JP2000204990A - Gasoline self-igniting internal combustion engine - Google Patents

Gasoline self-igniting internal combustion engine

Info

Publication number
JP2000204990A
JP2000204990A JP11005962A JP596299A JP2000204990A JP 2000204990 A JP2000204990 A JP 2000204990A JP 11005962 A JP11005962 A JP 11005962A JP 596299 A JP596299 A JP 596299A JP 2000204990 A JP2000204990 A JP 2000204990A
Authority
JP
Japan
Prior art keywords
ignition
self
switching
water injection
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11005962A
Other languages
Japanese (ja)
Inventor
Takayuki Arai
孝之 荒井
Takeshi Taniyama
剛 谷山
幸大 ▲吉▼沢
Yukihiro Yoshizawa
Akihiro Iiyama
明裕 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP11005962A priority Critical patent/JP2000204990A/en
Publication of JP2000204990A publication Critical patent/JP2000204990A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/0227Control aspects; Arrangement of sensors; Diagnostics; Actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/022Adding fuel and water emulsion, water or steam
    • F02M25/025Adding water
    • F02M25/028Adding water into the charge intakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly perform the switching to spark ignition while suppressing the occurrence of knocking by providing an injection device having a variable valve gear mechanism and capable of injecting water at high load in a self- igniting operation area. SOLUTION: In a four-cycle spark ignition gasoline engine, a fuel injection valve 2 and a water injection valve 1 downstream thereof are mounted on an intake port 5. Fuel and water are supplied from a fuel tank 11 and a water tank 12 to the respective injection valves 1, 2 by exclusive pumps 17, 22, respectively. The injection quantity and injection timing of each injection valve 1, 2 are controlled by an engine control module 13. The quantity and execution or not of water injection are controlled according to operating condition (steady time and transitional time), whereby a homogeneous premix compression ignition and combustion with high efficiency and low NOx discharge can be realized in a wide load range of the engine. The switching with spark ignition can be smoothly performed while suppressing the occurrence of knocking.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自己着火燃焼を有
するガソリン内燃機関に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gasoline internal combustion engine having self-ignition combustion.

【0002】[0002]

【従来の技術】内燃機関のノッキング抑制、出力向上等
を目的として、筒内への水噴射の従来例を、図11およ
び図12に示す(特開平8−4533号公報、特開平8
−135515号公報)。図11の例では、ガス燃料エ
ンジンにおいて、副燃焼室内に、圧縮行程途中に水を噴
射し、上死点近傍で高圧の着火用ガス燃料を噴射し、電
気加熱着火補助手段により着火せしめており、水噴射に
より、早期着火、ノッキングを防止し、高出力化、排気
ガス中のNoxを低減している。図12の例は、排気行
程末期にシリンダ内に水を噴射し、排気ガス温度を下げ
ることにより、次行程である吸入行程での吸入充填効率
の向上が可能となり、出力がアップする。
2. Description of the Related Art FIGS. 11 and 12 show a conventional example of water injection into a cylinder for the purpose of suppressing knocking of an internal combustion engine, improving output, and the like.
-135515). In the example of FIG. 11, in the gas fuel engine, water is injected into the sub-combustion chamber during the compression stroke, high-pressure ignition gas fuel is injected near the top dead center, and the ignition is performed by the electric heating ignition auxiliary means. Water injection prevents early ignition and knocking, increases output, and reduces NOx in exhaust gas. In the example of FIG. 12, by injecting water into the cylinder at the end of the exhaust stroke and lowering the exhaust gas temperature, the suction-filling efficiency in the next stroke, the suction stroke, can be improved, and the output increases.

【0003】[0003]

【発明が解決しようとする課題】ガソリン予混合気の圧
縮着火現象は、空燃費の影響が大きく、リッチ側ではノ
ッキングが生じ、リーン側では失火が生じることから、
必然的に運転可能は空燃費範囲が制限されてしまう、す
なわち、運転可能な負荷範囲が制限されてしまうという
問題点がある。
The compression ignition phenomenon of gasoline premixed gas has a large effect on air-fuel efficiency, knocking occurs on the rich side, and misfire occurs on the lean side.
Inevitably, the operability limits the air-fuel consumption range, that is, the operable load range is limited.

【0004】そこで、特に空燃費がリッチ側のノッキン
グを抑制し、高負荷側への運転領域拡大をはかる手段と
して、水噴射を用いることが考えられる。
In view of this, it is conceivable to use water injection as a means for suppressing knocking particularly on the rich side of the air-fuel efficiency and expanding the operating range toward the high load side.

【0005】しかしながら、従来の水噴射機構は、運転
領域によらず噴射される等、制御が十分でないため、こ
れを自己着火燃焼を有する機関システムに適応した場合
は、以下の問題点が生じる。 (1)自己着火運転域の特に低負荷領域においては、水
噴射をすると逆に自己着火現象が起こりにくくなり、機
関運転条件が不能となると共に、運転可能な負荷範囲が
更に制限されてしまう。 (2)機関運転条件の全域にわたり自己着火燃焼が成立
するのは困難であるため、機関システムとしては、火花
点火との組み合わせシステムとなる。これを前提に考え
ると、水噴射は、火花点火時との組み合わせシステムと
なる。これを前提に考えると、水噴射は、火花点火運転
時に、特に低負荷時には不要となり、水ポンプ駆動損失
等に起因する燃費の悪化が生じる。
However, the conventional water injection mechanism has insufficient control such as injection regardless of the operation range. Therefore, if the conventional water injection mechanism is applied to an engine system having self-ignition combustion, the following problems occur. (1) In the low-load region of the self-ignition operation region, in particular, when water is injected, the self-ignition phenomenon is unlikely to occur, so that the engine operating conditions are disabled and the operable load range is further limited. (2) Since it is difficult to achieve self-ignition combustion over the entire range of engine operating conditions, the engine system is a combination system with spark ignition. Considering this, water injection is a combined system with spark ignition. Considering this, water injection becomes unnecessary during spark ignition operation, especially at low load, and fuel consumption is deteriorated due to water pump drive loss and the like.

【0006】本発明はかかる問題点に鑑みてなされたも
ので、水噴射を自己着火燃焼を有する機関システムに適
応する場合、運転条件により水噴射の量、有無等の制御
を行うことにより、機関のより広い負荷範囲で高効率か
つ低Nox排出である均質予混合圧縮着火燃焼を実現す
ると共に、ノッキングの発生を抑制しながら、火花点火
との切り替わりをスムーズに行うことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem. When water injection is applied to an engine system having self-ignition combustion, the engine is controlled by controlling the amount, presence or absence of water injection according to operating conditions. It is an object of the present invention to realize homogeneous premixed compression ignition combustion with high efficiency and low Nox emission over a wider load range, and to smoothly switch to spark ignition while suppressing the occurrence of knocking.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明に
おいては、ピストン往復運動をクランク軸回転運動に変
換し出力を得る火花点火4サイクル内燃機関において、
少なくともバルブ開閉時期を可変と出来る可変動弁機構
を有し、吸気弁閉時期を可変にすることにより有効圧縮
比を可変とし機関運転条件に応じて圧縮比を高め、火花
点火から自己着火燃焼すなわち均質予混合気圧縮着火へ
の切り替わりを行い、前記自己着火運転領域における高
負荷時に水を噴射できる噴射装置を備えたこととした。
According to the first aspect of the present invention, there is provided a spark ignition four-cycle internal combustion engine which obtains an output by converting a reciprocating motion of a piston into a rotational motion of a crankshaft.
It has a variable valve mechanism that can make at least the valve opening / closing timing variable, makes the effective compression ratio variable by making the intake valve closing timing variable, and increases the compression ratio according to the engine operating conditions. An injection device capable of switching to homogeneous charge homogeneous charge compression ignition and injecting water under a high load in the self-ignition operation region is provided.

