EP3857278B1 (en) Integrated heater structures in a photonic integrated circuit for solder attachment applications
EP1102370B1 (en) Semiconductor laser module and method of mounting semiconductor laser element on the same
JPH0996730A (en) Optical element mounted module, optical element mounting method and optical system composed of optical element mounted module
JP3393483B2 (en) Optical semiconductor module and manufacturing method thereof
JP2002156561A (en) Optical integrated module
US7021835B1 (en) Alignment of optical components in an optical subassembly
CN101299082A (en) Optical module
JPH0245985A (en) Heat sinking mounting substrate of photocircuit element and packaging