JP2000208146A - Electrochemical capacitor - Google Patents

Electrochemical capacitor

Info

Publication number
JP2000208146A
JP2000208146A JP11008796A JP879699A JP2000208146A JP 2000208146 A JP2000208146 A JP 2000208146A JP 11008796 A JP11008796 A JP 11008796A JP 879699 A JP879699 A JP 879699A JP 2000208146 A JP2000208146 A JP 2000208146A
Authority
JP
Japan
Prior art keywords
activated carbon
fine particles
electrochemical capacitor
carbon fine
halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11008796A
Other languages
Japanese (ja)
Inventor
Yasuhiko Osawa
康彦 大▲沢▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11008796A priority Critical patent/JP2000208146A/en
Publication of JP2000208146A publication Critical patent/JP2000208146A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical capacitor of a low cost and a high capacity by carrying a ruthenium (IV) oxide on activated carbon. SOLUTION: In this electrochemical capacitor having a pair of electrodes 11 and 12, an ion permeable porous separator 15 disposed between the electrodes 11 and 12 for electronically insulating them and an electrolyte solution immersed in these, the pair of electrodes 11 and 12 are electrodes containing complex activated carbon fine particles manufactured by a process of neutralizing with an alkali after a halide of a transition metal element of Group VIII is immersed in activated carbon fine particles 13 and 14 from a water solution containing the halide of the transition metal element 6 Group VIII.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気化学的に充放
電を行なう電気化学キャパシタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical capacitor which performs charging and discharging electrochemically.

【0002】[0002]

【従来の技術】固体と液体が接触する界面では、一般
に、極めて短い距離を隔てて正、負の電荷が対向して配
列し、電気二重層が形成される。この電気二重層に直流
電圧を印加するとその電圧に応じて電荷が蓄積され、結
果として電気エネルギーが蓄積される。この電気二重層
の静電容量を利用した電気二重層キャパシタが知られて
いる(例えば、特開平9−129509号公報参照)。
2. Description of the Related Art Generally, at an interface where a solid and a liquid come into contact, positive and negative charges are arranged to face each other at an extremely short distance to form an electric double layer. When a DC voltage is applied to the electric double layer, electric charges are stored in accordance with the voltage, and as a result, electric energy is stored. An electric double layer capacitor utilizing the capacitance of the electric double layer is known (for example, see Japanese Patent Application Laid-Open No. 9-129509).

【0003】この電気二重層キャパシタは、活性炭の大
表面積を利用していて、容量の小さな電池のようなエネ
ルギーデバイスとして、ICのメモリーバックアップ用
を始め、種々の家電製品に使われ始めている。また、最
近では、さらに容量の大きなキャパシタが開発され、低
コストで高出力が得られるパワーキャパシタとして、ハ
イブリッド型の電気自動車(HEV)への応用が進めら
れている。
[0003] The electric double layer capacitor utilizes the large surface area of activated carbon, and has begun to be used as an energy device such as a small-capacity battery in various home electric appliances, including memory backup of ICs. Recently, a capacitor having a larger capacity has been developed, and its application to a hybrid electric vehicle (HEV) has been promoted as a power capacitor capable of obtaining a high output at a low cost.

【0004】[0004]

【発明が解決しようとする課題】しかし、活性炭の表面
積を利用する電気二重層キャパシタは、ハイブリッド型
の電気自動車(HEV)へ応用するには、単位重量当た
り及び単位体積当たりの容量が不足しているという問題
がある。電池と同じ表現にすると、エネルギー密度(W
h/kg,Wh/l)が不足している。
However, an electric double layer capacitor utilizing the surface area of activated carbon has insufficient capacity per unit weight and unit volume for application to a hybrid electric vehicle (HEV). There is a problem that there is. In the same expression as the battery, the energy density (W
h / kg, Wh / l) are insufficient.