【0008】請求項2に記載の発明においては、自己着
火燃焼から火花点火燃焼への切り替わり時、または火花
点火燃焼から自己着火燃焼への切り替わり時に、水を噴
射できる噴射装置を備えたこととした。
[0008] In the invention according to claim 2, an injection device capable of injecting water at the time of switching from self-ignition combustion to spark ignition combustion or at the time of switching from spark ignition combustion to self-ignition combustion is provided. .

【0009】請求項3に記載の発明においては、自己着
火燃焼から火花点火燃焼への切り替わりにおいて、スロ
ットル開速度が急激な急加速運転時に、定常運転時の同
一回転数同一負荷条件での設定水噴射量よりも多く水噴
射することとした。
According to the third aspect of the present invention, in the switching from the self-ignition combustion to the spark ignition combustion, when the throttle opening speed is abruptly accelerated, the set water at the same rotation speed and the same load condition in the steady operation is set. It was decided to inject more water than the injection amount.

【0010】請求項4に記載の発明においては、自己着
火燃焼から火花点火燃焼への切り替わりにおいて、スロ
ットル開速度が急激な急加速運転時に、水噴射実施後で
且つ筒内への水供給遅れ時間が経過した後に、火花点火
を開始することとした。
According to the present invention, when switching from self-ignition combustion to spark ignition combustion, during a rapid acceleration operation in which the throttle opening speed is abrupt, a water supply delay time after water injection is performed and water is supplied into the cylinder. After that, spark ignition is started.

【0011】請求項5に記載の発明においては、自己着
火燃焼から火花点火燃焼への切り替わりにおいて、水噴
射期間は、少なくとも圧縮比の切り替わりサイクル中の
所要時間以上の時間設定としたこととした。
[0011] In the invention according to claim 5, in the switching from the self-ignition combustion to the spark ignition combustion, the water injection period is set to be at least longer than a required time in a compression ratio switching cycle.

【0012】請求項6に記載の発明においては、スロッ
トル全閉時で且つ減速時燃料カット中の条件では、燃料
噴射と水噴射の両方を中止することとした。
In the sixth aspect of the invention, both the fuel injection and the water injection are stopped when the throttle is fully closed and the fuel is cut during deceleration.

【0013】請求項7に記載の発明においては、火花点
火燃焼から自己着火燃焼への切り替わりにおいて、スロ
ットル閉速度が急激な急減速運転時に、定常運転時の同
一回転数、同一負荷条件での設定水噴射量よりも多く水
噴射することとした。
According to the present invention, when switching from spark ignition combustion to self-ignition combustion, when the throttle closing speed is abruptly decelerated, the setting is performed under the same rotation speed and the same load condition in the steady operation. It was decided to inject more water than the amount of water injection.

【0014】請求項8に記載の発明においては、火花点
火燃焼から自己着火燃焼への切り替わりにおいて、水噴
射期間は、少なくとも圧縮比の切り替わりサイクル中の
所要時間以上の時間設定としたこととした。
In the invention described in claim 8, in switching from spark ignition combustion to self-ignition combustion, the water injection period is set to at least a required time in a compression ratio switching cycle.

【0015】請求項9に記載の発明においては、火花点
火燃焼から自己着火燃焼への切り替わりにおいて、自己
着火燃焼が生じた後に点火を終了することとした。
In the ninth aspect of the present invention, in the switching from the spark ignition combustion to the self-ignition combustion, the ignition is terminated after the self-ignition combustion occurs.

【0016】請求項10に記載の発明においては、ピス
トン往復運動をクランク軸回転運動に変換し出力を得る
火花点火4サイクル内燃機関において、少なくともバル
ブ開閉時期を可変と出来る可変動弁機構を有し、吸気弁
閉時期を可変にすることにより有効圧縮比を可変とし機
関運転条件に応じて圧縮比を高め、火花点火から自己着
火燃焼すなわち均質予混合気圧縮着火への切り替わりを
行い、前記自己着火運転領域における高負荷時に水を噴
射できる噴射装置を備え、機関シリンダブロック等の機
関本体にノックセンサを設置し、ノッキング発生時のノ
ックセンサ出力が所定以上になったときに水噴射を開始
し、前記ノックセンサ出力値に応じて水噴射料が制御さ
れるとともに、ノックセンサ出力値が許容値以下になっ
たときに水噴射を終了することとした。
According to a tenth aspect of the present invention, there is provided a spark ignition four-cycle internal combustion engine which obtains an output by converting a reciprocating motion of a piston into a rotational motion of a crankshaft, and having a variable valve mechanism capable of at least changing a valve opening / closing timing. By changing the intake valve closing timing to make the effective compression ratio variable and increasing the compression ratio in accordance with the engine operating conditions, switching from spark ignition to self-ignition combustion, that is, homogeneous charge homogeneous charge gas compression ignition is performed, and the self-ignition is performed. Equipped with an injection device that can inject water at a high load in the operating region, a knock sensor is installed on the engine body such as an engine cylinder block, and when the knock sensor output at the time of knocking becomes greater than a predetermined value, water injection is started, The water injection charge is controlled according to the knock sensor output value, and water injection is performed when the knock sensor output value falls below an allowable value. It was decided to Ryosuru.

【0017】請求項11に記載の発明においては、吸気
系に温度センサ、湿度センサが設定されており、機関運
転時の吸入空気温度に応じて目標の湿度になるように、
水噴射料が制御されていることとした。
In the eleventh aspect, a temperature sensor and a humidity sensor are set in the intake system, and the target humidity is set according to the intake air temperature during engine operation.
The water injection charge was controlled.

【0018】[0018]

【発明の作用】請求項1に記載の発明においては、あら
かじめ設定された自己着火高負荷運転時に、水噴射を行
い、耐ノック性の向上を図り、供給燃料量をアップを可
能とする。それにより、高負荷域への運転領域が拡大さ
れ、より広い運転領域において、低エミッション化、低
燃費化が達成される。
According to the first aspect of the present invention, water injection is performed during a preset self-ignition high-load operation to improve knock resistance and increase the amount of supplied fuel. As a result, the operating range to a high load range is expanded, and low emission and low fuel consumption are achieved in a wider operating range.

【0019】請求項2に記載の発明においては、自己着
火燃焼から火花点火燃焼への切り替わり時(高圧縮比→
低圧縮比)、及び火花点火燃焼から自己着火燃焼への切
り替わり時(低圧縮比→高圧縮比)の、圧縮比切り替わ
り応答遅れに起因する“高圧縮比+火花点火”領域で水
噴射を行い、ノッキングの回避をはかる。それにより、
燃焼切り替わりがスムーズになり、自己着火燃焼と火花
点火燃焼の組み合わせが可能となる。
According to the second aspect of the present invention, when switching from self-ignition combustion to spark ignition combustion (high compression ratio →
Water injection is performed in the "high compression ratio + spark ignition" region caused by the response delay in switching the compression ratio when switching from spark ignition combustion to self-ignition combustion (low compression ratio → high compression ratio). Avoid knocking. Thereby,
The switching of combustion becomes smooth, and a combination of self-ignition combustion and spark ignition combustion becomes possible.

【0020】請求項3に記載の発明においては、急加速
時の自己着火燃焼から火花点火燃焼への切り替わり時に
存在する“高圧縮比+火花点火”領域において、定常運
転時の同一回転数・同一負荷条件での設定水噴射量より
も多い量の水を噴射し、水噴射量の供給遅れによるノッ
キング発生を回避する。それにより、急加速時でも、ス
ムーズに燃焼が切り替わる。
According to the third aspect of the present invention, in the "high compression ratio + spark ignition" region which is present at the time of switching from self-ignition combustion to spark ignition combustion at the time of rapid acceleration, the same rotational speed and the same during steady operation. Injection of a larger amount of water than the set water injection amount under the load condition avoids occurrence of knocking due to delay in supply of the water injection amount. Thereby, even at the time of sudden acceleration, combustion switches smoothly.

