JP2000204366A - Production apparatus of fluorescent substance and vessel for producing fluorescent substance - Google Patents

Production apparatus of fluorescent substance and vessel for producing fluorescent substance

Info

Publication number
JP2000204366A
JP2000204366A JP11003025A JP302599A JP2000204366A JP 2000204366 A JP2000204366 A JP 2000204366A JP 11003025 A JP11003025 A JP 11003025A JP 302599 A JP302599 A JP 302599A JP 2000204366 A JP2000204366 A JP 2000204366A
Authority
JP
Japan
Prior art keywords
phosphor
raw material
gas
boat
fluorescent substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11003025A
Other languages
Japanese (ja)
Other versions
JP3424165B2 (en
Inventor
Junko Suda
順子 須田
Yoshitaka Sato
義孝 佐藤
Fumiaki Kataoka
文昭 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP00302599A priority Critical patent/JP3424165B2/en
Publication of JP2000204366A publication Critical patent/JP2000204366A/en
Application granted granted Critical
Publication of JP3424165B2 publication Critical patent/JP3424165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the subject apparatus having a furnace for heating the raw materials for a fluorescent substance, and a specified vessel for producing the fluorescent substance, capable of efficiently promoting the reduction and nitridation even at the contacting surface with a boat, capable of providing a GaN-based fluorescent substance having good uniformity, and good crystalline shape having clear angles. SOLUTION: Raw materials 3 is loaded on a boat 4 obtained, for example, by mixing a carbonic material such as graphite, amorphous carbon and a carbon-coated alumina, and a BN powder, with a binder, a solvent and the like, inserting the obtained mixture into a mold to compact the mixture, drying the obtained compact, and baking the dried compact, and the raw materials 3 loaded on the boat 4 are inserted into the interior of a tube furnace 1. The raw materials 3 are heated by a heater 2 while flowing ammonia gas in the interior of the tube furnace 1 to provide the fluorescent substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、結晶性の良好な蛍
光体を製造できる蛍光体の製造装置及び蛍光体製造用容
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor producing apparatus and a phosphor producing container capable of producing a phosphor having good crystallinity.

【0002】[0002]

【従来の技術】近年、GaNは、単結晶の場合にはLE
D、LD等の発光素子において青色、緑色の高輝度発光
を示す材料として知られている。従来、GaN蛍光体を
製造するには、原料物質であるGa化合物にドープ物質
の化合物を混合し、これを焼成炉内に配置してアンモニ
アを流しながら高温で焼成し、Gaを窒化させるととも
にドープ物質をドープさせる。
2. Description of the Related Art In recent years, GaN is LE
It is known as a material that emits blue and green light with high luminance in light emitting elements such as D and LD. Conventionally, to manufacture a GaN phosphor, a compound of a doping substance is mixed with a Ga compound as a raw material, and the mixture is placed in a firing furnace and fired at a high temperature while flowing ammonia to nitride Ga and dope. Dope the substance.

【0003】このようにして得られた材料を電子線で発
光させる試みは過去にあるが、粉体状にした蛍光体につ
いては実用的な輝度を得るに至っていない。
[0003] Although attempts have been made in the past to cause the material obtained in this way to emit light with an electron beam, a powdered phosphor has not yet achieved practical brightness.

【0004】[0004]

【発明が解決しようとする課題】輝度が得られない最大
の理由として、他の蛍光体材料と異なり窒化の困難さが
挙げられる。すなわち、この材料は窒化される温度(7
00℃〜1000℃)と分解が始まる温度(950℃以
上)の差が小さいため、通常の加熱による反応では窒化
と分解が同時に進行しやすい。このため、GaNはでき
るが、蛍光体として使用できるような白色で結晶性が高
いGaNを作ることはできなかった。
The main reason why luminance cannot be obtained is that, unlike other phosphor materials, it is difficult to perform nitriding. That is, the temperature at which the material is nitrided (7
Since the difference between the temperature (00 ° C. to 1000 ° C.) and the temperature at which decomposition starts (950 ° C. or more) is small, nitridation and decomposition tend to proceed simultaneously in a normal reaction by heating. For this reason, although GaN can be produced, it was not possible to produce GaN that is white and has high crystallinity that can be used as a phosphor.