【0005】このような電気二重層キャパシタの容量不
足を改善するため、活性炭の代わりに酸化ルテニウム
(IV)などを用い高速の酸化還元反応で充放電を行なう
酸化還元キャパシタの開発が進められている(例えば、
Electrochemical capasitors,F.M.Delnick et al. Edit
ors, Electrochemical Society PV 96-25, P.208, theE
lectrochemical Society Proceedings series, Penning
ton, NJ(1997).参照)。この酸化還元キャパシタは、電
気二重層キャパシタに比べて容量的には大きいが、現状
開発されているRuやIrといった材料は高価であり、
それだけでキャパシタを構成しようとするとコストが高
くなるという問題がある。また、RuやIrを大量に消
費すると資源不足になる心配がある。
[0005] In order to improve the capacity shortage of such an electric double layer capacitor, development of an oxidation-reduction capacitor which performs charge and discharge by a high-speed oxidation-reduction reaction using ruthenium (IV) oxide or the like instead of activated carbon has been developed. (For example,
Electrochemical capasitors, FMDelnick et al. Edit
ors, Electrochemical Society PV 96-25, P.208, theE
electrochemical Society Proceedings series, Penning
ton, NJ (1997).). This redox capacitor is larger in capacity than an electric double layer capacitor, but materials such as Ru and Ir which are currently being developed are expensive.
There is a problem that the cost is increased if a capacitor is to be formed by itself. In addition, there is a concern that a large amount of Ru or Ir consumes resources.

【0006】そこで、活性炭に酸化ルテニウム(IV)な
どの酸化還元キャパシタ材料を担持して、活性炭の容量
をいかしつつ容量を増加させることが考えられる。しか
し、キャパシタ電極の活性炭に酸化ルテニウム(IV)を
担持して、キャパシタの容量を増加できる実際的な方法
はこれまでに報告されていない。
Therefore, it is conceivable to increase the capacity of an activated carbon by supporting a redox capacitor material such as ruthenium (IV) oxide on the activated carbon while utilizing the capacity of the activated carbon. However, no practical method has been reported so far in which ruthenium (IV) oxide is supported on activated carbon of a capacitor electrode to increase the capacity of the capacitor.

【0007】本発明は、このような従来の問題点に着目
してなされたもので、酸化ルテニウム(IV)を活性炭に
担持することにより、低コストで容量すなわちエネルギ
ー密度の大きな電気化学キャパシタを提供することを目
的とする。
The present invention has been made in view of such conventional problems, and provides a low-cost electrochemical capacitor having a large capacity, that is, a large energy density by supporting ruthenium (IV) oxide on activated carbon. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、一対の電極と、それらの間に介在して電
子的に絶縁するイオン透過性多孔質セパレーターと、こ
れらに含ませた電解質溶液を有する電気化学キャパシタ
であって、これら一対の電極が、活性炭微粒子に、VIII
族遷移金属元素のハロゲン化物を含む水溶液から、VIII
族遷移金属元素のハロゲン化物を吸収させた後アルカリ
で中和することを特徴とした方法により製造した複合化
活性炭微粒子を含む電極とすることにより、上記目的を
達成する。
In order to achieve the above-mentioned object, the present invention provides a pair of electrodes, an ion-permeable porous separator interposed between the pair of electrodes, and electrically insulated from the pair of electrodes. An electrochemical capacitor having an electrolyte solution, wherein the pair of electrodes is
VIII from aqueous solutions containing halides of group III transition metals
The above object is attained by providing an electrode containing composite activated carbon fine particles produced by a method characterized by absorbing a halide of a group transition metal element and then neutralizing the same with an alkali.

【0009】本発明のVIII族遷移金属元素のハロゲン化
物としては、三塩化ルテニウムが好ましく使える。ま
た、本発明に用いる活性炭微粒子は、そのもともとの容
量も有効に利用するとの観点から、単位重量、単位体積
当たりの表面積ができるだけ大きく、活性炭自体の容量
も大きくしかも酸化ルテニウム(IV)等を十分保持でき
ることが効果的なので、BET比表面積が1500m2
/g以上3500m2 /g以下のものが好ましい。BE
T比表面積が大きくなりすぎると、単位重量当たりの容
量は大きいが、単位体積当たりの容量が小さくなり、ス
ペースを限られる用途には不向きになってしまう。
As the halide of the Group VIII transition metal element of the present invention, ruthenium trichloride can be preferably used. Further, the activated carbon fine particles used in the present invention have a surface area per unit weight and unit volume as large as possible, the capacity of the activated carbon itself is large, and the ruthenium oxide (IV) or the like is sufficiently used from the viewpoint that the original capacity is effectively used. Since it is effective to be able to maintain, the BET specific surface area is 1500 m 2
/ G or more and 3500 m 2 / g or less are preferable. BE
If the T specific surface area is too large, the capacity per unit weight is large, but the capacity per unit volume is small, which is not suitable for applications where space is limited.

