JP2000206030A - Control method for water quality - Google Patents
Control method for water qualityInfo
- Publication number
- JP2000206030A JP2000206030A JP11188568A JP18856899A JP2000206030A JP 2000206030 A JP2000206030 A JP 2000206030A JP 11188568 A JP11188568 A JP 11188568A JP 18856899 A JP18856899 A JP 18856899A JP 2000206030 A JP2000206030 A JP 2000206030A
- Authority
- JP
- Japan
- Prior art keywords
- water
- particle counter
- turbidity
- water quality
- filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 58
- 238000001914 filtration Methods 0.000 claims abstract description 42
- 230000008859 change Effects 0.000 claims abstract description 6
- 238000000746 purification Methods 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 11
- 241000894006 Bacteria Species 0.000 claims description 10
- 238000003908 quality control method Methods 0.000 claims description 6
- 241000223935 Cryptosporidium Species 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 4
- 241001657377 Cryptobacterium Species 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010048685 Oral infection Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Filtration Of Liquid (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、浄水場のろ過池の
水質管理装置に関し、更に詳しくは生物系の粒子を含む
濁度の監視に用いて好適な水質管理装置に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality management device for a filtration pond in a water purification plant, and more particularly to a water quality management device suitable for monitoring turbidity containing biological particles.
【0002】[0002]
【従来の技術】浄水設備は、浄水工程として着水、沈
殿、ろ過から構成され、排水、排泥工程として洗浄排
水、沈殿排泥、汚泥処理設備がある。浄水工程は、原水
に含まれるさまざまな微粒子、微生物、細菌等を除去
し、飲料水として使える水にする工程工程である。これ
らを除去するための工程として、薬品注入沈殿→急速ろ
過の工程が取られている。2. Description of the Related Art Water purification equipment includes water landing, sedimentation, and filtration as water purification processes, and washing and drainage, sedimentation and sludge treatment, and sludge treatment equipment as drainage and sludge removal processes. The water purification step is a step of removing various fine particles, microorganisms, bacteria and the like contained in the raw water to make the water usable as drinking water. As a process for removing these, a process of chemical injection precipitation → rapid filtration is employed.
【0003】図5は、取水→浄水→排水までの一般的な
水処理工程を示す図である。図5において、河川や湖沼
から沈砂池に取水された水は揚水ポンプにより着水井に
送られ、更に急速攪拌/緩速攪拌池に送られる。次に薬
品沈殿池を経て急速ろ過池に送られ、ここでろ過された
水は塩素混和池、浄水池を経て配水ポンプにより利用者
に提供される。FIG. 5 is a diagram showing a general water treatment process from water intake → purified water → drainage. In FIG. 5, water taken from a river or lake into a sedimentation basin is sent to a landing well by a pump and further sent to a rapid stirring / slow stirring tank. Next, the water is sent to the rapid filtration pond via the chemical sedimentation basin, and the filtered water is provided to the user by the water distribution pump via the chlorine mixing pond and the water purification pond.
【0004】[0004]
【発明が解決しようとする課題】上述の急速ろ過池は浄
水処理工程における懸濁物質除去の最終段階であるの
で、このろ過池の濁度は従来JIS−K0101に準拠
した濁度2程度に管理されている。ところで、近年この
ように処理・管理された水道水の中に動物の体液や細胞
内(主に腸管)で生活する寄生性の原虫であるクリプトス
ポリジウム菌(以下、単にクリプト菌という)が混入す
るという事故が発生した。Since the above-mentioned rapid filtration pond is the last stage of removing suspended substances in the water purification treatment process, the turbidity of this filtration pond is conventionally controlled to about 2 in accordance with JIS-K0101. Have been. By the way, Cryptosporidium bacteria (hereinafter simply referred to as Crypto bacteria), which are parasitic protozoa living in the body fluids and cells (mainly intestinal tract) of animals, are mixed into tap water treated and managed in recent years. An accident occurred.
【0005】このクリプト菌の大きさは約4〜6μm程
度で、塩素殺菌に対し極めて強い耐抗性(大腸菌類の約6
9万倍といわれる)を有している。クリプト菌は生下水
中では1リットル中に800〜14000個存在すると
いわれている。そしてこのクリプト菌に経口感染する
と、激しい水様性の下痢や腹痛、吐き気を発症する。そ
して、感染者の免疫力が低下していた場合致命的にな
る。[0005] The size of this cryptobacterium is about 4 to 6 µm, and it is extremely resistant to chlorine sterilization (about 6 to 6 µm of Escherichia coli).