【0021】請求項4に記載の発明においては、自己着
火燃焼から火花点火燃焼への急激な切り替わり時に、水
供給が完全になされた後に点火を開始し、“高圧縮比+
火花点火”でもノッキング発生を回避する。それによ
り、急加速時でも、確実にスムーズな燃焼に切り替えが
行われる。
According to the fourth aspect of the present invention, at the time of a sudden switch from self-ignition combustion to spark ignition combustion, ignition is started after water supply is completely performed, and "high compression ratio +
Even with "spark ignition", knocking is avoided. This ensures that smooth combustion is switched even during rapid acceleration.

【0022】請求項5に記載の発明においては、自己着
火燃焼から火花点火燃焼への切り替わり時の、圧縮比切
り替わり応答遅れに起因する“高圧縮比+火花点火”領
域の水噴射期間を、圧縮比切り替わりサイクル以上の期
間とし、確実に圧縮比が低圧縮比に切り替わった後で水
噴射を停止し、確実にノッキングの回避を図る。それに
より、確実にスムーズな燃焼切り替えが行われる。
According to the fifth aspect of the present invention, the water injection period in the “high compression ratio + spark ignition” region caused by the response delay of the compression ratio switching when switching from self-ignition combustion to spark ignition combustion is reduced. The period is equal to or longer than the ratio switching cycle, and after the compression ratio is reliably switched to the low compression ratio, the water injection is stopped to surely avoid knocking. Thereby, smooth combustion switching is reliably performed.

【0023】請求項6に記載の発明においては、スロッ
トル全閉時で、かつ減速時燃料カット中の条件では、燃
料噴射と水噴射の両方を中止する。それにより、必要以
上のシリンダの冷却を未然に停止することにより、低エ
ミッション化と低燃費化が可能となる。
In the sixth aspect of the present invention, both the fuel injection and the water injection are stopped when the throttle is fully closed and the fuel is cut during deceleration. As a result, unnecessary cooling of the cylinder is stopped beforehand, so that low emission and low fuel consumption can be achieved.

【0024】請求項7に記載の発明おいては、急減速時
の火花点火燃焼から自己着火燃焼への急激な切り替わり
時に存在する“高圧縮比+火花点火”領域において、定
常運転時の同一回転数・同一負荷条件での設定水噴射量
よりも多い量の水を噴射し、水噴射量の供給遅れにより
ノッキング発生を回避する。それにより、急減速時で
も、スムーズに燃焼が切り替わる。
According to the seventh aspect of the present invention, in the "high compression ratio + spark ignition" region, which is present at the time of rapid switching from spark ignition combustion to self-ignition combustion during rapid deceleration, the same rotation during steady operation is performed. Injection of a larger amount of water than the set water injection amount under the same number of load conditions prevents the occurrence of knocking due to a delay in supply of the water injection amount. Thereby, even at the time of sudden deceleration, combustion switches smoothly.

【0025】請求項8に記載の発明においては、火花点
火燃焼から自己着火燃焼への切り替わり時の、圧縮比切
り替わり応答遅れに起因する“高圧縮比+火花点火”領
域の水噴射期間を、亜宿非切り替わりサイクル以上と
し、確実に圧縮比が高圧縮比に切り替わり、確実に自己
着火運転された後で水噴射を停止し、確実にノッキング
の回避を図る。それにより、確実にスムーズな燃焼切り
替わりが行われる。
According to the present invention, the water injection period in the “high compression ratio + spark ignition” region caused by the delay in response to the compression ratio switching at the time of switching from spark ignition combustion to self-ignition combustion is defined as The cycle is longer than the in-house non-switching cycle, the compression ratio is switched to the high compression ratio without fail, the water injection is stopped after the self-ignition operation is reliably performed, and the knocking is reliably avoided. As a result, smooth combustion switching can be reliably performed.

【0026】請求項9に記載の発明においては、火花点
火燃焼から自己着火燃焼への切り替わり時において、確
実に圧縮比が高圧縮比に切り替わり、確実に自己着火運
転された後で点火を停止し、機関の安定した運転状態を
確保する。それにより、確実にスムーズな燃焼切り替わ
りが行われる。
According to the ninth aspect of the present invention, at the time of switching from spark ignition combustion to self-ignition combustion, the compression ratio is reliably switched to a high compression ratio, and ignition is stopped after the self-ignition operation is reliably performed. To ensure stable operation of the engine. As a result, smooth combustion switching can be reliably performed.

【0027】請求項10に記載の発明においては、機関
シリンダブロック等にノックセンサが設定されており、
ノッキングが発生し、ノックセンサ出力が所定値以上に
なったときに水噴射を開始し、ノックセンサ出力値に応
じて水噴射量が制御され、ノックセンサ出力値が許容値
以下になったときに水噴射を終了し、常にノッキングを
抑制するように水噴射が制御される。それにより、ノッ
クセンサ出力に応じた制御が可能となり、常に精度よ
く、ノッキングが抑制される。
According to the tenth aspect of the present invention, a knock sensor is provided on an engine cylinder block or the like.
When knocking occurs, water injection is started when the knock sensor output exceeds a predetermined value, and the water injection amount is controlled according to the knock sensor output value, and when the knock sensor output value falls below the allowable value. The water injection is terminated, and the water injection is controlled so as to always suppress knocking. Thereby, control according to the knock sensor output becomes possible, and knocking is always accurately suppressed.

【0028】請求項11に記載の発明においては、吸気
系に温度センサ、湿度センサが設定されており、機関運
転時の吸入空気温度に見合った、ノッキングが発生しに
くい所定の最適湿度になるように、水噴射量が制御され
る。それにより、常にノッキングが抑制される。
According to the eleventh aspect of the present invention, a temperature sensor and a humidity sensor are provided in the intake system so that knocking does not easily occur at a predetermined optimum humidity corresponding to the intake air temperature during engine operation. Then, the water injection amount is controlled. Thereby, knocking is always suppressed.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。図1は、本発明の実施の形態1の構
成を示す図である。まず構成を説明すると、4サイクル
火花点火ガソリン機関において、燃料噴射弁2、その下
流に水噴射弁1が吸気ポート5に取り付けられ、各々の
噴射弁1,2には、燃料タンク11と水タンク12から
各専用ポンプ7、22により、燃料と水が供給される。
また、各噴射弁1,2はエンジンコントロールモジュー
ル(ECM)13により、噴射量、噴射時期が制御され
る。また、吸気ポート5には、湿度センサ8、吸気温セ
ンサ24が、シリンダブロックにはノックセンサ9が各
々設定されており、その出力はECM13に入力されて
いる。また、本機関には、少なくとも吸気バルブ閉時期
を可変と出来る図示しない可変動弁機構が設定されてお
り、有効圧縮比の可変化が可能となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of the first embodiment of the present invention. First, in a four-cycle spark ignition gasoline engine, a fuel injection valve 2 and a water injection valve 1 downstream thereof are attached to an intake port 5, and a fuel tank 11 and a water tank Fuel and water are supplied from 12 by the respective dedicated pumps 7 and 22.
The injection quantity and the injection timing of each of the injection valves 1 and 2 are controlled by an engine control module (ECM) 13. A humidity sensor 8 and an intake temperature sensor 24 are set in the intake port 5, and a knock sensor 9 is set in the cylinder block, and the output is input to the ECM 13. The engine is provided with a variable valve mechanism (not shown) that can change at least the intake valve closing timing, so that the effective compression ratio can be varied.