【0010】さらに、本発明の他の特徴は、VIII族遷移
金属元素のハロゲン化物を活性炭に吸収させた後加熱乾
燥することであり、酸化ルテニウム(IV)等の担持物を
活性炭微粒子の内部に保持するためである。このための
加熱乾燥温度は80℃から200℃が好ましい。乾燥温
度が低すぎると時間がかかり、高すぎると、活性炭に着
火したり、活性炭の細孔内に容量低下の原因になる不都
合な何らかの物質が生成するからである。
Still another feature of the present invention is that the activated carbon is allowed to absorb a halide of a group VIII transition metal element and then dried by heating, and a carrier such as ruthenium (IV) oxide is placed inside the activated carbon fine particles. It is for holding. The heating and drying temperature for this is preferably from 80 ° C to 200 ° C. If the drying temperature is too low, it takes time. If the drying temperature is too high, the activated carbon is ignited or some inconvenient substance is generated in the pores of the activated carbon, which causes a reduction in capacity.

【0011】本発明では、活性炭の本来の容量をできる
だけ犠牲にせずに、しかも活性炭の表面積の大きさを活
かして酸化還元性物質のキャパシタ挙動に重要な高速反
応性を保持し、さらに活性炭の容量に直接寄与しない空
隙を有効に利用して、活性炭電極の体積当たりの容量
も、重量当たりの容量も、ともに改善しようとするもの
である。
According to the present invention, high-speed reactivity, which is important for the behavior of a capacitor of an oxidation-reduction substance, is maintained without sacrificing the original capacity of activated carbon as much as possible, and by making use of the surface area of activated carbon. It is intended to improve both the capacity per unit volume and the capacity per unit weight of the activated carbon electrode by effectively utilizing the voids that do not directly contribute to the carbon dioxide.

【0012】以下、本発明の作用を説明する。本発明に
よれば、活性炭の表面の電気二重層の容量に加え、活性
炭微粒子に収着した酸化ルテニウム(IV)などの存在に
よって発現する容量成分が加わるので、高容量で低コス
トの電気化学キャパシタを得ることができる。
Hereinafter, the operation of the present invention will be described. According to the present invention, in addition to the capacity of the electric double layer on the surface of the activated carbon, a capacitance component developed by the presence of ruthenium (IV) oxide or the like sorbed on the activated carbon fine particles is added, so that a high-capacity and low-cost electrochemical capacitor is provided. Can be obtained.

【0013】なお、キャパシタの容量を増加させる方法
として、別途合成した酸化ルテニウム(IV)粉末と活性
炭を物理的に混合して活性炭電極を構成することが考え
られるが、実際に酸化ルテニウム(IV)を合成して比較
してみると、本発明の酸化ルテニウム(IV)担持活性炭
合成の場合は、酸化ルテニウム(IV)合成の場合と比
べ、生成微粒子のサイズを活性炭微粒子サイズにできる
ので、濾過等の過程が簡単で、ルテニウムのロスが出に
くい、という利点がある。
As a method of increasing the capacitance of the capacitor, it is conceivable to physically mix a separately synthesized ruthenium (IV) oxide powder and activated carbon to form an activated carbon electrode. When the activated carbon synthesis supporting ruthenium (IV) oxide of the present invention is synthesized and compared with the case of the synthesis of ruthenium (IV) oxide, the size of the generated fine particles can be made the same as the activated carbon fine particle size. This process has the advantage that the process is simple and ruthenium is not easily lost.