【0005】GaN蛍光体を製造するには、前述したよ
うに一般的には管状炉の中でアンモニア又は窒素を含む
ガスを流しながら、原料物質を高温で焼成するが、アン
モニアはGaの窒化反応によって多量に消費されるの
で、GaNの合成に当たっては十分な量のアンモニアを
管状炉内に供給しなければならない。
In order to manufacture a GaN phosphor, as described above, generally, a raw material is fired at a high temperature while flowing a gas containing ammonia or nitrogen in a tube furnace. Therefore, in the synthesis of GaN, a sufficient amount of ammonia must be supplied into the tubular furnace.

【0006】従来一般的なアルミナ製の箱形状の容器
(一般にボートと称する。)に原料物質を入れ、これを
管状炉内に配置してアンモニアを流しながら焼成して
も、均一な窒化反応は得られなかった。これは、従来使
用されていたアルミナ製のボートは通気性が良好でない
ため、原料物質の内、特にボートの内面に接している部
分がガスに接触できなかったからである。この部分は窒
化反応が不十分であり、得られる蛍光体に均一性がな
く、蛍光体として発光させた際の輝度が部分的に弱くな
るという問題があった。
[0006] Even if a raw material is put in a conventional box-shaped container (generally called a boat) made of alumina, which is placed in a tubular furnace and fired while flowing ammonia, a uniform nitriding reaction can be obtained. Could not be obtained. This is because alumina boats which have been used conventionally do not have good air permeability, so that a portion of the raw material, particularly the portion in contact with the inner surface of the boat, could not contact the gas. In this part, the nitridation reaction was insufficient, and the obtained phosphor was not uniform, and there was a problem that the luminance when emitting light as the phosphor was partially weakened.

【0007】このため、同一バッチ内のGaN蛍光体で
あっても、一応の発光が得られる蛍光体はごく一部分で
あり、しかもその発光強度は実用に耐えない低いもので
あった。また、GaN蛍光体の製造の繰り返し再現性も
望ましいものとはいえず、発光強度が高くて安定した特
性のGaN蛍光体を得ることができなかった。
For this reason, even if the GaN phosphors in the same batch are used, only a small portion of the phosphors can provide a certain amount of light emission, and the light emission intensity is too low to be practical. Further, the reproducibility of the production of the GaN phosphor was not desirable, and a GaN phosphor having high emission intensity and stable characteristics could not be obtained.

【0008】本発明は、ガス雰囲気内で蛍光体材料を加
熱して行う蛍光体の製造方法に適用でき、特性の優れた
蛍光体を製造することができる蛍光体製造用容器を提供
することを目的としている。
The present invention provides a phosphor manufacturing container which can be applied to a method of manufacturing a phosphor by heating a phosphor material in a gas atmosphere and which can produce a phosphor having excellent characteristics. The purpose is.

【0009】[0009]

【課題を解決するための手段】請求項1に記載された蛍
光体の製造装置は、蛍光体の原料物質をガス雰囲気内に
おいて加熱する炉と、前記ガスが通過しうる通気性を有
するとともに、前記炉の熱を前記原料物質に伝導する熱
伝導性を備え、前記原料物質を収納して前記炉の内部に
配置される蛍光体製造用容器とを有している。
According to a first aspect of the present invention, there is provided an apparatus for manufacturing a phosphor, comprising: a furnace for heating a raw material of the phosphor in a gas atmosphere; A phosphor production container which has thermal conductivity for conducting heat of the furnace to the raw material and which accommodates the raw material and is disposed inside the furnace;

【0010】請求項2に記載された蛍光体製造用容器
は、蛍光体の原料物質を収納し、ガス雰囲気内に配置さ
れて加熱される蛍光体製造用容器において、前記ガスが
通過しうる通気性を有するとともに、熱を前記原料物質
に伝導する熱伝導性を備えたことを特徴としている。
[0010] According to a second aspect of the present invention, there is provided a phosphor manufacturing container which contains a raw material of the phosphor, and which is disposed in a gas atmosphere and is heated. And heat conductivity for conducting heat to the raw material.