【0030】(作用)次に作用を説明する。本機関シス
テムは、例えば図2に示したような運転領域で燃焼形態
を変えている。すなわち、中回転・中負荷域までは、自
己着火運転域とし、吸気バルブ閉時期を吸気下死点位置
に近づけ、有効圧縮比は高い状態(例えば18)に設定
され、また、それ以外の高回転・高負荷域を火花点火運
転域とし、吸気バルブ閉時期を圧縮上死点位置に近づ
け、有効圧縮比は低い状態(例えば12)に設定されて
いる。圧縮比の切り替えをするための吸気バルブ閉時期
は、図示しない可変動弁機構により行われ、あらかじめ
マッピングされている運転領域と圧縮比の関係を用いて
制御される。ここで、水噴射を行う領域の概略は、自己
着火域の高負荷側(例えば図示平均有効圧で0.5MP
a以上)を含む、自己着火燃焼と火花点火燃焼の切り替
わり遷移領域である。
(Operation) Next, the operation will be described. In the present engine system, the combustion mode is changed in an operation region as shown in FIG. 2, for example. That is, the auto-ignition operation region is set up to the middle rotation / medium load region, the intake valve closing timing is brought close to the intake bottom dead center position, the effective compression ratio is set to a high state (for example, 18), and other high compression ratios are set. The rotation / high load region is a spark ignition operation region, the intake valve closing timing is close to the compression top dead center position, and the effective compression ratio is set to a low state (for example, 12). The closing timing of the intake valve for switching the compression ratio is performed by a variable valve mechanism (not shown), and is controlled using a relationship between an operation region and a compression ratio that are mapped in advance. Here, an outline of the region in which the water injection is performed is roughly on the high load side of the self-ignition region (for example, 0.5MP
a) and the transition region where auto ignition combustion and spark ignition combustion are switched.

【0031】次に、詳細な水噴射の制御フローを説明す
る。図3に、本機関のシステムの基本制御フローを示
す。まず、機関が運転されている状況下で、スロットル
開度速度(スロットル開度θの時間tでの微分(dθ/
dt)の正負等により、加速状態、減速状態、定常状態
を判別する。加速状態の場合は、あらかじめ設定された
V1(急加速時スロットル開速度下限値)に対する、現
在のスロットル開速度の大小関係で、急加速か緩加速化
に判別される。同様に、減速状態の場合も、あらかじめ
設定されたV2(急減速時スロットル閉速度下限値)に
対する、現在のスロットル閉速度の大小関係で、急減速
か緩減速かに判別される。
Next, a detailed control flow of water injection will be described. FIG. 3 shows a basic control flow of the engine system. First, under the condition that the engine is operating, the throttle opening speed (differential (dθ /
The acceleration state, the deceleration state, and the steady state are determined based on the sign of dt). In the case of the acceleration state, it is determined whether the acceleration is the rapid acceleration or the slow acceleration based on the magnitude relationship of the current throttle opening speed with respect to V1 (the throttle opening lower limit value at the time of the rapid acceleration) set in advance. Similarly, in the case of a deceleration state, it is determined whether the current throttle closing speed is a sudden deceleration or a slow deceleration based on a magnitude relationship of a current throttle closing speed with respect to a preset V2 (a lower limit value of the throttle closing speed at the time of rapid deceleration).

【0032】急加速の場合、図4に示すサブルーチン1
により制御される。燃料噴射パルス幅Tpは、燃料の供
給遅れ等を考え、スロットル開度θの時の定常時の噴射
パルス幅Tplに対し、ΔTだけ広く開け、燃料供給量
を増量する。次にスロットル開度θが、その時点での機
関回転数に応じた自己着火と点火燃焼の切り替わりスロ
ットル開度θ1より大きいか小さいか、すなわち、大き
ければ、自己着火から点火燃焼に切り替わる可能性があ
り、小さければ切り替わらずに自己着火を維持するとの
判別を行う。点火燃焼に切り替わらない場合は、あらか
じめマッピングされた水噴射マップに従い水噴射をする
かしないかの判別を行う。その時、水噴射弁のパルス幅
は、定常時のそれ(Tpw)に対し、水の供給遅れを考
慮して、ΔTwだけ増量される。θ≧θ1の場合は、加
速前の燃焼状態の判別を、圧縮比の値(吸気バルブ閉時
期=可変動弁機構のバルブタイミングのセット状態から
判別)で行う。すなわち、低圧縮比状態の場合は、点火
燃焼状態での急加速となり、その時は、水噴射マップに
より、水噴射の有無を判断する。高圧縮比の場合は自己
着火から火花点火への切り替わりと判断し、直ちに水噴
射を開始し(増量有り)、高→低圧縮比への切り替えを
可変動弁機構により実施する。次に、あらかじめ設定さ
れている水噴射量増量時の水供給応答遅れ(N1サイク
ル)を経過後、点火を開始する。この時、水は確実に筒
内に供給されているので、圧縮比切り替わり応答遅れに
おり、万が一高圧縮比状態で点火しても、ノッキングは
回避される。圧縮比切り替わりサイクル数N2を越え、
確実に低圧縮比状態になった時点で、水噴射の必要性を
水噴射マップから判別する。水噴射を行う場合は、その
噴射量は、定常時のTplとする。
In the case of rapid acceleration, a subroutine 1 shown in FIG.
Is controlled by The fuel injection pulse width Tp is widened by ΔT with respect to the steady-state injection pulse width Tpl at the throttle opening θ in consideration of fuel supply delay and the like to increase the fuel supply amount. Next, if the throttle opening θ switches between self-ignition and ignition combustion in accordance with the engine speed at that time, if the throttle opening θ1 is larger or smaller than the throttle opening θ1, that is, if it is larger, there is a possibility of switching from self-ignition to ignition combustion. Yes, if it is smaller, it is determined that self-ignition is maintained without switching. If the mode is not switched to the ignition combustion, it is determined whether or not to perform water injection according to a water injection map mapped in advance. At this time, the pulse width of the water injection valve is increased by ΔTw with respect to the steady state (Tpw) in consideration of the water supply delay. When θ ≧ θ1, the combustion state before acceleration is determined based on the value of the compression ratio (intake valve closing timing = determined from the set state of the valve timing of the variable valve mechanism). That is, in the case of the low compression ratio state, rapid acceleration occurs in the ignition combustion state. At that time, the presence or absence of water injection is determined based on the water injection map. In the case of a high compression ratio, it is determined that the mode has switched from self-ignition to spark ignition, water injection is immediately started (there is an increase), and switching from high to low compression ratio is performed by a variable valve mechanism. Next, after a preset water supply response delay (N1 cycle) when the water injection amount is increased, ignition is started. At this time, since the water is surely supplied into the cylinder, the compression ratio switching delays the response, and even if ignition is performed in the high compression ratio state, knocking is avoided. Exceeds the number of compression ratio switching cycles N2,
When the low compression ratio state is definitely reached, the necessity of water injection is determined from the water injection map. When performing water injection, the injection amount is Tpl in a steady state.

【0033】緩加速の場合、図5に示すサブルーチン2
により制御される。図4の急加速時と異なるのは、 燃料噴射パルス幅Tpは、定常時の噴射パルス幅Tp
lとする。 水噴射量の過渡時増量(ΔTw)はプラスしない。 点火燃焼に切り替える場合は、水供給の遅れ(図4中
水噴射回数N1)を考慮せずに点火を開始する。 である。
In the case of gentle acceleration, subroutine 2 shown in FIG.
Is controlled by The difference from the rapid acceleration of FIG. 4 is that the fuel injection pulse width Tp is the steady-state injection pulse width Tp.
l. The transient increase (ΔTw) of the water injection amount is not added. When switching to ignition combustion, ignition is started without considering the delay in water supply (water injection frequency N1 in FIG. 4). It is.