【0014】また、酸化ルテニウム(IV)担持活性炭微
粒子表面のSEM像(金属元素の存在が強調される反射
電子像)には、酸化ルテニウム(IV)の塊は見えず、酸
化ルテニウム(IV)が微粒子内部に形成されていること
を示唆している。そのため、酸化ルテニウム(IV)超微
粒子によるセパレーターを通しての微小短絡などが起き
にくい、という実際上の重要なメリットがある。
Further, in the SEM image (reflection electron image in which the existence of the metal element is emphasized) on the surface of the activated carbon fine particles carrying ruthenium (IV) oxide, no lump of ruthenium (IV) is seen and ruthenium (IV) is This suggests that it is formed inside the fine particles. Therefore, there is a practically important merit that a minute short circuit or the like by a ruthenium (IV) oxide ultrafine particle through a separator hardly occurs.

【0015】さらに、HEVのようにキャパシタを直列
に接続して使用する場合には、キャパシタ間での容量ば
らつきが大きな問題になる。本発明の酸化ルテニウム
(IV)担持活性炭を用いるキャパシタの場合には、前述
の酸化ルテニウム(IV)と活性炭の物理的混合系に比べ
て、酸化ルテニウム(IV)の分布を一つのキャパシタ電
極内、一つのキャパシタの正負の電極間、異なるキャパ
シタの電極間で原理的に均一にしやすい、という重要な
利点がある。
Further, when capacitors are used by connecting them in series as in the case of an HEV, variation in capacitance between the capacitors becomes a serious problem. In the case of the capacitor using the activated carbon supporting ruthenium oxide (IV) according to the present invention, the distribution of ruthenium oxide (IV) in one capacitor electrode is smaller than that of the aforementioned physically mixed system of ruthenium oxide (IV) and activated carbon. There is an important advantage that it is easy in principle to make uniform between the positive and negative electrodes of one capacitor and between the electrodes of different capacitors.

【0016】[0016]

【発明の実施の形態】以下、本発明による電気化学キャ
パシタの実施の形態を添付図面を参照して詳細に説明す
る。図1は、本発明による電気化学キャパシタの一実施
の形態の評価セルの断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of an electrochemical capacitor according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view of an evaluation cell of an embodiment of the electrochemical capacitor according to the present invention.

【0017】まず、構成を説明する。電気化学キャパシ
タの評価セル10は、正極集電体11と負極集電体12
と絶縁性ゴムシート16の間の空間を、イオン透過性多
孔質膜セパレーター15で仕切り、その両側に正極活性
炭微粒子13と負極活性炭微粒子14を充填して形成し
たものである。
First, the configuration will be described. The evaluation cell 10 of the electrochemical capacitor includes a positive electrode current collector 11 and a negative electrode current collector 12.
The space between the insulating rubber sheet 16 and the insulating rubber sheet 16 is partitioned by an ion-permeable porous membrane separator 15, and both sides thereof are filled with positive-electrode activated carbon fine particles 13 and negative-electrode activated carbon fine particles 14.

【0018】なお、多孔質膜セパレーター15は、正極
活性炭微粒子13と負極活性炭微粒子14との間を電子
的に絶縁し、イオンの透過を許容するもので、ニトロセ
ルロースのメンブランフィルターなどを用いることがで
きる。
The porous membrane separator 15 electronically insulates between the positive electrode activated carbon fine particles 13 and the negative electrode activated carbon fine particles 14 and allows the permeation of ions. For example, a nitrocellulose membrane filter may be used. it can.

【0019】この評価セル10の正極活性炭微粒子13
と負極活性炭微粒子14の体積サイズは、それぞれ、直
径12mmの円形で、厚さ1mmとした。
The positive electrode activated carbon fine particles 13 of this evaluation cell 10
The volume size of each of the negative electrode activated carbon fine particles 14 was a circle having a diameter of 12 mm and a thickness of 1 mm.