【0011】請求項3に記載された蛍光体製造用容器
は、請求項2記載の蛍光体製造用容器において、前記原
料物質と前記ガスの反応を阻害するガスを含まない材料
で形成されたことを特徴としている。
[0013] A container for producing a phosphor according to claim 3 is formed of a material that does not contain a gas that inhibits a reaction between the raw material and the gas. It is characterized by.

【0012】請求項4に記載された蛍光体製造用容器
は、請求項2記載の蛍光体製造用容器において、グラフ
ァイト、アモルファスカーボン、カーボンコートされた
アルミナからなる群から選択された物質の粉末を、多孔
性の状態となるように焼結して形成したことを特徴とし
ている。
A phosphor manufacturing container according to a fourth aspect of the present invention is the phosphor manufacturing container according to the second aspect, wherein a powder of a substance selected from the group consisting of graphite, amorphous carbon, and carbon-coated alumina is used. It is characterized by being formed by sintering in a porous state.

【0013】請求項5に記載された蛍光体製造用容器
は、請求項2記載の蛍光体製造用容器において、BNの
粉末を、多孔性の状態となるように焼結して形成したこ
とを特徴としている。
According to a fifth aspect of the present invention, there is provided a phosphor manufacturing container according to the second aspect, wherein the BN powder is formed by sintering to a porous state. Features.

【0014】請求項6に記載された蛍光体製造用容器
は、GaN:A(A=Zn,Mg)の原料物質を収納
し、窒素を含むガス雰囲気中に配置されて加熱される蛍
光体製造用容器であって、前記ガスが通過しうる通気性
を有するとともに、熱を前記原料物質に伝導する熱伝導
性を備えたことを特徴としている。
According to a sixth aspect of the present invention, there is provided a phosphor manufacturing container which contains a raw material of GaN: A (A = Zn, Mg), is disposed in a gas atmosphere containing nitrogen, and is heated. Container having air permeability through which the gas can pass and heat conductivity for conducting heat to the raw material.

【0015】[0015]

【発明の実施の形態】前述した問題を解決するために
は、ボートの内面に接触しているGaN蛍光体の原料物
質にもガスが十分に接触するように、ボートを多孔性に
してガスが通過できるようにすることが重要であると本
発明者等は考えた。但し、炉による加熱が効率的に行わ
れるように、ボートの材質は従来のアルミナに比べて十
分に熱伝導性の良好なものでなければならない。また、
成形性が良好で任意の形状のボートを形成でき、入手し
やすく安価な材料であることも必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to solve the above-mentioned problems, the boat is made porous so that the gas sufficiently contacts the raw material of the GaN phosphor in contact with the inner surface of the boat. We thought it important to be able to pass. However, the boat must be made of a material having sufficiently higher thermal conductivity than conventional alumina so that heating by the furnace is performed efficiently. Also,
It is also necessary that the material has good formability, can form a boat of any shape, is easily available and is inexpensive.