【0034】急減速の場合、図6に示すサブルーチン3
により制御される。スロットル開度=0、すなわち全閉
(エンジンブレーキ)時は、燃料噴射及び水噴射カット
を行い、燃費向上を図り、自己着火燃焼モード(点火O
FF、高圧縮比状態)に切り替える。スロットル全閉で
ない場合、燃料噴射パルス幅Tpは、定常時の噴射パル
ス幅Tplとし、次にスロットル開度θが、その時点で
の機関回転数に応じた点火燃焼から自己着火への切り替
わりスロットル開度θ3より大きいか小さいか、すなわ
ち、小さければ、点火燃焼から自己着火燃焼に切り替わ
る可能性があり、大きければ切り替わらず点火燃焼を維
持するとの判別を行う。自己着火燃焼に切り替わらない
場合は、あらかじめマッピングされた水噴射マップに従
い水噴射をするしかしないかの判断を行う。その時、水
噴射弁のパルス幅は、定常時のそれ(Tpw)に対し、
水の供給遅れを考慮して、ΔTwだけ増量される。θ≦
θ3の場合は、減速前の燃焼状態の判別を、圧縮比の値
(吸気バルブ閉時期=可変動弁機構のバルブタイミング
のセット状態から判別)で行う。すなわち、高圧縮比状
態の場合は、自己着火状態での急減速となり、その時
は、水噴射マップにより、水噴射の有無を判断する。低
圧縮比の場合は火花点火から自己着火への切り替わりと
判断し、直ちに水噴射を開始し(増量有り)、低→高圧
縮比への切り替えを可変動弁機構により実施する。次
に、圧縮比切り替わりサイクル数N2を越え、確実に高
圧縮比状態になった時点で、自己着火が発生するので、
点火をOFFする。この時、高圧縮比・点火燃焼の運転
条件が存在するが、水噴射によりノッキングは抑制され
る。点火をOFFした後は、水噴射により水噴射の必要
性を水噴射マップから判別する。水噴射を行う場合は、
その噴射量は、定常時のTpwlとする。
In the case of sudden deceleration, subroutine 3 shown in FIG.
Is controlled by When the throttle opening is 0, that is, when the throttle is fully closed (engine brake), the fuel injection and the water injection are cut to improve the fuel efficiency, and the self-ignition combustion mode (ignition O
FF, high compression ratio state). When the throttle is not fully closed, the fuel injection pulse width Tp is set to the steady-state injection pulse width Tpl, and then the throttle opening θ is switched from ignition combustion to self-ignition in accordance with the engine speed at that point in time. If the degree θ3 is larger or smaller, that is, smaller, the ignition combustion may be switched to the self-ignition combustion, and if larger, the ignition combustion is maintained without switching. If the mode is not switched to the self-ignition combustion, it is determined whether or not to perform water injection only according to a water injection map mapped in advance. At that time, the pulse width of the water injection valve is different from that in the steady state (Tpw).
In consideration of the delay in water supply, the amount is increased by ΔTw. θ ≦
In the case of θ3, the determination of the combustion state before deceleration is made based on the value of the compression ratio (intake valve closing timing = determined from the set state of the valve timing of the variable valve mechanism). That is, in the case of the high compression ratio state, rapid deceleration occurs in the self-ignition state. At that time, the presence or absence of water injection is determined based on the water injection map. In the case of a low compression ratio, it is determined that the mode has switched from spark ignition to self-ignition, water injection is immediately started (there is an increase), and switching from low to high compression ratio is performed by a variable valve mechanism. Next, the self-ignition occurs when the compression ratio switching cycle number N2 is exceeded and the high compression ratio state is ensured.
Turn off the ignition. At this time, although there are operating conditions of high compression ratio and ignition combustion, knocking is suppressed by water injection. After the ignition is turned off, the necessity of water injection is determined from the water injection map by water injection. When performing water injection,
The injection amount is assumed to be Tpwl in a steady state.

【0035】緩減速の場合、図7に示すサブルーチン4
により制御される。図6の急減速時と異なるのは、 水噴射量の過渡時増量(ΔTw)はプラスしない。 である。
In the case of slow deceleration, subroutine 4 shown in FIG.
Is controlled by The difference from the rapid deceleration in FIG. 6 is that the transient increase (ΔTw) of the water injection amount is not added. It is.

【0036】定常時の場合、図8に示すサブルーチン5
により制御される。これは、あらかじめマッピングされ
た水噴射マップにより、噴射量、噴射有無が制御され
る。また、以上述べてきた制御に加え、常に以下の2つ
の制御を行ってもよい。1つ目は、図9に示す、ノック
センサ9による制御である。あらかじめ把握されている
許容ノックレベルとその時のノックセンサ出力Vnを用
い、常にノックセンサ出力≦Vnとなるように、水噴射
をECU13で制御する。水噴射量もまたノックセンサ
出力により変化させる。(ノックセンサ出力大ほど、水
噴射量多)2つ目は、図10に示す、湿度センサ8と吸
気温度センサ24による制御である。あらかじめ把握さ
れている自己着火燃焼に最適な湿度(運転時の吸入空気
温度に対する最適な湿度)になるように、水噴射をEC
U13で制御することにより、安定した自己着火燃焼を
得ることが出来る。
In the steady state, a subroutine 5 shown in FIG.
Is controlled by In this case, the injection amount and the presence or absence of the injection are controlled by a water injection map mapped in advance. Further, in addition to the control described above, the following two controls may be always performed. The first is control by knock sensor 9 shown in FIG. Water injection is controlled by the ECU 13 using the permissible knock level grasped in advance and the knock sensor output Vn at that time so that the knock sensor output ≦ Vn. The water injection amount is also changed by the knock sensor output. The second is the control by the humidity sensor 8 and the intake air temperature sensor 24 shown in FIG. The water injection is set to EC so that the optimal humidity for self-ignition combustion (optimal humidity with respect to the intake air temperature during operation) that is grasped in advance is obtained.
By controlling with U13, stable self-ignition combustion can be obtained.

【0037】[0037]