【0020】正負両極の活性炭微粒子13,14は、単
一あるいは複数のVIII族遷移金属元素のハロゲン化物を
含む水溶液から、かかる単一あるいは複数のVIII族遷移
金属元素のハロゲン化物を吸収させた活性炭微粒子をア
ルカリで中和して製造する。
Activated carbon fine particles 13 and 14 of both positive and negative polarities are obtained from an aqueous solution containing a halide of a single or a plurality of Group VIII transition metal elements, and an activated carbon obtained by absorbing the halide of a single or a plurality of Group VIII transition metal elements. It is manufactured by neutralizing the fine particles with an alkali.

【0021】本発明は、活性炭の本来の容量をできるだ
け犠牲にせずに、しかも活性炭の表面積の大きさを活か
して酸化還元性物質のキャパシタ挙動に重要な高速反応
性を保持し、さらに活性炭の容量に直接寄与しない空隙
を有効に利用して、活性炭電極としての容量、単位体積
当たりの容量も、単位重量当たりの容量もともに改善し
ようというものである。
According to the present invention, the high-speed reactivity important for the capacitor behavior of the redox substance is maintained without sacrificing the original capacity of the activated carbon as much as possible and by utilizing the surface area of the activated carbon. The effective use of voids that do not directly contribute to the capacity of the electrode is to improve both the capacity as an activated carbon electrode, the capacity per unit volume, and the capacity per unit weight.

【0022】以下、本発明による電気化学キャパシタの
実施の形態を、実施例、比較例を参照しながら具体的に
説明する。
Hereinafter, embodiments of the electrochemical capacitor according to the present invention will be specifically described with reference to Examples and Comparative Examples.

【0023】(実施例1)三塩化ルテニウム(RuCl
3 ・3H2 O)0.1gを50ml程度の蒸留水に溶か
し、その中に、BET比表面積が3000m2 /gの活
性炭微粒子を1g加えて、よく振り混ぜた。活性炭はす
ぐに沈降するので、しばらくの間時々振り混ぜて攪拌し
た後、一昼夜放置した。上澄み液はほとんど無色透明に
近かった。活性炭を濾過して、風乾後、120℃の乾燥
器でさらに12時間乾燥した。放冷後、50ml程度の
蒸留水に分散させて磁気回転子で攪拌しながら、小過剰
の水酸化ナトリウム溶液を加えて中和した。濾過後、さ
らに水洗して、風乾後、乾燥器にて130〜150℃で
12時間乾燥した。得られたサンプルを所定量メノウ乳
鉢に入れて秤量し、そこへ5モル/リットルの硫酸を加
えてよくかき混ぜ、全体を適度によく湿らせた。この粗
いペースト状のものを、図1の正極及び負極の活性炭微
粒子(13,14)部分に同量詰めて(それぞれのサイ
ズは、直径12mm、厚さ1mm)、間をニトロセルロ
ースのメンブランフィルターで分離してセル10を構成
し、上下から適度に押し付けて、充放電試験を行なっ
た。なお、正負極の集電体にはチタンの薄板を用いた。
充放電は、0〜0.7Vの間で行ない、電流値は10m
Aとした。セルの容量は、放電電気量を放電区間電圧で
除して求め、活性炭単位重量当たりの容量として、表1
に示す。なお、セルの容量は、電極の単位体積当たりの
容量の相対値とみなせる。
Example 1 Ruthenium trichloride (RuCl)
Dissolve 3 · 3H 2 O) 0.1g of distilled water of about 50 ml, therein, BET specific surface area in addition 1g of activated carbon particles of 3000 m 2 / g, was well shaken. Activated carbon settles out immediately, so it was shaken and stirred for a while for a while, and then left overnight. The supernatant was almost colorless and transparent. The activated carbon was filtered, air-dried, and further dried in a dryer at 120 ° C. for 12 hours. After cooling, the mixture was dispersed in about 50 ml of distilled water and neutralized by adding a small excess of sodium hydroxide solution while stirring with a magnetic rotator. After filtration, it was further washed with water, air-dried, and then dried in a dryer at 130 to 150 ° C. for 12 hours. A predetermined amount of the obtained sample was put into an agate mortar, weighed, and 5 mol / l of sulfuric acid was added thereto and mixed well to moisten the whole appropriately. This coarse paste was packed in the same amount into the activated carbon fine particles (13, 14) of the positive electrode and the negative electrode in FIG. 1 (each size was 12 mm in diameter and 1 mm in thickness), and the space between them was passed through a nitrocellulose membrane filter. The cell 10 was separated and configured to be appropriately pressed from above and below to perform a charge / discharge test. Note that a thin titanium plate was used as the positive and negative electrode current collectors.
The charge and discharge are performed between 0 and 0.7 V, and the current value is 10 m
A. The capacity of the cell was determined by dividing the amount of discharge electricity by the discharge section voltage, and was calculated as the capacity per unit weight of activated carbon in Table 1.
Shown in The capacity of the cell can be regarded as a relative value of the capacity per unit volume of the electrode.