【0016】以上の条件を満たす材料として、本発明者
等は、カーボン系の材料であるグラファイトやアモルフ
ァスカーボン、又はカーボンを利用した材料であるカー
ボンコートされたアルミナ、さらにまたBNの粉末を選
択した。これらの物質の粉末を、バインダ、溶剤等と混
合して型に入れて成形し、乾燥後に焼成してボートとし
た。これによって得られたボートは多孔性の状態とな
り、熱伝導性も十分であった。これを用いて蛍光体の製
造を行ったところ、結晶成長が良好なために結晶粒子の
径が大きくかつ一様に揃った状態の蛍光体が得られた。
従来のボートでは原料物質のボートとの接触面がガスに
触れないために発光が弱かったが、本例ではこの部分も
効率よく還元・窒化され、試料の均一性が良くなった。
また、合成の繰り返し再現性が向上し、従来のボートを
用いた場合に比べてより安定した品質で発光輝度の高い
のGaN蛍光体を作製することができる。
As materials satisfying the above conditions, the present inventors have selected carbon-based materials such as graphite and amorphous carbon, carbon-coated alumina which is a material utilizing carbon, and BN powder. . Powders of these substances were mixed with a binder, a solvent, and the like, molded into a mold, dried, and fired to form a boat. The boat thus obtained was in a porous state and had sufficient thermal conductivity. When the phosphor was manufactured using this, a phosphor in which crystal grains had a large diameter and were uniformly arranged due to good crystal growth was obtained.
In the conventional boat, the light emission was weak because the contact surface of the raw material with the boat did not come into contact with the gas, but in this example, this portion was also efficiently reduced and nitrided, and the uniformity of the sample was improved.
In addition, the repetition reproducibility of the synthesis is improved, and a GaN phosphor having a more stable quality and a higher light emission luminance than that of a conventional boat can be manufactured.

【0017】[0017]

【実施例】(1)実施例1 硫化ガリウムに、Ga1molに対してZn1mol%
に相当するZnOを混合して、アルモファスカーボンか
らなる多孔性のボートに載せ、アンモニア雰囲気中で1
000℃で3時間反応させた。その結果、粉末状のGa
N:Zn蛍光体を得た。
EXAMPLES (1) Example 1 1 mol% of Zn to 1 mol% of gallium sulfide
And placed on a porous boat made of amorphous carbon, and mixed in an ammonia atmosphere.
The reaction was performed at 000 ° C. for 3 hours. As a result, the powder Ga
An N: Zn phosphor was obtained.

【0018】図1は、上記工程を一例として示す斜視図
である。管状炉1の廻りには加熱手段としてのヒータ2
が設けられている。管状炉1の内部には、前記原料物質
3を載せた前記ボート4が挿入されている。管状炉1の
中で矢印で示すようにアンモニアガスを流しながら、ヒ
ータ2で原料物質3を加熱する。なお、この例では、ボ
ート4の形状は両端を開口した円筒形を中心軸線に沿っ
て2つ割りにしたものであり、ガスが原料物質3に接触
しやすくなっている。また、ボート4の曲率は管状炉1
と略同一であり、管状炉1からヒータ2の熱が伝導しや
すくなっている。しかしながら、この形状は一例であ
り、もちろん他の構造でもよい。
FIG. 1 is a perspective view showing the above process as an example. A heater 2 as a heating means is provided around the tubular furnace 1.
Is provided. The boat 4 on which the raw material 3 is placed is inserted into the tubular furnace 1. The raw material 3 is heated by the heater 2 while flowing ammonia gas in the tubular furnace 1 as shown by arrows. In addition, in this example, the shape of the boat 4 is obtained by dividing a cylindrical shape having two open ends along the central axis, so that the gas easily comes into contact with the raw material 3. In addition, the curvature of the boat 4 is
And the heat of the heater 2 is easily conducted from the tubular furnace 1. However, this shape is an example, and of course, other structures may be used.

【0019】この蛍光体に水銀ランプ(365nm)に
より紫外線を照射したところ、440nmの青色発光が
確認された。
When this phosphor was irradiated with ultraviolet rays from a mercury lamp (365 nm), blue light emission of 440 nm was confirmed.

【0020】また、この蛍光体を基板に形成したITO
電極上に印刷により塗布し、蛍光発光管、電界放出型発
光素子に実装した。アノード電圧400V、duty=
1/240で駆動したところ、色純度の良い青色の発光
が得られた。
Further, an ITO having this phosphor formed on a substrate is provided.
It was applied on the electrode by printing and mounted on a fluorescent light emitting tube and a field emission light emitting device. Anode voltage 400V, duty =
When driven at 1/240, blue light emission with good color purity was obtained.