90,000 times). It is said that there are 800 to 14,000 Crypto bacteria per liter in raw sewage. Oral infection with this crypt bacterium causes severe watery diarrhea, abdominal pain and nausea. If the immunity of the infected person is reduced, it becomes fatal.
【0006】そのため厚生省では暫定対策として急速ろ
過池出口の濁度を0.1度以下にするように指導してい
る。しかしながら、生物系の粒子は屈折率が水に近く散
乱光が得られにくいので散乱光方式の測定器では濁度と
して測定できないという問題があり、透過光方式の測定
器では光を散乱する物質が混入していた場合、その物質
を含めた正確な濁度の測定ができないという問題があっ
た。Therefore, the Ministry of Health and Welfare instructs the turbidity at the outlet of the rapid filtration tank to be 0.1 degrees or less as a provisional measure. However, since the refractive index of biological particles is close to that of water and scattered light is difficult to obtain, there is a problem that scattered light cannot be measured as turbidity with a scattered light measuring instrument. When mixed, there is a problem that accurate measurement of turbidity including the substance cannot be performed.
【0007】本発明はこのような問題点を解決するため
になされたもので、屈折率が水に近い物質が混入してい
ても測定が可能な水質管理装置を提供することを目的と
する。The present invention has been made to solve such a problem, and an object of the present invention is to provide a water quality control device capable of performing measurement even when a substance having a refractive index close to that of water is mixed.
【0008】[0008]
【課題を解決するための手段】このような目的を達成す
るために本発明では、請求項1においては浄水場におけ
るろ過池の水質管理装置において、ろ過池の出口の濁度
を管理する手段として濁度計及び粒子カウンタを用い、
濁度計の信号の変化に基づいて水中の特定の大きさの粒
子を粒子カウンタで監視するように構成したことを特徴
とする。請求項2においては、請求項1記載の水質管理
装置において、測定すべき測定水を分岐してフィルタを
透過させ、このフィルタを透過した測定水を前記濁度計
のゼロ校正液とすることを特徴とする。In order to achieve the above object, according to the present invention, there is provided a water quality management device for a filtration pond in a water treatment plant, wherein the turbidity at the outlet of the filtration pond is controlled. Using a turbidity meter and a particle counter,
The apparatus is characterized in that particles of a specific size in water are monitored by a particle counter based on a change in a signal of the turbidimeter. According to a second aspect of the present invention, in the water quality management device according to the first aspect, the measurement water to be measured is branched and transmitted through a filter, and the measurement water transmitted through the filter is used as a zero calibration liquid for the turbidity meter. Features.
【0009】請求項3においては、浄水場におけるろ過
池の水質管理装置において、ろ過池の入口に第1粒子カ
ウンタを設け、ろ過池の出口に第2粒子カウンタおよび
濁度計を設けたことを特徴とする。According to a third aspect of the present invention, in the water quality management device for a filtration pond in a water purification plant, a first particle counter is provided at an entrance of the filtration pond, and a second particle counter and a turbidity meter are provided at an exit of the filtration pond. Features.
【0010】請求項4においては、浄水場におけるろ過
池の水質管理装置において、複数のろ過池の入口に第1
粒子カウンタ、出口に第2粒子カウンタを設け、カウン
トされた粒子の計測結果に基づいてろ過池からの取水を
継続・停止するように構成したことを特徴とする。請求
項5においては、請求項1記載の水質管理装置におい
て、粒子カウンタが4〜6μmの粒子をカウントしたと
きにクリプトスプリジウム菌と推定するようにしたこと
を特徴とする。According to a fourth aspect of the present invention, in the water quality management device for the filtration ponds in the water purification plant, the first entrances to the plurality of filtration ponds are provided.
A second particle counter is provided at the particle counter and at the outlet, and the intake of water from the filtration pond is continued or stopped based on the measurement result of the counted particles. According to a fifth aspect of the present invention, in the water quality management device according to the first aspect, when the particle counter counts particles having a size of 4 to 6 μm, it is estimated that the bacterium is Cryptosporidium.