【0024】(実施例2)実施例1において、三塩化ル
テニウム(RuCl3 ・3H2 O)の重量を0.2gに
変えた以外は同様にしてセル10を構成し、充放電試験
を行なった。結果を表1に示す。
Example 2 A cell 10 was constructed in the same manner as in Example 1 except that the weight of ruthenium trichloride (RuCl 3 .3H 2 O) was changed to 0.2 g, and a charge / discharge test was performed. . Table 1 shows the results.

【0025】(実施例3)実施例1において、三塩化ル
テニウム(RuCl3 ・3H2 O)の重量を0.05g
に変えた以外は同様にしてセル10を構成し、充放電試
験を行なった。結果を表1に示す。
Example 3 In Example 1, the weight of ruthenium trichloride (RuCl 3 .3H 2 O) was 0.05 g.
The cell 10 was constructed in the same manner, except that the charge / discharge test was performed. Table 1 shows the results.

【0026】(比較例1)実施例1において、活性炭に
酸化ルテニウム(IV)を担持せずにそのままでセル10
を構成し、充放電試験を行なった。結果を表1に示す。
(Comparative Example 1) In Example 1, the cell 10 was used as it was without carrying ruthenium (IV) oxide on activated carbon.
And a charge / discharge test was performed. Table 1 shows the results.

【0027】(実施例4)実施例1において、BET比
表面積が3000m2 /gの活性炭微粒子をBET比表
面積が2000m2 /gの活性炭微粒子に変えた以外は
同様にしてセル10を構成し、充放電試験を行なった。
結果を表1に示す。
Example 4 A cell 10 was constructed in the same manner as in Example 1 except that the activated carbon fine particles having a BET specific surface area of 3000 m 2 / g were changed to activated carbon fine particles having a BET specific surface area of 2000 m 2 / g. A charge / discharge test was performed.
Table 1 shows the results.

【0028】(比較例2)実施例4において、活性炭に
酸化ルテニウム(IV)を担持せずにそのままでセル10
を構成し、充放電試験を行なった。結果を表1に示す。
(Comparative Example 2) In Example 4, the cell 10 was used as it was without supporting ruthenium (IV) oxide on activated carbon.
And a charge / discharge test was performed. Table 1 shows the results.

【0029】(実施例5)実施例1において、BET比
表面積が3000m2 /gの活性炭微粒子をBET比表
面積が1700m2 /gの活性炭微粒子に変えた以外は
同様にしてセル10を構成し、充放電試験を行なった。
結果を表1に示す。
Example 5 A cell 10 was constructed in the same manner as in Example 1 except that the activated carbon fine particles having a BET specific surface area of 3000 m 2 / g were changed to activated carbon fine particles having a BET specific surface area of 1700 m 2 / g. A charge / discharge test was performed.
Table 1 shows the results.

【0030】(比較例3)実施例5において、活性炭に
酸化ルテニウム(IV)を担持せずにそのままでセル10
を構成し、充放電試験を行なった。結果を表1に示す。
(Comparative Example 3) In Example 5, the cell 10 was used as it was without supporting ruthenium (IV) oxide on activated carbon.
And a charge / discharge test was performed. Table 1 shows the results.