【0021】図2は本例で得られたGaN蛍光体のSE
M写真であり、図3は従来のアルミナボートを用いて製
造したGaN蛍光体である。図2の本例によるGaN蛍
光体の方が、角の部分が明瞭化した結晶形状の良い粒子
であることが確認された。
FIG. 2 shows the SE of the GaN phosphor obtained in this example.
FIG. 3 is an M photograph, and FIG. 3 shows a GaN phosphor manufactured using a conventional alumina boat. It was confirmed that the GaN phosphor according to the present example in FIG. 2 was a particle having a better crystal shape with a sharp corner.

【0022】(2)実施例2 グラファイトからなる多孔性のボートを用いて実施例1
と同様の実験を行い、実施例1と同様、水銀ランプ(3
65nm)の紫外線で励起したところ、440nmにピ
ークを持つ青色発光が得られた。
(2) Example 2 Example 1 was performed using a porous boat made of graphite.
An experiment similar to that of Example 1 was performed, and a mercury lamp (3
When excited with ultraviolet light (65 nm), blue light emission having a peak at 440 nm was obtained.

【0023】(3)実施例3 カーボンコートされたアルミナからなる多孔性のボート
を用いて実験を行った。水酸化ガリウムにMg1mol
%/Ga1mol相当のMg(OH)2 を混合して、前
記ボートに載せ、アンモニアを混合した窒素雰囲気中で
1100℃で3時間反応させた。その結果、粉末状のG
aN:Mg蛍光体を得た。
(3) Example 3 An experiment was conducted using a porous boat made of carbon-coated alumina. 1 mol of Mg in gallium hydroxide
% / Ga1 mol equivalent of Mg (OH) 2 was mixed, placed on the boat, and reacted at 1100 ° C. for 3 hours in a nitrogen atmosphere mixed with ammonia. As a result, powder G
An aN: Mg phosphor was obtained.

【0024】この蛍光体の紫外線励起による発光強度
は、従来のアルミナボートを用いた場合より1.5倍強
くなった。
The emission intensity of this phosphor by ultraviolet excitation was 1.5 times stronger than that of the conventional alumina boat.

【0025】また、AES分析によれば、従来のアルミ
ナボートを使用して製造した蛍光体には酸素が5mol
%/Ga1mol検出されたが、本例のボートによって
製造した蛍光体の酸素は検出限界以下であった。酸素
は、前記原料物質と前記ガスの反応を阻害するガスであ
る。前記AES分析結果は、本例のボートがこのような
本製造工程において有害なガスを実質的に含まないこと
を示している。
According to AES analysis, the phosphor produced using a conventional alumina boat contains 5 mol% of oxygen.
% / Ga1 mol was detected, but the oxygen of the phosphor produced by the boat of this example was below the detection limit. Oxygen is a gas that inhibits the reaction between the raw material and the gas. The results of the AES analysis indicate that the boat of this example is substantially free of harmful gases in such a manufacturing process.

【0026】X線回折における2θ=37°のピークに
ついて積分値を求めた。この値が小さいほど結晶性がよ
いとされる。従来のアルミナボートを使用して製造した
蛍光体では値は0.31であったが、本例のボートによ
り製造した蛍光体では0.26と小さく、従来よりも結
晶性が良くなっていることが確認された。
An integrated value was determined for a peak at 2θ = 37 ° in X-ray diffraction. It is considered that the smaller the value, the better the crystallinity. The value of the phosphor produced using the conventional alumina boat was 0.31, but the phosphor produced by the boat of the present example was as small as 0.26, indicating that the crystallinity was better than the conventional one. Was confirmed.