【0011】[0011]
【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明の請求項1および2に係る実施
例の概略構成を示すもので、この実施例においては、図
5で示すろ過池1の出口に粒子カウンタ2および透過散
乱光方式の濁度計3を設ける。なお、粒子カウンタ2は
粒子径別に水に混入した粒子数を測定することが可能な
装置であり、たとえば粒子径の測定範囲として2〜6μ
m, 5〜10μm,10〜15μm程度の測定レンジ
を有している。このような装置は市販されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 shows a schematic configuration of an embodiment according to claims 1 and 2 of the present invention. In this embodiment, a particle counter 2 and a turbidity of a transmitted scattered light system are provided at an outlet of a filter pond 1 shown in FIG. A total of 3 are provided. The particle counter 2 is a device capable of measuring the number of particles mixed in water for each particle diameter.
m, 5 to 10 μm, and about 10 to 15 μm. Such devices are commercially available.
【0012】また、濁度計3は図2に示すような透過散
乱光方式のものを使用する。図2において、光源10か
らの光はサンプルが流れる測定管11を透過して、対向
して配置された散乱光用光電池(光電変換器)12およ
び透過光用光電池(光電変換器)13に達する。散乱ま
たは透過した光はそれぞれの光電変換器12,13で電
気信号に変換され、増幅器14a,14bで増幅されて
比例演算器15でトータルの濁度が演算され、増幅器1
6で増幅されて例えば4〜20mAの出力として取り出
される。The turbidimeter 3 uses a scattered light type as shown in FIG. In FIG. 2, light from a light source 10 passes through a measurement tube 11 through which a sample flows, and reaches a scattered light photovoltaic cell (photoelectric converter) 12 and a transmitted light photocell (photoelectric converter) 13 which are arranged to face each other. . The scattered or transmitted light is converted into an electric signal by the respective photoelectric converters 12 and 13, amplified by the amplifiers 14 a and 14 b, and the total turbidity is calculated by the proportional calculator 15.
Amplified at 6 and extracted as an output of, for example, 4 to 20 mA.
【0013】図3は濁度計3を含めた概略構成を示すも
ので、配管19の一端はろ過池の出口に接続されてい
る。サンプルは脱泡槽20を経て濁度計3を通り、固定
しぼり24を経て排水される。指示計23は濁度の測定
範囲として0〜0.2度程度の測定範囲とされている。FIG. 3 shows a schematic configuration including the turbidity meter 3, and one end of a pipe 19 is connected to an outlet of a filtration pond. The sample passes through the turbidimeter 3 through the defoaming tank 20, and is drained through the fixed throttle 24. The indicator 23 has a turbidity measurement range of about 0 to 0.2 degrees.
【0014】なお、校正モードではサンプルは1μmメ
ッシュのフイルタ21および0.1μmメッシュのフイ
ルタ22を経て濁度計3を通る。このフィルタを通過し
た清浄な水でゼロ点の校正を行を行なう。このような濁
度計を含む配管構成とすることにより低濃度の濁度を精
度よく測定することができる。In the calibration mode, the sample passes through the turbidimeter 3 through a 1 μm mesh filter 21 and a 0.1 μm mesh filter 22. The zero point is calibrated with clean water that has passed through this filter. By adopting a piping configuration including such a turbidity meter, turbidity at a low concentration can be accurately measured.
【0015】図1の構成によれば、ろ過池出口に粒子カ
ウンタ2と濁度計3を配置して、濁度変化があった場合
には粒子カウンタ2により濁度物質の確認を行なう。即
ち、濁度が設定レベルを超えたときに、粒子カウンタ2
の4〜6μmの粒子のカウントが上昇していればクリプ
ト菌の混入を推測することができる。According to the configuration shown in FIG. 1, a particle counter 2 and a turbidity meter 3 are arranged at the outlet of the filtration tank, and when there is a change in turbidity, the turbidity substance is confirmed by the particle counter 2. That is, when the turbidity exceeds the set level, the particle counter 2
If the count of particles having a particle size of 4 to 6 μm increases, it is possible to infer that Cryptobacterium is mixed.
【0016】図4は本発明の請求項3に関する実施例の
概略構成図を示すもので、図1に示す構成の水質管理装
置で示すろ過池1の入口側に第2粒子カウンタ4を設置
したものである。FIG. 4 is a schematic block diagram of an embodiment according to claim 3 of the present invention, in which a second particle counter 4 is installed at the inlet side of the filtration pond 1 shown in the water quality control device having the configuration shown in FIG. Things.
【0017】このような構成によれば、図1で述べたク
リプト菌測定に加えてろ過池の寿命も監視することがで
きる。即ち、入口側と出口側の粒度の変化を監視してお
き出口側の粒子の大きさが入口側の粒子の大きさより大
きくなってきた場合にはろ過池の機能が落ちていること
が推察できる。According to such a configuration, the life of the filtration pond can be monitored in addition to the measurement of the cryptobacterium described with reference to FIG. That is, the change in the particle size on the inlet side and the outlet side is monitored, and when the size of the particles on the outlet side becomes larger than the size of the particles on the inlet side, it can be inferred that the function of the filtration pond is reduced. .
【0018】一般にはろ過池は浄水場に並列して多数設
けられるものであり、これらは休止期間を含めて一定時
間毎に逆洗等を行なってろ過池の管理を行なっている。
このような管理では、突発的に発生するクリプト菌等を
含む管理には迅速な対応ができない。本発明の請求項4
によれば、複数のろ過池の入口に第1粒子カウンタ、出
口に第2粒子カウンタを設け、カウントされた粒子の計
測結果に基づいてろ過池からの取水を継続・停止するよ
うに構成して、より細かなろ過池の管理が可能となる。Generally, a large number of filtration ponds are provided in parallel with a water purification plant, and these are subjected to backwashing and the like at regular intervals including a suspension period to manage the filtration ponds.
In such a management, it is not possible to quickly respond to a management including a suddenly occurring crypt bacterium and the like. Claim 4 of the present invention
According to the above, a first particle counter is provided at the entrance of the plurality of filtration ponds, and a second particle counter is provided at the exit, and the intake of water from the filtration basin is configured to be continued or stopped based on the measurement result of the counted particles. In addition, finer filtration ponds can be managed.
【0019】なお、本発明の以上の説明は、説明および
例示を目的として特定の好適な実施例を示したに過ぎな
い。したがって本発明はその本質から逸脱せずに多くの
変更、変形をなし得ることは当業者に明らかである。例
えば、ろ過池出口の粒度カウンタ2と濁度計3の配置は
逆であってもよい。また、本実施例では濁度計として透
過散乱式濁度計を用いたがクリプト菌の推定は粒子カウ
ンタで行うので、他の方式の濁度計であってもよい。特
許請求の範囲の欄の記載により定義される本発明の範囲
は、その範囲内の変更、変形を包含するものとする。It is to be noted that the above description of the present invention has been presented by way of explanation and illustration only of particular preferred embodiments. Thus, it will be apparent to one skilled in the art that the present invention may be modified or modified in many ways without departing from its essentials. For example, the arrangement of the particle size counter 2 and the turbidity meter 3 at the outlet of the filtration tank may be reversed. In this embodiment, a transmission scattering turbidity meter is used as the turbidity meter. However, since the estimation of Crypto bacteria is performed by a particle counter, another type of turbidity meter may be used. The scope of the present invention, which is defined by the description in the appended claims, is intended to cover alterations and modifications within the scope.
【0020】[0020]
【発明の効果】以上説明したように本発明によれば、浄
水場におけるろ過池の水質管理装置において、ろ過池の
出口の濁度を管理する手段として濁度計及び粒子カウン
タを用い、濁度計の信号の変化に基づいて水中の特定の
大きさの粒子を粒子カウンタで監視するように構成した
ので濁度が設定レベルを超えたり、粒子カウンタのカウ
ントが特定の大きさ(2〜4μm)のものを検出したと
きに、クリプト菌の混入を推測することができる。As described above, according to the present invention, the turbidity meter and the particle counter are used as a means for managing the turbidity at the outlet of the filtration pond in the water quality control device of the filtration pond in the water treatment plant. Since the particle counter is configured to monitor particles of a specific size in water based on a change in the signal of the meter, the turbidity may exceed a set level, or the count of the particle counter may be a specific size (2 to 4 μm). When C. elegans is detected, contamination of Crypto bacteria can be estimated.
【0021】また、複数のろ過池の入口に第1粒子カウ
ンタ、出口第2粒子カウンタを設け、カウントされた粒
子の計測結果に基づいてろ過池からの取水を継続・停止
するように構成したので、より細かなろ過池の管理が可
能となる。Further, a first particle counter and an outlet second particle counter are provided at the inlets of the plurality of filtration ponds, and the intake of water from the filtration ponds is continued or stopped based on the result of counting the counted particles. In addition, finer filtration ponds can be managed.
【図1】本発明に係る実施の形態の一例を示す概略構成
図である。FIG. 1 is a schematic configuration diagram showing an example of an embodiment according to the present invention.
【図2】一般的な透過散乱光式濁度計の一例を示す概略
構成図である。FIG. 2 is a schematic configuration diagram showing an example of a general transmission scattered light turbidimeter.
【図3】一般的な透過散乱光式濁度計の配管例を示す概
略構成図である。FIG. 3 is a schematic configuration diagram showing an example of a pipe of a general transmission scattered light turbidimeter.
【図4】本発明に係る実施の形態の他の一例を示す概略
構成図である。FIG. 4 is a schematic configuration diagram showing another example of the embodiment according to the present invention.
【図5】一般的な水処理工程を示す図である。FIG. 5 is a diagram showing a general water treatment process.
1 ろ過池 2,4 粒子カウンタ 3 濁度計 10 光源 11 測定管 12 散乱光用光電池(光電変換器) 13 透過光用光電池(光電変換器) 14,16 増幅器 15 比率演算器 19 配管 20 脱泡槽 21,22 フィルタ 23 指示計 24 固定しぼり DESCRIPTION OF SYMBOLS 1 Filtration pond 2, 4 Particle counter 3 Turbidity meter 10 Light source 11 Measuring tube 12 Photocell for scattered light (photoelectric converter) 13 Photocell for transmitted light (photoelectric converter) 14, 16 Amplifier 15 Ratio calculator 19 Piping 20 Defoaming Vessel 21, 22 Filter 23 Indicator 24 Fixed squeezing
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 15/06 G01N 33/18 A 33/18 Z G06M 7/00 301A G06M 7/00 301 B01D 35/14 102 (72)発明者 三元 健 東京都武蔵野市中町2丁目9番32号 横河 電機株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01N 15/06 G01N 33/18 A 33/18 Z G06M 7/00 301A G06M 7/00 301 B01D 35/14 102 (72) Inventor Ken Takeshi 2-9-32 Nakamachi, Musashino City, Tokyo Inside Yokogawa Electric Corporation
Claims (5)
いて、ろ過池の出口の濁度を管理する手段として濁度計
及び粒子カウンタを用い、濁度計の信号の変化に基づい
て水中の特定の大きさの粒子を粒子カウンタで監視する
ように構成したことを特徴とする水質管理装置。In a water quality control device for a filtration pond in a water purification plant, a turbidity meter and a particle counter are used as means for managing the turbidity at the outlet of the filtration pond, and the water in the water is identified based on a change in the signal of the turbidity meter. A water quality management device characterized in that particles having a size of are monitored by a particle counter.
過させ、このフィルタを透過した測定水を前記濁度計の
ゼロ校正液とすることを特徴とする請求項1記載の水質
管理装置。2. The water quality control device according to claim 1, wherein the measurement water to be measured is branched and transmitted through a filter, and the measurement water transmitted through the filter is used as a zero calibration liquid for the turbidity meter. .
いて、ろ過池の入口に第1粒子カウンタを設け、ろ過池
の出口に第2粒子カウンタおよび濁度計を設けたことを
特徴とする水質管理装置。3. A water quality management device for a filtration pond in a water purification plant, wherein a first particle counter is provided at an entrance of the filtration pond, and a second particle counter and a turbidity meter are provided at an exit of the filtration pond. Management device.
いて、複数のろ過池の入口に第1粒子カウンタ、出口に
第2粒子カウンタを設け、カウントされた粒子の計測結
果に基づいてろ過池からの取水を継続・停止するように
構成したことを特徴とする水質管理装置。4. A water quality management device for a filtration pond in a water purification plant, wherein a first particle counter is provided at an inlet of the plurality of filtration ponds, and a second particle counter is provided at an outlet of the plurality of filtration ponds. A water quality management device, characterized in that the intake of water is continued or stopped.
トしたときにクリプトスプリジウム菌と推定するように
したことを特徴とする請求項1記載の水質管理装置。5. The water quality control device according to claim 1, wherein when the particle counter counts particles of 4 to 6 μm, it is estimated that the bacterium is Cryptosporidium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11188568A JP2000206030A (en) | 1999-01-01 | 1999-07-02 | Control method for water quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11188568A JP2000206030A (en) | 1999-01-01 | 1999-07-02 | Control method for water quality |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10217042A Division JP3083087B2 (en) | 1998-07-31 | 1998-07-31 | Water quality management device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000206030A true JP2000206030A (en) | 2000-07-28 |
Family
ID=16225975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11188568A Pending JP2000206030A (en) | 1999-01-01 | 1999-07-02 | Control method for water quality |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000206030A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1980838A1 (en) | 2007-04-13 | 2008-10-15 | Horiba, Ltd. | Optical cell, optical sample measurement device, and water quality measurement device |
JP2009222566A (en) * | 2008-03-17 | 2009-10-01 | Metawater Co Ltd | Microorganism measuring method and system |
WO2010104699A3 (en) * | 2009-03-09 | 2011-01-13 | Honeywell International Inc. | Apparatus and method for measuring haze of sheet materials or other materials |
-
1999
- 1999-07-02 JP JP11188568A patent/JP2000206030A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1980838A1 (en) | 2007-04-13 | 2008-10-15 | Horiba, Ltd. | Optical cell, optical sample measurement device, and water quality measurement device |
JP2009222566A (en) * | 2008-03-17 | 2009-10-01 | Metawater Co Ltd | Microorganism measuring method and system |
WO2010104699A3 (en) * | 2009-03-09 | 2011-01-13 | Honeywell International Inc. | Apparatus and method for measuring haze of sheet materials or other materials |
CN102422148A (en) * | 2009-03-09 | 2012-04-18 | 霍尼韦尔国际公司 | Apparatus and method for measuring haze of sheet materials or other materials |
US8184294B2 (en) | 2009-03-09 | 2012-05-22 | Honeywell International Inc. | Apparatus and method for measuring haze of sheet materials or other materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nieminski et al. | Removing Giardia and Cryptosporidium by conventional treatment and direct filtration | |
Decarolis et al. | Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater | |
Ongerth et al. | Removing Cryptosporidium using multimedia filters | |
Sterling | Waterborne cryptosporidiosis | |
Ding et al. | Characteristics of meso-particles formed in coagulation process causing irreversible membrane fouling in the coagulation-microfiltration water treatment | |
EP3102936B1 (en) | Method for online monitoring of water quality | |
KR20110081868A (en) | Process for enhanced total organic carbon removal while maintaining optimum membrane filter performance | |
JP2009000673A (en) | Apparatus and method for monitoring water purification process | |
KR20110067744A (en) | Monitoring method real-time fouling potential in reverse osmosis process for seawater desalination and desalination equipment having such monitoring function | |
JP2004177122A (en) | Water quality detection method and operation method of water purifying apparatus | |
JPH1157731A (en) | Water treatment and water treatment plant | |
KR20140144933A (en) | Dual mode membrane filtration system of pressure-immersion combination type, and variable control method for the same | |
Łaskawiec et al. | The use of membrane techniques in swimming pool water treatment | |
KR20080101588A (en) | Automatic contro method and device for membrane filtering system | |
JP3083087B2 (en) | Water quality management device | |
CN207792867U (en) | A kind of ozone ceramics dual-membrane process water treatment facilities | |
JP2000206030A (en) | Control method for water quality | |
Beard et al. | A comparison of particle counting and nephelometry | |
JP2006272233A (en) | Water treatment system utilizing ultraviolet irradiation | |
JP2005262048A (en) | Drinking water supply control system | |
WO2022201868A1 (en) | Solution mixing system and solution mixing method | |
JP2009222566A (en) | Microorganism measuring method and system | |
JP2000042307A (en) | Water purification plant water treatment system | |
JP2002282623A (en) | Method and apparatus for monitoring water filtrate in quick filtration | |
JP4831290B2 (en) | Activated sludge monitoring method and activated sludge monitoring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040105 |