【0031】(比較例4)実施例1において、BET比
表面積が3000m2 /gの活性炭微粒子をBET比表
面積が1000m2 /gの活性炭微粒子に変えた以外は
同様にしてセル10を構成し、充放電試験を行なった。
結果を表1に示す。
Comparative Example 4 A cell 10 was constructed in the same manner as in Example 1 except that the activated carbon fine particles having a BET specific surface area of 3000 m 2 / g were changed to activated carbon fine particles having a BET specific surface area of 1000 m 2 / g. A charge / discharge test was performed.
Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】表1から明らかなように、本発明の実施例
1,2,3は比較例1に対して、セルの容量つまり単位
体積当たりの容量と単位重量当たりの容量がともに明ら
かに増大している。また、本発明の実施例4は比較例2
に対して、同様に単位体積当たりの容量と単位重量当た
りの容量がともに明らかに増大している。さらに、本発
明の実施例5は比較例3に対して、同様に単位体積当た
りの容量と単位重量当たりの容量がともに明らかに増大
している。最後に、比較例4は、実施例1〜5に対する
もので、単位体積当たりの容量と単位重量当たりの容量
を大きくするには、BET比表面積が適当な値の活性炭
の使用が有効であることを示している。
As is clear from Table 1, in Examples 1, 2 and 3 of the present invention, the capacity of the cell, that is, the capacity per unit volume and the capacity per unit weight were clearly increased as compared with Comparative Example 1. ing. Example 4 of the present invention is comparative example 2
On the other hand, similarly, both the capacity per unit volume and the capacity per unit weight are clearly increased. Further, in Example 5 of the present invention, both the capacity per unit volume and the capacity per unit weight are clearly increased as compared with Comparative Example 3. Finally, Comparative Example 4 is based on Examples 1 to 5. In order to increase the capacity per unit volume and the capacity per unit weight, it is effective to use activated carbon having an appropriate BET specific surface area. Is shown.

【0034】[0034]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、活性炭の表面の電気二重層の容量に加え、活性
炭微粒子に収着した酸化ルテニウム(IV)などの存在に
よって発現する容量成分が加わるので、高容量で低コス
トの電気化学キャパシタを得ることができる。
As described above in detail, according to the present invention, in addition to the capacity of the electric double layer on the surface of activated carbon, the capacity developed due to the presence of ruthenium (IV) oxide and the like sorbed on the activated carbon fine particles. Since the components are added, a high capacity and low cost electrochemical capacitor can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による電気化学キャパシタの一実施の形
態の評価セルの断面図である。
FIG. 1 is a sectional view of an evaluation cell of an embodiment of an electrochemical capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

10 評価セル 11 正極集電体 12 負極集電体 13 正極活性炭微粒子 14 負極活性炭微粒子 15 イオン透過性多孔質膜セパレーター 16 絶縁性ゴムシート Reference Signs List 10 evaluation cell 11 positive electrode current collector 12 negative electrode current collector 13 positive electrode activated carbon fine particles 14 negative electrode activated carbon fine particles 15 ion permeable porous membrane separator 16 insulating rubber sheet