【0027】(4)実施例4 BNからなる多孔性のボートを用いて実施例1と同様の
実験を行った。このボートは、アクリルバインダとテル
ピネオールにBN粉末を入れ、型に入れて成形し、これ
を乾燥させて固める。これを焼成することにより、BN
粉末が低い充填度で焼き固められた状態のボートが得ら
れる。本例によれば、実施例1と同様、水銀ランプ(3
65nm)の紫外線で励起したところ、440nmにピ
ークを持つ青色発光が得られた。
(4) Example 4 The same experiment as in Example 1 was conducted using a porous boat made of BN. In this boat, BN powder is put into an acrylic binder and terpineol, put into a mold, molded, dried and solidified. By firing this, BN
A boat is obtained in which the powder is baked at a low filling degree. According to this example, the mercury lamp (3
When excited with ultraviolet light (65 nm), blue light emission having a peak at 440 nm was obtained.

【0028】[0028]

【発明の効果】本発明によれば、蛍光体の原料物質を収
納してガス雰囲気内で加熱される蛍光体製造用容器に、
ガスが通過しうる通気性と、熱を原料物質に効率的に伝
導する熱伝導性を与えた。その結果、原料物質と原料ガ
スの気相反応により蛍光体を製造する方法において、次
のような効果が得られた。
According to the present invention, a phosphor production container containing a phosphor raw material and heated in a gas atmosphere is provided.
It has a gas permeability that allows gas to pass through and a thermal conductivity that efficiently conducts heat to the raw material. As a result, the following effects were obtained in a method for producing a phosphor by a gas phase reaction between a source material and a source gas.

【0029】1.従来の方法ではボート接触面がガスに
触れにくいので反応が不充分となり、発光が弱かった
が、本発明の蛍光体製造用容器使用により容器との接触
面も効率よく還元・窒化が進み、試料の均一性が良くな
った。
1. In the conventional method, the reaction was insufficient and the light emission was weak because the boat contact surface was difficult to contact with gas, and the light emission was weak. Has improved the uniformity.

【0030】2.角が明瞭化した結晶系状の良い蛍光体
が得られる。
2. A phosphor having a good crystal system with sharp corners can be obtained.

【0031】3.上記のため、発光強度の高い蛍光体が
得られる。
3. Due to the above, a phosphor with high emission intensity can be obtained.

【0032】本発明の蛍光体製造用容器又はこれを用い
た蛍光体の製造装置によれば、特に、GaNの蛍光体作
製においては、次のような効果が得られる。
According to the phosphor production container of the present invention or the phosphor production apparatus using the same, the following effects can be obtained particularly in the production of a GaN phosphor.

【0033】.従来の方法ではボート接触面が水素に
触れにくいので還元が不充分となり発光が弱かったが、
本発明の蛍光体製造用容器使用使用によりボート接触面
も効率よく還元・窒化が進み、試料の均一性が良くなっ
た。
[0033] In the conventional method, the boat contact surface was difficult to contact with hydrogen, so reduction was insufficient and light emission was weak,
By using the phosphor production container of the present invention, reduction and nitridation of the boat contact surface proceeded efficiently, and the uniformity of the sample was improved.

【0034】.角が明瞭化した結晶系状の良いGaN
系蛍光体が得られる。
[0034] GaN with good crystal system with sharp corners
A system phosphor is obtained.

【0035】.上記のため、発光強度の高いGaN蛍
光体が得られる。
[0035] Due to the above, a GaN phosphor having high emission intensity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例における蛍光体の製
造装置の斜視図である。
FIG. 1 is a perspective view of a phosphor manufacturing apparatus according to an example of an embodiment of the present invention.

【図2】本発明の実施例で得られたGaN蛍光体のSE
M写真である。
FIG. 2 shows SE of a GaN phosphor obtained in an example of the present invention.
It is an M photograph.

【図3】従来のアルミナボートを用いて製造したGaN
蛍光体のSEM写真である。
FIG. 3 GaN produced using a conventional alumina boat
It is a SEM photograph of a fluorescent substance.