【発明の効果】以上、説明してきた如く、本発明によれ
ば、自己着火燃焼と火花点火燃焼の2つを組み合わせた
内燃機関システムにおいて、水噴射を適応し、運転条件
(定常時と過渡時)に応じて水噴射の量、有無等の制御
を行うことにより、機関のより広い負荷範囲で高効率か
つ低NOx排出である均質予混合圧縮着火燃焼を実現す
ると共に、ノッキングの発生を抑制しながら、火花点火
との切り替わりをスムーズに行うことが可能となった。
請求項1に記載の発明により、高負荷域への運転領域が
拡大され、より広い運転領域において、低エミッション
化、低燃費化が達成される。請求項2に記載の発明によ
り、燃焼切り替わりがスムーズになり、自己着火燃焼と
火花点火燃焼の組み合わせが可能となる。請求項3に記
載の発明により、急加速時でも、スムーズに燃焼が切り
替わる。請求項4に記載の発明により、急加速時でも、
確実にスムーズな燃焼切り替えが行われる。請求項5に
記載の発明により、確実にスムーズな燃焼切り替えが行
われる。請求項6に記載の発明により、必要以上のシリ
ンダの冷却を未然に停止することにより、低エミッショ
ン化と低燃費化が可能となる。請求項7に記載の発明に
より、急減速時でも、スムーズに燃焼が切り替わる。請
求項8に記載の発明により、確実にスムーズな燃焼切り
替わりが行われる。請求項9に記載の発明により、確実
にスムーズな燃焼切り替わりが行われる。請求項10に
記載の発明により、ノックセンサ出力に応じた制御が可
能となり、常に精度よく、ノッキングが抑制される。請
求項11に記載の発明により、常にノッキングが抑制さ
れる。
As described above, according to the present invention, in the internal combustion engine system combining the two of the self-ignition combustion and the spark ignition combustion, the water injection is adapted and the operating conditions (steady state and transient state) ), The homogeneous premixed compression ignition combustion with high efficiency and low NOx emissions is realized over a wider load range of the engine, and the occurrence of knocking is suppressed. However, switching to spark ignition can be performed smoothly.
According to the first aspect of the present invention, the operating range to a high load range is expanded, and low emission and low fuel consumption are achieved in a wider operating range. According to the second aspect of the present invention, the switching of the combustion becomes smooth, and the combination of the self-ignition combustion and the spark ignition combustion becomes possible. According to the third aspect of the present invention, the combustion is switched smoothly even during rapid acceleration. According to the invention described in claim 4, even during sudden acceleration,
Smooth combustion switching is ensured. According to the fifth aspect of the present invention, the smooth combustion switching is reliably performed. According to the sixth aspect of the present invention, it is possible to reduce the emission and the fuel consumption by stopping the cooling of the cylinder more than necessary. According to the seventh aspect of the present invention, combustion is switched smoothly even at the time of sudden deceleration. According to the eighth aspect of the invention, smooth combustion switching can be reliably performed. According to the ninth aspect of the present invention, smooth combustion switching can be reliably performed. According to the invention described in claim 10, control according to the knock sensor output becomes possible, and knocking is always accurately suppressed. According to the eleventh aspect, knocking is always suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における構成を示す図である。FIG. 1 is a diagram showing a configuration in an embodiment of the present invention.

【図2】運転領域と燃焼形態の関係を示す図である。FIG. 2 is a diagram showing a relationship between an operation region and a combustion mode.

【図3】図2に示す内燃機関の水噴射制御フローを示す
図である。
FIG. 3 is a view showing a water injection control flow of the internal combustion engine shown in FIG. 2;

【図4】図3中のサブルーチン1の詳細(急加速時の制
御フロー)を示した流れ図である。
FIG. 4 is a flowchart showing details of subroutine 1 in FIG. 3 (control flow at the time of sudden acceleration).

【図5】図3中のサブルーチン2の詳細(緩加速時の制
御フロー)を示した流れ図である。
FIG. 5 is a flowchart showing details of subroutine 2 in FIG. 3 (control flow at the time of gentle acceleration).

【図6】図3中のサブルーチン3の詳細(急減速時の制
御フロー)を示した流れ図である。
6 is a flowchart showing details of subroutine 3 in FIG. 3 (control flow at the time of sudden deceleration).

【図7】図3中のサブルーチン4の詳細(緩減速時の制
御フロー)を示した流れ図である。
7 is a flowchart showing details of subroutine 4 in FIG. 3 (control flow at the time of slow deceleration).

【図8】図3中のサブルーチン5の詳細(定常時の制御
フロー)を示した流れ図である。
FIG. 8 is a flowchart showing details of subroutine 5 in FIG. 3 (control flow in a steady state);

【図9】ノックセンサによる制御フロー図である。FIG. 9 is a control flow chart by a knock sensor.

【図10】吸気温、湿度センサによる制御フロー図であ
る。
FIG. 10 is a control flowchart by an intake air temperature and humidity sensor.

【図11】従来例1を示した図である。FIG. 11 is a diagram showing Conventional Example 1.

【図12】従来例2を示した図である。FIG. 12 is a diagram showing a second conventional example.

【符号の説明】[Explanation of symbols]

1 水噴射弁 2 燃料噴射弁 3 水配管 4 燃料配管 5 吸気ポート 6 排気ポート 7 点火栓 8 湿度センサ 9 ノックセンサ 10 ピストン 11 燃料タンク 12 水タンク 13 ECM 14 燃料リターン配管 15 燃料用プレッシャレギュレータ 16 燃料フィルタ 17 燃料ポンプ 18 燃料ポンプ駆動用電動モータ 19 水リターン配管 20 水用プレッシャレギュレータ 21 水フィルタ 22 水ポンプ 23 水ポンプ駆動用電動モータ 24 吸気温センサ DESCRIPTION OF SYMBOLS 1 Water injection valve 2 Fuel injection valve 3 Water pipe 4 Fuel pipe 5 Intake port 6 Exhaust port 7 Spark plug 8 Humidity sensor 9 Knock sensor 10 Piston 11 Fuel tank 12 Water tank 13 ECM 14 Fuel return pipe 15 Fuel pressure regulator 16 Fuel Filter 17 Fuel pump 18 Electric motor for driving fuel pump 19 Water return pipe 20 Pressure regulator for water 21 Water filter 22 Water pump 23 Electric motor for driving water pump 24 Intake air temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02M 25/022 F02M 25/02 R (72)発明者 飯山 明裕 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G023 AA02 AA05 AA06 AB06 AC02 AG00 3G084 AA00 BA11 BA23 CA04 CA06 DA01 DA02 DA10 DA38 FA02 FA10 FA14 FA25 3G092 AA01 AA02 AA05 AA11 AB17 BB01 BB10 DA01 DA08 DD03 EA01 EA08 EA14 EA17 FA01 FA16 FA17 FA24 GA06 GA12 GA13 GA14 HA00Z HA04Z HA07Z HC05Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F02M 25/022 F02M 25/02 R (72) Inventor Akihiro Iiyama 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor In-house F term (reference) 3G023 AA02 AA05 AA06 AB06 AC02 AG00 3G084 AA00 BA11 BA23 CA04 CA06 DA01 DA02 DA10 DA38 FA02 FA10 FA14 FA25 3G092 AA01 AA02 AA05 AA11 AB17 BB01 BB10 DA01 DA08 DD03 EA01 FA17 FA14 FA16 FA14 GA13 GA14 HA00Z HA04Z HA07Z HC05Z