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極と、それらの間に介在して電
子的に絶縁するイオン透過性多孔質セパレーターと、こ
れらに含ませた電解質溶液を有する電気化学キャパシタ
において、 前記一対の電極が、活性炭微粒子に、VIII族遷移金属元
素のハロゲン化物を含む水溶液から、前記VIII族遷移金
属元素のハロゲン化物を吸収させた後アルカリで中和す
ることを特徴とした方法により製造した複合化活性炭微
粒子を含むことを特徴とする電気化学キャパシタ。
1. An electrochemical capacitor having a pair of electrodes, an ion-permeable porous separator interposed therebetween and electrically insulating, and an electrolyte solution contained therein, wherein the pair of electrodes comprises: Activated carbon fine particles, from an aqueous solution containing a halide of a Group VIII transition metal element, composite activated carbon fine particles produced by a method characterized by neutralizing with alkali after absorbing the halide of the Group VIII transition metal element An electrochemical capacitor, comprising:
【請求項2】 請求項1に記載の電気化学キャパシタに
おいて、 前記VIII族遷移金属元素のハロゲン化物が、三塩化ルテ
ニウムであることを特徴とする電気化学キャパシタ。
2. The electrochemical capacitor according to claim 1, wherein the halide of the Group VIII transition metal element is ruthenium trichloride.
【請求項3】 請求項1に記載の電気化学キャパシタに
おいて、 前記活性炭微粒子が、BET比表面積が1500m2
g以上3500m2 /g以下の単一あるいはこの条件を
満たす活性炭の混合物であることを特徴とする電気化学
キャパシタ。
3. The electrochemical capacitor according to claim 1, wherein the activated carbon fine particles have a BET specific surface area of 1500 m 2 /
electrochemical capacitor which is a mixture of g to 3500 m 2 / g or less in single or this condition is satisfied charcoal.
【請求項4】 請求項1に記載の電気化学キャパシタに
おいて、 前記複合化活性炭微粒子が、前記VIII族遷移金属元素の
ハロゲン化物を吸収させた活性炭微粒子を、80℃から
200℃の範囲の温度で加熱乾燥してからアルカリで中
和する方法により製造した活性炭微粒子を含むことを特
徴とする電気化学キャパシタ。
4. The electrochemical capacitor according to claim 1, wherein the composite activated carbon fine particles are activated carbon particles having absorbed the halide of the Group VIII transition metal element at a temperature in the range of 80 ° C. to 200 ° C. An electrochemical capacitor comprising activated carbon fine particles produced by a method of heating and drying and then neutralizing with an alkali.
JP11008796A 1999-01-18 1999-01-18 Electrochemical capacitor Pending JP2000208146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11008796A JP2000208146A (en) 1999-01-18 1999-01-18 Electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11008796A JP2000208146A (en) 1999-01-18 1999-01-18 Electrochemical capacitor

Publications (1)

Publication Number Publication Date
JP2000208146A true JP2000208146A (en) 2000-07-28

Family

ID=11702841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11008796A Pending JP2000208146A (en) 1999-01-18 1999-01-18 Electrochemical capacitor

Country Status (1)

Country Link
JP (1) JP2000208146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244354A (en) * 2007-03-28 2008-10-09 Nippon Chemicon Corp Electrode for electrochemical element
JP2008252002A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode for electrochemical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244354A (en) * 2007-03-28 2008-10-09 Nippon Chemicon Corp Electrode for electrochemical element
JP2008252002A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode for electrochemical element

Similar Documents

Publication Publication Date Title
US5621609A (en) Composite electrode materials for high energy and high power density energy storage devices
US5875092A (en) Proton inserted ruthenium oxide electrode material for electrochemical capacitors
US9159502B2 (en) Supercapacitor with hexacyanometallate cathode, activated carbon anode, and non-aqueous electrolyte
JP4273215B2 (en) Electrode material for redox capacitor comprising metal fine particles coated with carbon, redox capacitor electrode comprising the same, and redox capacitor provided with the electrode
JP2008103473A (en) Power storage device
CN103858195A (en) Lithium ion capacitor, power storage device, power storage system
RU2140681C1 (en) Asymmetric electrochemical capacitor
JP4512336B2 (en) Capacitors
KR20020042676A (en) Method of activating metal hydride material and electrode
JPH11224699A (en) Energy storage element
Brandhorst et al. Achieving a high pulse power system through engineering the battery-capacitor combination
JP2000124081A (en) Electric double-layer capacitor
JP2000208146A (en) Electrochemical capacitor
JPH09283383A (en) Electric double layered capacitor
JP2000036441A (en) Electrical energy storage device and manufacture thereof
US5841627A (en) Pseudo-capacitor device for aqueous electrolytes
JP2008124059A (en) Energy storage device, and usage and manufacturing method thereof
JP2000036303A (en) Electric energy storing element and manufacture thereof
JPH11354389A (en) Electrochemical capacitor
JPH06302472A (en) Electric double layer capacitor and its manufacture
JP2002158140A (en) Electrochemical capacitor
JP2000315527A (en) Non-aqueous electrochemical capacitor
JPH11121285A (en) Electric double-layer capacitor
KR100305435B1 (en) Metal oxide electrode for supercapacitor and manufacturing method thereof
JP2000124082A (en) Energy-storing element and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040302

Free format text: JAPANESE INTERMEDIATE CODE: A02