【符号の説明】[Explanation of symbols]

1…管状炉、3…蛍光体の原料物質(GaN蛍光体の原
料物質である酸化ガリウム等)、4…蛍光体製造用容器
としての焼成ボート。
DESCRIPTION OF SYMBOLS 1 ... Tubular furnace, 3 ... Phosphor raw material (Gallium oxide etc. which is a GaN phosphor raw material), 4 ... Fired boat as a container for producing a phosphor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 片岡 文昭 千葉県茂原市大芝629 双葉電子工業株式 会社内 Fターム(参考) 4H001 XA31 YA12 YA30  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Fumiaki Kataoka 629 Oshiba Mobara-shi, Chiba Futaba Electronics Co., Ltd. F-term (reference) 4H001 XA31 YA12 YA30

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蛍光体の原料物質をガス雰囲気内におい
て加熱する炉と、 前記ガスが通過しうる通気性を有するとともに、前記炉
の熱を前記原料物質に伝導する熱伝導性を備え、前記原
料物質を収納して前記炉の内部に配置される蛍光体製造
用容器と、 を有する蛍光体の製造装置。
A furnace for heating a raw material of a phosphor in a gas atmosphere; a furnace having a gas permeability, and having a heat conductivity for conducting heat of the furnace to the raw material; A phosphor production apparatus comprising: a phosphor production container containing a raw material and disposed inside the furnace.
【請求項2】 蛍光体の原料物質を収納し、ガス雰囲気
内に配置されて加熱される蛍光体製造用容器において、 前記ガスが通過しうる通気性を有するとともに、熱を前
記原料物質に伝導する熱伝導性を備えた蛍光体製造用容
器。
2. A phosphor manufacturing container which stores a raw material of a phosphor and is placed in a gas atmosphere and heated, having a gas permeability which allows the gas to pass therethrough and conducting heat to the raw material. For producing a phosphor having thermal conductivity.
【請求項3】 前記原料物質と前記ガスの反応を阻害す
るガスを含まない材料で形成された請求項2記載の蛍光
体製造用容器。
3. The phosphor manufacturing container according to claim 2, wherein the container is formed of a material that does not contain a gas that inhibits a reaction between the raw material and the gas.
【請求項4】 グラファイト、アモルファスカーボン、
カーボンコートされたアルミナからなる群から選択され
た物質の粉末を、多孔性の状態となるように焼結してな
る請求項2記載の蛍光体製造用容器。
4. Graphite, amorphous carbon,
3. The phosphor manufacturing container according to claim 2, wherein a powder of a substance selected from the group consisting of carbon-coated alumina is sintered so as to be porous.
【請求項5】 BNの粉末を、多孔性の状態となるよう
に焼結してなる請求項2記載の蛍光体製造用容器。
5. The phosphor production container according to claim 2, wherein the BN powder is sintered so as to be in a porous state.
【請求項6】 GaN:A(A=Zn,Mg)の原料物
質を収納し、窒素を含むガス雰囲気中に配置されて加熱
される蛍光体製造用容器において、 前記ガスが通過しうる通気性を有するとともに、熱を前
記原料物質に伝導する熱伝導性を備えたことを特徴とす
る蛍光体製造用容器。
6. A phosphor manufacturing container which contains a raw material of GaN: A (A = Zn, Mg) and is placed and heated in a nitrogen-containing gas atmosphere, wherein a gas-permeable material through which the gas can pass. And a heat conductive member for transferring heat to the raw material.
JP00302599A 1999-01-08 1999-01-08 Phosphor manufacturing apparatus and phosphor manufacturing container Expired - Fee Related JP3424165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00302599A JP3424165B2 (en) 1999-01-08 1999-01-08 Phosphor manufacturing apparatus and phosphor manufacturing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00302599A JP3424165B2 (en) 1999-01-08 1999-01-08 Phosphor manufacturing apparatus and phosphor manufacturing container

Publications (2)

Publication Number Publication Date
JP2000204366A true JP2000204366A (en) 2000-07-25
JP3424165B2 JP3424165B2 (en) 2003-07-07

Family

ID=11545794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00302599A Expired - Fee Related JP3424165B2 (en) 1999-01-08 1999-01-08 Phosphor manufacturing apparatus and phosphor manufacturing container