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 ピストン往復運動をクランク軸回転運動
に変換し出力を得る火花点火4サイクル内燃機関におい
て、少なくともバルブ開閉時期を可変と出来る可変動弁
機構を有し、吸気弁閉時期を可変にすることにより有効
圧縮比を可変とし機関運転条件に応じて圧縮比を高め、
火花点火から自己着火燃焼すなわち均質予混合気圧縮着
火への切り替わりを行い、前記自己着火運転領域におけ
る高負荷時に水を噴射できる噴射装置を備えたことを特
徴とするガソリン自己着火内燃機関。
1. A spark-ignition four-cycle internal combustion engine that obtains an output by converting a reciprocating motion of a piston into a rotary motion of a crankshaft, has a variable valve mechanism that can change at least a valve opening / closing timing, and varies a closing timing of an intake valve. By making the effective compression ratio variable by increasing the compression ratio according to the engine operating conditions,
A gasoline self-ignition internal combustion engine, comprising: an injection device that performs switching from spark ignition to self-ignition combustion, that is, homogeneous charge homogeneous charge compression ignition, and injects water at a high load in the self-ignition operation region.
【請求項2】 自己着火燃焼から火花点火燃焼への切り
替わり時、または火花点火燃焼から自己着火燃焼への切
り替わり時に、水を噴射できる噴射装置を備えたことを
特徴とする請求項1記載のガソリン自己着火内燃機関。
2. The gasoline according to claim 1, further comprising an injection device capable of injecting water at the time of switching from self-ignition combustion to spark ignition combustion or at the time of switching from spark ignition combustion to self-ignition combustion. Self-igniting internal combustion engine.
【請求項3】 自己着火燃焼から火花点火燃焼への切り
替わりにおいて、スロットル開速度が急激な急加速運転
時に、定常運転時の同一回転数同一負荷条件での設定水
噴射量よりも多く水噴射することを特徴とする請求項1
または請求項2に記載のガソリン自己着火内燃機関。
3. When switching from self-ignition combustion to spark ignition combustion, during rapid acceleration operation in which the throttle opening speed is sharp, more water is injected than the set water injection amount under the same rotation speed and the same load condition in steady operation. 2. The method according to claim 1, wherein
Or a gasoline self-ignition internal combustion engine according to claim 2.
【請求項4】 自己着火燃焼から火花点火燃焼への切り
替わりにおいて、スロットル開速度が急激な急加速運転
時に、水噴射実施後で且つ筒内への水供給遅れ時間が経
過した後に、火花点火を開始することを特徴とする請求
項1ないし3に記載のガソリン自己着火内燃機関。
4. In the switching from self-ignition combustion to spark ignition combustion, during rapid acceleration operation in which the throttle opening speed is sharp, after water injection is performed and after a water supply delay time in the cylinder elapses, spark ignition is performed. 4. The gasoline self-ignition internal combustion engine according to claim 1, wherein the internal combustion engine is started.
【請求項5】 自己着火燃焼から火花点火燃焼への切り
替わりにおいて、水噴射期間は、少なくとも圧縮比の切
り替わりサイクル中の所要時間以上の時間設定としたこ
とを特徴とする請求項1ないし4に記載のガソリン自己
着火内燃機関。
5. The water injection period at the time of switching from self-ignition combustion to spark ignition combustion is set to be at least longer than a required time during a cycle of switching the compression ratio. Gasoline self-ignition internal combustion engine.
【請求項6】 スロットル全閉時で且つ減速時燃料カッ
ト中の条件では、燃料噴射と水噴射の両方を中止するこ
とを特徴とする請求項1ないし5に記載のガソリン自己
着火内燃機関。
6. The gasoline self-ignition internal combustion engine according to claim 1, wherein both the fuel injection and the water injection are stopped when the throttle is fully closed and the fuel is cut during deceleration.
【請求項7】 火花点火燃焼から自己着火燃焼への切り
替わりにおいて、スロットル閉速度が急激な急減速運転
時に、定常運転時の同一回転数、同一負荷条件での設定
水噴射量よりも多く水噴射することを特徴とする請求項
1ないし6に記載のガソリン自己着火内燃機関。
7. In switching from spark ignition combustion to self-ignition combustion, during rapid rapid deceleration operation with a rapid throttle closing speed, more water injection than the set water injection amount under the same rotation speed and the same load condition in steady operation. The gasoline self-ignition internal combustion engine according to any one of claims 1 to 6, wherein:
【請求項8】 火花点火燃焼から自己着火燃焼への切り
替わりにおいて、水噴射期間は、少なくとも圧縮比の切
り替わりサイクル中の所要時間以上の時間設定としたこ
とを特徴とする請求項1ないし7に記載のガソリン自己
着火内燃機関。
8. The method according to claim 1, wherein in switching from the spark ignition combustion to the self-ignition combustion, the water injection period is set to be at least longer than a required time in a cycle of switching the compression ratio. Gasoline self-ignition internal combustion engine.
【請求項9】 火花点火燃焼から自己着火燃焼への切り
替わりにおいて、自己着火燃焼が生じた後に点火を終了
することを特徴とする請求項1ないし8に記載のガソリ
ン自己着火内燃機関。
9. The gasoline self-ignition internal combustion engine according to claim 1, wherein in switching from spark ignition combustion to self-ignition combustion, ignition is terminated after self-ignition combustion has occurred.
【請求項10】 ピストン往復運動をクランク軸回転運
動に変換し出力を得る火花点火4サイクル内燃機関にお
いて、少なくともバルブ開閉時期を可変と出来る可変動
弁機構を有し、吸気弁閉時期を可変にすることにより有
効圧縮比を可変とし機関運転条件に応じて圧縮比を高
め、火花点火から自己着火燃焼すなわち均質予混合気圧
縮着火への切り替わりを行い、前記自己着火運転領域に
おける高負荷時に水を噴射できる噴射装置を備え、機関
シリンダブロック等の機関本体にノックセンサを設置
し、ノッキング発生時のノックセンサ出力が所定以上に
なったときに水噴射を開始し、前記ノックセンサ出力値
に応じて水噴射料が制御されるとともに、ノックセンサ
出力値が許容値以下になったときに水噴射を終了するこ
とを特徴とするガソリン自己着火内燃機関。
10. A spark ignition four-cycle internal combustion engine that converts piston reciprocating motion into crankshaft rotational motion and obtains an output, has a variable valve mechanism that can change at least the valve opening / closing timing, and makes the intake valve closing timing variable. By changing the effective compression ratio to increase the compression ratio in accordance with the engine operating conditions, switching from spark ignition to self-ignition combustion, that is, homogeneous charge homogeneous charge compression ignition, water is discharged at a high load in the self-ignition operation region. Equipped with an injection device capable of injecting, installing a knock sensor on the engine body such as an engine cylinder block, etc., starts water injection when the knock sensor output at the time of knocking becomes a predetermined value or more, according to the knock sensor output value Gasoline characterized by controlling the water injection charge and terminating the water injection when the knock sensor output value falls below an allowable value. Self-igniting internal combustion engine.
【請求項11】 吸気系に温度センサ、湿度センサが設
定されており、機関運転時の吸入空気温度に応じて目標
の湿度になるように、水噴射料が制御されていることを
特徴とする請求項1ないし10に記載のガソリン自己着
火内燃機関。
11. A temperature sensor and a humidity sensor are set in an intake system, and a water injection charge is controlled so that a target humidity is obtained according to an intake air temperature during engine operation. A gasoline self-ignition internal combustion engine according to claim 1.
JP11005962A 1999-01-13 1999-01-13 Gasoline self-igniting internal combustion engine Pending JP2000204990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11005962A JP2000204990A (en) 1999-01-13 1999-01-13 Gasoline self-igniting internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11005962A JP2000204990A (en) 1999-01-13 1999-01-13 Gasoline self-igniting internal combustion engine

Publications (1)

Publication Number Publication Date
JP2000204990A true JP2000204990A (en) 2000-07-25

Family

ID=11625521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11005962A Pending JP2000204990A (en) 1999-01-13 1999-01-13 Gasoline self-igniting internal combustion engine

Country Status (1)

Country Link
JP (1) JP2000204990A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040019159A (en) * 2002-08-26 2004-03-05 현대자동차주식회사 Method for controlling combustion of the hom0geneous charge compression ignition engine
KR100482060B1 (en) * 2002-01-29 2005-04-13 현대자동차주식회사 A water injection device of an engine
WO2005080782A1 (en) * 2004-02-11 2005-09-01 Dynfield Limited Optimising heat engine carburation
EP1808590A1 (en) * 2004-11-04 2007-07-18 HONDA MOTOR CO., Ltd. Method for controlling compression ignition internal combustion engine
KR100821818B1 (en) 2002-02-01 2008-04-11 만 디젤 에스이 Internal combustion engine and its operating method
JP2008175103A (en) * 2007-01-17 2008-07-31 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2013538983A (en) * 2010-10-07 2013-10-17 ダイムラー・アクチェンゲゼルシャフト Operation method with water jet
JP2014517185A (en) * 2011-04-11 2014-07-17 ノストラム エナジー ピーティーイー.リミテッド Internally cooled high compression lean burn internal combustion engine
JP6249084B1 (en) * 2016-11-29 2017-12-20 マツダ株式会社 Premixed compression ignition engine
JP6249083B1 (en) * 2016-11-29 2017-12-20 マツダ株式会社 Premixed compression ignition engine
JP6252660B1 (en) * 2016-11-29 2017-12-27 マツダ株式会社 Premixed compression ignition engine
JP6252662B1 (en) * 2016-11-29 2017-12-27 マツダ株式会社 Premixed compression ignition engine
JP6252647B1 (en) * 2016-10-05 2017-12-27 マツダ株式会社 Control device for premixed compression ignition engine
JP2018035763A (en) * 2016-09-01 2018-03-08 マツダ株式会社 Controller of engine
JP2018035762A (en) * 2016-09-01 2018-03-08 マツダ株式会社 Controller of engine
CN108506122A (en) * 2018-05-12 2018-09-07 陈向红 High compression ratio ignition internal combustion engine and its working method
JP6477848B1 (en) * 2017-12-13 2019-03-06 マツダ株式会社 Premixed compression ignition engine
US10260458B2 (en) 2016-09-01 2019-04-16 Mazda Motor Corporation Homogeneous charge compression ignition engine
DE102018203932B3 (en) 2018-03-15 2019-08-14 Audi Ag Method for operating an internal combustion engine and corresponding internal combustion engine
KR102100202B1 (en) * 2018-11-16 2020-04-24 주식회사 하나티이씨 Water injection injector for internal combustion engine equipped with heater
JP2020537089A (en) * 2018-01-25 2020-12-17 日立オートモティブシステムズ株式会社 Internal combustion engine control in transient mode

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482060B1 (en) * 2002-01-29 2005-04-13 현대자동차주식회사 A water injection device of an engine
KR100821818B1 (en) 2002-02-01 2008-04-11 만 디젤 에스이 Internal combustion engine and its operating method
KR20040019159A (en) * 2002-08-26 2004-03-05 현대자동차주식회사 Method for controlling combustion of the hom0geneous charge compression ignition engine
WO2005080782A1 (en) * 2004-02-11 2005-09-01 Dynfield Limited Optimising heat engine carburation
EP1808590A1 (en) * 2004-11-04 2007-07-18 HONDA MOTOR CO., Ltd. Method for controlling compression ignition internal combustion engine
US7404380B2 (en) 2004-11-04 2008-07-29 Honda Motor Co., Ltd. Method of controlling compression-ignition internal combustion engine
EP1808590A4 (en) * 2004-11-04 2010-02-24 Honda Motor Co Ltd Method for controlling compression ignition internal combustion engine
JP2008175103A (en) * 2007-01-17 2008-07-31 Nissan Motor Co Ltd Combustion control device for internal combustion engine
JP2013538983A (en) * 2010-10-07 2013-10-17 ダイムラー・アクチェンゲゼルシャフト Operation method with water jet
JP2014517185A (en) * 2011-04-11 2014-07-17 ノストラム エナジー ピーティーイー.リミテッド Internally cooled high compression lean burn internal combustion engine
US9726076B2 (en) 2011-04-11 2017-08-08 Nostrum Energy Pte, Ltd. Internally cooled high compression lean-burning internal combustion engine
JP2017194065A (en) * 2011-04-11 2017-10-26 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Internally cooled high compression lean-burning internal combustion engine
JP2020016244A (en) * 2011-04-11 2020-01-30 ノストラム エナジー ピーティーイー.リミテッドNostrum Energy Pte.Ltd. Method for operating internal combustion engine using hydrocarbon fuel
US10378436B2 (en) 2011-04-11 2019-08-13 Nostrum Energy Pte, Ltd. Internally cooled high compression lean-burning internal combustion engine
USRE47540E1 (en) 2011-04-11 2019-07-30 Nostrum Energy Pte, Ltd. Internally cooled high compression lean-burning internal combustion engine
US10260458B2 (en) 2016-09-01 2019-04-16 Mazda Motor Corporation Homogeneous charge compression ignition engine
JP2018035762A (en) * 2016-09-01 2018-03-08 マツダ株式会社 Controller of engine
JP2018035763A (en) * 2016-09-01 2018-03-08 マツダ株式会社 Controller of engine
JP6252647B1 (en) * 2016-10-05 2017-12-27 マツダ株式会社 Control device for premixed compression ignition engine
JP2018059445A (en) * 2016-10-05 2018-04-12 マツダ株式会社 Control device of premixed compression ignition engine
JP6252662B1 (en) * 2016-11-29 2017-12-27 マツダ株式会社 Premixed compression ignition engine
JP2018087521A (en) * 2016-11-29 2018-06-07 マツダ株式会社 Premixing compression ignition type engine
JP2018087522A (en) * 2016-11-29 2018-06-07 マツダ株式会社 Premixing compression ignition type engine
JP2018087520A (en) * 2016-11-29 2018-06-07 マツダ株式会社 Premixing compression ignition type engine
JP6252660B1 (en) * 2016-11-29 2017-12-27 マツダ株式会社 Premixed compression ignition engine
JP6249083B1 (en) * 2016-11-29 2017-12-20 マツダ株式会社 Premixed compression ignition engine
JP6249084B1 (en) * 2016-11-29 2017-12-20 マツダ株式会社 Premixed compression ignition engine
JP6477848B1 (en) * 2017-12-13 2019-03-06 マツダ株式会社 Premixed compression ignition engine
JP2019105223A (en) * 2017-12-13 2019-06-27 マツダ株式会社 Premixing compression ignition-type engine
JP2020537089A (en) * 2018-01-25 2020-12-17 日立オートモティブシステムズ株式会社 Internal combustion engine control in transient mode
US11143122B2 (en) 2018-01-25 2021-10-12 Hitachi Automotive Systems, Ltd. Control of an internal combustion engine in transient operating mode
DE102018203932B3 (en) 2018-03-15 2019-08-14 Audi Ag Method for operating an internal combustion engine and corresponding internal combustion engine
CN108506122A (en) * 2018-05-12 2018-09-07 陈向红 High compression ratio ignition internal combustion engine and its working method
WO2020101459A1 (en) * 2018-11-16 2020-05-22 주식회사 하나티이씨 Water injector for internal combustion engine equipped with heater
KR102100202B1 (en) * 2018-11-16 2020-04-24 주식회사 하나티이씨 Water injection injector for internal combustion engine equipped with heater

Similar Documents

Publication Publication Date Title
JP2000204990A (en) Gasoline self-igniting internal combustion engine
RU2390636C2 (en) Engine with valve gear synchroniser
US7720590B2 (en) Homogenous charge compression ignition engine and controlling method of the engine
JP3233039B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP3931900B2 (en) Diesel engine control device
WO2014208136A1 (en) Engine control device
US10385791B2 (en) Engine control device
WO2014208137A1 (en) Engine control device
JP2000204954A (en) Control device for internal combustion engine
WO2018066328A1 (en) Internal combustion engine control device
JP2004324428A (en) Variable valve type internal combustion engine and control method
JP2020026751A (en) Control device of internal combustion engine
US7032567B2 (en) Control apparatus and method for internal combustion engine having variable valve system
JP4826318B2 (en) Control device for multi-cylinder 4-cycle engine
US7204215B2 (en) Valve characteristic controller and control method for internal combustion engine
CN106321268B (en) Method for controlling an engine in various operating modes
JP2003129848A (en) Internal combustion engine
JP2003148222A (en) Compression ignition type internal combustion engine
JP2006336620A (en) Fuel injection control device for internal combustion engine
JP4501108B2 (en) Fuel injection control device for internal combustion engine
JP2006132399A (en) Control device and control method for an engine with supercharger
JP4337247B2 (en) Control device for internal combustion engine
JPH10141115A (en) Control device of in-cylinder injection internal combustion engine
JP2001263119A (en) Control device for internal combustion engine
JP4171909B2 (en) In-cylinder injection internal combustion engine control device