Country Status (1)

Country Link
JP (1) JP3424165B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080764A1 (en) * 2002-03-22 2003-10-02 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
JP2006028310A (en) * 2004-07-14 2006-02-02 Toshiba Corp Method for producing nitrogen-containing fluorophor, the resultant fluorophor, and light-emitting device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597823B2 (en) 2002-03-22 2009-10-06 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US7258816B2 (en) 2002-03-22 2007-08-21 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US7297293B2 (en) 2002-03-22 2007-11-20 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
CN100430456C (en) * 2002-03-22 2008-11-05 日亚化学工业株式会社 Nitride phosphor and method for preparation thereof, and light emitting device
US7556744B2 (en) 2002-03-22 2009-07-07 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
WO2003080764A1 (en) * 2002-03-22 2003-10-02 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
SG155768A1 (en) * 2002-03-22 2009-10-29 Nichia Corp Nitride phosphor and production process thereof, and light emitting device
KR100961324B1 (en) 2002-03-22 2010-06-04 니치아 카가쿠 고교 가부시키가이샤 Nitride Phosphor and Production Process Thereof, and Light Emitting Device
US7964113B2 (en) 2002-03-22 2011-06-21 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US8058793B2 (en) 2002-03-22 2011-11-15 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
US8076847B2 (en) 2002-03-22 2011-12-13 Nichia Corporation Nitride phosphor and production process thereof, and light emitting device
JP2006028310A (en) * 2004-07-14 2006-02-02 Toshiba Corp Method for producing nitrogen-containing fluorophor, the resultant fluorophor, and light-emitting device
JP4521227B2 (en) * 2004-07-14 2010-08-11 株式会社東芝 Method for producing phosphor containing nitrogen

Also Published As

Publication number Publication date
JP3424165B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
KR100261972B1 (en) Phosphor and method for producing same
JP5910498B2 (en) Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
KR101762473B1 (en) SILICON NITRIDE POWDER FOR SILICONITRIDE FLUORESCENT MATERIAL, SR3AL3SI13O2N21 FLUORESCENT MATERIAL AND β-SIALON FLUORESCENT MATERIAL BOTH OBTAINED USING SAME, AND PROCESSES FOR PRODUCING THESE
TW201007809A (en) Fluorescent lamp
EP2543714B1 (en) Li-CONTAINING -SIALON FLUORESCENT PARTICLES, METHOD FOR PRODUCING SAME, ILLUMINATION DEVICE, AND IMAGE DISPLAY DEVICE
JP2001049250A (en) Phosphor
KR20150067259A (en) Method for producing phosphor
WO2020209148A1 (en) Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device
WO2020209147A1 (en) Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device
TWI257917B (en) Gallium nitride phosphor, its manufacturing method, and a display device using the phosphor
JP2000198978A (en) Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
JP3699991B2 (en) Method for producing high-luminance luminescent material
JP2000204366A (en) Production apparatus of fluorescent substance and vessel for producing fluorescent substance
US6663843B2 (en) Method of producing barium-containing composite metal oxide
Liu et al. The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa2O4 nanorods
JP4849498B2 (en) Silicate phosphor and method for producing silicate phosphor
CN108587627A (en) Eu3+Ion-activated fluorine chlorine telluric acid bismuth and its preparation method and application
JP2008520523A (en) Alkaline earth metal aluminate precursor compound and crystallizing compound, method for producing the crystallizing compound, and method for using the compound as a phosphor
WO2005103198A1 (en) Phosphor
JP2019026657A (en) Fluophor, manufacturing method therefor, light-emitting element using the same, and silicon nitride powder for manufacturing fluophor
JP3937622B2 (en) Phosphor production container
CN113652231B (en) Boroaluminate ultraviolet fluorescent material and preparation method and application thereof
JPH08245957A (en) Fluorescent substance and its production
JP2008045079A (en) Process for producing phosphor
JP2002235078A (en) Method for producing fluorescent substance and the fluorescent substance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees