JP2000203807A - Supply of high-concentration ozone and apparatus therefor - Google Patents

Supply of high-concentration ozone and apparatus therefor

Info

Publication number
JP2000203807A
JP2000203807A JP11010563A JP1056399A JP2000203807A JP 2000203807 A JP2000203807 A JP 2000203807A JP 11010563 A JP11010563 A JP 11010563A JP 1056399 A JP1056399 A JP 1056399A JP 2000203807 A JP2000203807 A JP 2000203807A
Authority
JP
Japan
Prior art keywords
ozone
oxygen gas
gas
purity oxygen
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11010563A
Other languages
Japanese (ja)
Inventor
Masahiro Yonekura
正浩 米倉
Hiroshi Sanai
宏 讃井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP11010563A priority Critical patent/JP2000203807A/en
Publication of JP2000203807A publication Critical patent/JP2000203807A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress the generation of nitrogen oxides while scarcely increasing the consumption of a high-purity oxygen gas by using a low-purity oxygen gas as a scavenging gas in a desorbing step for ozone in an adsorption cylinder, releasing the pressure of the interior of the adsorption cylinder after the desorption and then purging the interior of the adsorption cylinder with the high-purity oxygen gas. SOLUTION: Oxygen gas containing ozone generated in an ozonizer 1 is introduced into an adsorption cylinder A or B cooled to a low temperature to adsorb the ozone on an adsorbent. The oxygen gas led out of the adsorption cylinder A or B is passed through passages 12a or 12b and 15, mixed with a high-purity oxygen supply source 2 which is a raw material, introduced into the ozonizer 1 and reutilized. A low-purity oxygen gas as a scavenging gas is introduced from a pressure swing adsorption type oxygen generator (an oxygen PSA) 3 through passages 17 and 13a or 13b while heating the adsorption cylinder A or B after completing the adsorption to desorb the ozone. Thereby, the ozone is accompanied by the scavenging gas and supplied through passages 14a or 14b and 20 to the destination of consumption. After desorbing the ozone, the pressure of the adsorption cylinder A or B is released to then carry out a pressure releasing and purging step of the interior of the adsorption cylinder A or B with the high-purity oxygen gas from the supply source 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高濃度オゾンの供
給方法及び装置に関し、詳しくは、パルプの漂白や水処
理等、比較的高濃度のオゾンを利用する設備に高濃度オ
ゾンを供給するための方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for supplying high-concentration ozone, and more particularly to a method and apparatus for supplying high-concentration ozone to equipment utilizing relatively high-concentration ozone, such as pulp bleaching or water treatment. Method and apparatus.

【0002】[0002]

【従来の技術】オゾンは、空気,酸素富有ガスあるいは
酸素ガスを原料ガスとして、オゾン発生器での高電圧無
声放電により発生させている。しかしながら、高電圧無
声放電で得られるオゾン濃度は、酸素ガスを原料ガスと
して使用した場合でも15質量%以下であり、通常は、
効率を考慮して6〜7質量%、多くても10質量%程度
のオゾン濃度で使用先に供給されている。
2. Description of the Related Art Ozone is generated by high-voltage silent discharge in an ozone generator using air, oxygen-rich gas or oxygen gas as a source gas. However, the ozone concentration obtained by high-voltage silent discharge is 15% by mass or less even when oxygen gas is used as a raw material gas.
In consideration of efficiency, the ozone is supplied to the user at an ozone concentration of 6 to 7% by mass, at most about 10% by mass.

【0003】一方、オゾンの使用先では、オゾンによる
処理の効率向上を図るため、より高濃度のオゾンが望ま
れている。このため、オゾン発生器で発生したオゾン含
有ガスを濃縮して高濃度でオゾンを供給する手段が考案
されている。
On the other hand, where ozone is used, higher concentration ozone is desired in order to improve the efficiency of treatment with ozone. For this reason, means for supplying ozone at a high concentration by concentrating the ozone-containing gas generated by the ozone generator has been devised.

【0004】例えば、オゾンは、シリカゲル等の吸着剤
に低温で吸着するという性質を有していることから、こ
の性質を利用して温度変動式吸着分離(TSA)法によ
りオゾンと酸素とを分離し、比較的高濃度のオゾンを得
ることが行われている。さらに、オゾンから分離した酸
素を無駄に排出せず、これをオゾン発生器に循環させる
ことにより、オゾン原料として再利用することも行われ
ている。
[0004] For example, ozone has a property of adsorbing to an adsorbent such as silica gel at a low temperature. Therefore, using this property, ozone and oxygen are separated by a temperature fluctuation adsorption separation (TSA) method. However, a relatively high concentration of ozone is obtained. Further, oxygen separated from ozone is not exhausted, but is recycled as an ozone raw material by circulating it to an ozone generator.

【0005】上記TSA法によるオゾンの濃縮は、一般
に、シリカゲル等のオゾンを優先的に吸着する吸着剤を
充填した複数の吸着筒を用いて行われており、オゾン発
生器で発生させたオゾンを含有する酸素ガスを低温に冷
却した前記吸着筒に導入して該酸素ガス中のオゾンを前
記吸着筒内の吸着剤に吸着させるとともに、該吸着筒を
導出する酸素ガスを原料の高純度酸素ガスに混合して前
記オゾン発生器に導入するオゾン吸着・酸素循環再利用
工程と、該工程を終了した吸着筒を加温しながら掃気ガ
スを導入して前記吸着剤に吸着したオゾンを脱着させ、
該掃気ガスにオゾンを同伴させてオゾン消費先に供給す
るオゾン脱着・供給工程とを交互に繰返すことにより高
濃度オゾンを供給するようにしている。
[0005] The concentration of ozone by the TSA method is generally performed using a plurality of adsorption cylinders filled with an adsorbent such as silica gel that preferentially adsorbs ozone, and the ozone generated by an ozone generator is removed. The oxygen gas contained is introduced into the adsorption column cooled to a low temperature to cause the ozone in the oxygen gas to be adsorbed by the adsorbent in the adsorption column, and the oxygen gas derived from the adsorption column is converted into a high-purity oxygen gas as a raw material. Ozone adsorbing / oxygen reusing step of mixing and introducing into the ozone generator, and introducing a scavenging gas while heating the adsorbing cylinder after the step to desorb ozone adsorbed on the adsorbent,
The high concentration ozone is supplied by alternately repeating the ozone desorption / supply step of supplying the scavenging gas with ozone and supplying it to the ozone consuming destination.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記脱
着工程で使用する掃気ガスには、高純度酸素ガスに比べ
て安価で入手も容易な低純度酸素ガス、例えば酸素PS
A(圧力変動吸着式酸素発生装置)で発生させた低純度
酸素ガスを使用することが多かった。ところが、酸素P
SAからの低純度酸素ガスには、通常、窒素ガスが数%
含まれており、また、前記オゾン脱着・供給工程を終え
た吸着筒内には、この低純度酸素ガスが残留した状態に
なっている。このため、次のオゾン吸着・酸素循環再利
用工程でオゾン含有酸素ガスを吸着筒内に導入すると、
吸着筒内に残留した低純度酸素ガスが吸着筒から導出し
て原料の高純度酸素ガスに混合され、窒素ガスがオゾン
発生器に流入して窒素酸化物が発生することになる。
However, the scavenging gas used in the desorption step is a low-purity oxygen gas, such as oxygen PS, which is cheaper and easier to obtain than a high-purity oxygen gas.
In many cases, low-purity oxygen gas generated by A (pressure fluctuation adsorption type oxygen generator) was used. However, oxygen P
The low-purity oxygen gas from SA usually contains several percent of nitrogen gas.
The low-purity oxygen gas remains in the adsorption column after the ozone desorption / supply step has been completed. For this reason, when the ozone-containing oxygen gas is introduced into the adsorption cylinder in the next ozone adsorption / oxygen recycle process,
The low-purity oxygen gas remaining in the adsorption cylinder is led out of the adsorption cylinder and mixed with the high-purity oxygen gas as the raw material, and the nitrogen gas flows into the ozone generator to generate nitrogen oxides.

【0007】この窒素酸化物は、吸着剤を劣化させて装
置の性能を著しく低下させる原因となるから、従来は、
オゾン発生器と吸着筒との間に窒素酸化物除去装置を設
けて窒素酸化物が吸着筒内に導入されないようにしてい
た。しかし、窒素酸化物除去装置は、構造が複雑で高価
であるだけでなく、メンテナンスの手間や費用もかか
り、設備コストや運転コストに大きな影響を与ええてい
た。
[0007] Since this nitrogen oxide causes deterioration of the adsorbent and significantly lowers the performance of the apparatus, conventionally,
A nitrogen oxide removing device is provided between the ozone generator and the adsorption column to prevent nitrogen oxides from being introduced into the adsorption column. However, the nitrogen oxide removing device is not only complicated and expensive in structure, but also requires labor and cost for maintenance, which greatly affects equipment cost and operating cost.

【0008】一方、前記掃気ガスとして高純度酸素ガス
を使用することにより、上述の窒素酸化物の発生を略完
全に抑えることはできるが、高純度酸素ガスを大量に消
費することになるため、この場合も運転コストが多大な
ものとなってしまう。
On the other hand, by using high-purity oxygen gas as the scavenging gas, the above-mentioned generation of nitrogen oxides can be almost completely suppressed. However, since high-purity oxygen gas is consumed in large quantities, In this case, too, the operation cost becomes large.

【0009】そこで本発明は、高純度酸素ガスの消費量
をほとんど増加させずに窒素酸化物の発生を抑制するこ
とができ、しかも、設備コストや運転コストの低減も図
れる高濃度オゾンの供給方法及び装置を提供することを
目的としている。
Therefore, the present invention provides a method for supplying high-concentration ozone, which can suppress the generation of nitrogen oxides without increasing the consumption of high-purity oxygen gas, and can reduce the equipment cost and operation cost. And a device.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明の高濃度オゾンの供給方法は、オゾン発生器
で発生させたオゾンを含有する酸素ガスを低温に冷却し
た吸着筒に導入して該酸素ガス中のオゾンを前記吸着筒
内の吸着剤に吸着させるとともに、該吸着筒を導出する
酸素ガスを原料の高純度酸素ガスに混合して前記オゾン
発生器に導入するオゾン吸着・酸素循環再利用工程と、
該工程を終了した吸着筒を加温しながら掃気ガスを導入
して前記吸着剤に吸着したオゾンを脱着させ、該掃気ガ
スにオゾンを同伴させてオゾン消費先に供給するオゾン
脱着・供給工程とを交互に繰返して高濃度オゾンを供給
する方法において、前記オゾン脱着・供給工程の掃気ガ
スに非高純度酸素ガスを使用して行うとともに、該オゾ
ン脱着・供給工程の後に、吸着筒内を放圧してから該吸
着筒内を高純度酸素ガスでパージする放圧パージ工程を
行うことを特徴とし、特に、前記放圧を吸着筒の掃気ガ
ス導入側で行うことを特徴としている。
In order to achieve the above object, a method for supplying high-concentration ozone according to the present invention comprises introducing an ozone-containing oxygen gas generated by an ozone generator into an adsorption column cooled to a low temperature. The ozone in the oxygen gas is adsorbed by the adsorbent in the adsorption cylinder by means of the oxygen gas, and the oxygen gas discharged from the adsorption cylinder is mixed with the high-purity oxygen gas of the raw material and introduced into the ozone generator. A recycling process,
An ozone desorbing / supplying step of introducing a scavenging gas while heating the adsorption column after the step to desorb ozone adsorbed on the adsorbent, and accompanying the scavenging gas with ozone and supplying it to an ozone consuming destination; Is alternately repeated to supply high-concentration ozone, using a non-high-purity oxygen gas as a scavenging gas in the ozone desorption / supply step, and releasing the inside of the adsorption cylinder after the ozone desorption / supply step. A pressure release purge step of purging the interior of the adsorption cylinder with high-purity oxygen gas after the pressure is applied is performed. In particular, the pressure release is performed on the scavenging gas introduction side of the adsorption cylinder.

【0011】また、本発明の高濃度オゾンの供給装置
は、オゾン原料となる高純度酸素ガスを供給する高純度
酸素ガス供給源と、該高純度酸素ガス供給源から供給さ
れる高純度酸素ガスを原料としてオゾンを発生するオゾ
ン発生器と、オゾンを優先的に吸着する吸着剤が充填さ
れ、オゾン発生器で発生したオゾンを相対的に低温の吸
着工程で吸着し、相対的に高温の脱着工程で脱着する操
作が交互に行われる吸着筒と、前記吸着工程で吸着剤に
吸着せずに吸着筒から導出した酸素ガスを前記高純度酸
素ガス供給源から供給される高純度酸素ガスに混合する
酸素循環経路と、前記脱着工程で吸着剤から脱着したオ
ゾンを同伴して吸着筒から導出するための掃気ガスを吸
着筒内に導入する掃気ガス導入経路と、掃気ガスとして
非高純度酸素ガスを供給する非高純度酸素ガス供給源
と、吸着筒から導出したオゾン同伴掃気ガスをオゾン消
費先に供給するオゾン供給経路とを備えるとともに、前
記吸着筒内のガスを放出する放圧経路と、吸着筒内に高
純度酸素ガスを導入する高純度酸素導入経路とを設けた
ことを特徴としている。
The high-concentration ozone supply apparatus of the present invention includes a high-purity oxygen gas supply source for supplying a high-purity oxygen gas as an ozone raw material, and a high-purity oxygen gas supplied from the high-purity oxygen gas supply source. Generator that generates ozone by using ozone as a raw material and an adsorbent that preferentially adsorbs ozone are filled, and the ozone generated by the ozone generator is adsorbed in a relatively low-temperature adsorption process, and desorbed at a relatively high temperature. The desorption operation is alternately performed in the adsorption column, and the oxygen gas derived from the adsorption column without being adsorbed by the adsorbent in the adsorption step is mixed with the high-purity oxygen gas supplied from the high-purity oxygen gas supply source. An oxygen circulation path, a scavenging gas introduction path for introducing a scavenging gas for deriving from the adsorption cylinder along with the ozone desorbed from the adsorbent in the desorption step, and a non-high-purity oxygen gas as a scavenging gas. To A non-high-purity oxygen gas supply source for supply, an ozone supply path for supplying an ozone entrained scavenging gas derived from the adsorption cylinder to an ozone consuming destination, and a pressure release path for releasing gas in the adsorption cylinder, A high-purity oxygen introduction path for introducing high-purity oxygen gas into the cylinder is provided.

【0012】[0012]

【発明の実施の形態】図1は本発明の高濃度オゾン供給
装置の一形態例を示す概略系統図である。この高濃度オ
ゾン供給装置は、シリカゲル等の吸着剤を充填した2基
の吸着筒A,Bを、吸着工程と脱着工程とに交互に切換
えてオゾンを濃縮するものであって、オゾンを発生する
ためのオゾン発生器1と、オゾン原料である高純度酸素
ガスを供給するための高純度酸素供給源2と、掃気ガス
として使用する非高純度酸素ガス、例えば低純度酸素ガ
スを供給するための酸素PSA3と、酸素ガスを循環再
利用するための循環ポンプ4とを備えている。
FIG. 1 is a schematic system diagram showing one embodiment of a high-concentration ozone supply apparatus according to the present invention. This high-concentration ozone supply device is configured to alternately switch two adsorption columns A and B filled with an adsorbent such as silica gel to an adsorption step and a desorption step to concentrate ozone, and generate ozone. Generator 1, a high-purity oxygen supply source 2 for supplying a high-purity oxygen gas as an ozone raw material, and a non-high-purity oxygen gas used as a scavenging gas, for example, a low-purity oxygen gas. An oxygen PSA 3 and a circulation pump 4 for circulating and recycling oxygen gas are provided.

【0013】また、各吸着筒A,Bには、オゾン含有酸
素導入経路11a,11bと、循環酸素導出経路12
a,12bと、掃気ガス導入経路13a,13bと、濃
縮オゾン導出経路14a,14bとがそれぞれ接続され
ており、これらの各経路には、吸着筒A,Bの工程を切
換える際に所定の手順で開閉する切換弁21a,21
b,22a,22b,23a,23b,24a,24b
がそれぞれ設けられている。
Each of the adsorption tubes A and B has an ozone-containing oxygen introduction path 11a, 11b and a circulating oxygen derivation path 12
a, 12b, the scavenging gas introduction paths 13a, 13b, and the concentrated ozone derivation paths 14a, 14b, which are connected to the respective paths by a predetermined procedure when switching the process of the adsorption cylinders A, B. Valves 21a, 21 which open and close with pressure
b, 22a, 22b, 23a, 23b, 24a, 24b
Are provided respectively.

【0014】前記循環酸素導出経路12a,12bは、
前記循環ポンプ4を備えた酸素循環経路15に合流した
後、高純度酸素供給源2からオゾン発生器1に高純度酸
素ガスを供給する原料酸素供給経路16に接続してい
る。さらに、前記掃気ガス導入経路13a,13bに
は、前記酸素PSA3で発生した低純度酸素ガスを掃気
ガスとして導入する低純度酸素導入経路17と、吸着筒
A,B内の放圧(ブロー)を行うための放圧経路18と
が接続され、オゾン含有酸素導入経路11a,11bに
は、高純度酸素供給源2からの原料酸素供給経路16に
接続する高純度酸素導入経路19a,19bがそれぞれ
設けられている。また、前記低純度酸素導入経路17、
放圧経路18及び高純度酸素導入経路19には、所定の
順序で開閉される弁27,28,29a,29bがそれ
ぞれ設けられている。
The circulating oxygen outlet paths 12a and 12b are
After merging with the oxygen circulation path 15 provided with the circulation pump 4, it is connected to a raw oxygen supply path 16 for supplying a high-purity oxygen gas from the high-purity oxygen supply source 2 to the ozone generator 1. Further, a low-purity oxygen introduction path 17 for introducing low-purity oxygen gas generated by the oxygen PSA 3 as a scavenging gas, and a pressure release (blow) in the adsorption tubes A and B are provided to the scavenging gas introduction paths 13a and 13b. And a high-purity oxygen introduction path 19a, 19b connected to the raw oxygen supply path 16 from the high-purity oxygen supply source 2 is provided in each of the ozone-containing oxygen introduction paths 11a, 11b. Have been. Further, the low-purity oxygen introduction path 17,
The pressure release path 18 and the high-purity oxygen introduction path 19 are provided with valves 27, 28, 29a, and 29b that are opened and closed in a predetermined order.

【0015】なお、図示は省略するが、各吸着筒A,B
には、吸着剤を冷却するための冷却手段、例えば、液体
酸素や液体窒素を冷却源とする冷却ジャケットや、加熱
手段、例えば電気ヒーターが設けられている。また、濃
縮オゾン導出経路14a,14bに導出した濃縮オゾン
をオゾン消費先に供給するオゾン供給経路20には、オ
ゾン濃度を安定化させるための濃度安定器を設けること
ができる。さらに、3基以上の吸着筒を使用することも
できる。
Although not shown, each of the adsorption tubes A and B
Is provided with a cooling means for cooling the adsorbent, for example, a cooling jacket using liquid oxygen or liquid nitrogen as a cooling source, and a heating means, for example, an electric heater. Further, a concentration stabilizer for stabilizing the ozone concentration can be provided in the ozone supply path 20 for supplying the concentrated ozone led to the concentrated ozone deriving paths 14a and 14b to the ozone consuming destination. Further, three or more adsorption cylinders can be used.

【0016】このように形成された高濃度オゾン供給装
置は、上記各弁を所定の順序で切換開閉し、各吸着筒を
冷却又は加温することにより、前記吸着筒A,Bを、オ
ゾン発生器1で発生させたオゾンを含有する酸素ガスを
低温に冷却した吸着筒に導入してオゾンを吸着剤に吸着
させ、吸着剤に吸着しなかった酸素ガスを高純度酸素ガ
スに混合して循環再利用するオゾン吸着・酸素循環再利
用工程と、吸着筒を加温しながら掃気ガスを導入して前
記工程で吸着剤に吸着したオゾンを脱着させ、該掃気ガ
スにオゾンを同伴させてオゾン消費先に供給するオゾン
脱着・供給工程とに交互に切換えることにより、連続的
に濃縮オゾンを供給することができる。
The thus-formed high-concentration ozone supply apparatus switches the above-mentioned valves in a predetermined order and opens and closes them, and cools or heats the respective adsorption cylinders, thereby causing the adsorption cylinders A and B to generate ozone. Oxygen gas containing ozone generated in the reactor 1 is introduced into an adsorption column cooled to a low temperature to adsorb ozone to the adsorbent, and oxygen gas not adsorbed by the adsorbent is mixed with high-purity oxygen gas and circulated. The ozone adsorption / oxygen recycle process for reuse, and the scavenging gas is introduced while heating the adsorption column to desorb ozone adsorbed on the adsorbent in the above process, and the scavenging gas is accompanied by ozone to consume ozone. By alternately switching to the ozone desorption / supply step to be supplied first, concentrated ozone can be supplied continuously.

【0017】次に、上記装置を用いて、オゾンを所定濃
度に濃縮して供給する操作手順を説明する。なお、最初
の段階では、吸着筒Aがオゾン吸着・酸素循環再利用工
程、吸着筒Bが脱着・供給工程にあるものとする。
Next, an operation procedure for concentrating and supplying ozone to a predetermined concentration by using the above apparatus will be described. In the first stage, it is assumed that the adsorption column A is in the ozone adsorption / oxygen recycle step and the adsorption column B is in the desorption / supply step.

【0018】このとき、オゾン吸着・酸素循環再利用工
程にある吸着筒Aのオゾン含有酸素導入経路11aの切
換弁21a及び循環酸素導出経路12aの切換弁22a
が開、脱着・供給工程にある吸着筒Bの掃気ガス導入経
路13bの切換弁23b、濃縮オゾン導出経路14bの
切換弁24b及び低純度酸素導入経路17の切換弁27
が開であり、その他の切換弁は全て閉となっている。な
お、吸着筒Aは、所定温度に冷却されており、吸着筒B
は所定の昇温パターンで所定温度に加熱される。
At this time, the switching valve 21a of the ozone-containing oxygen introducing path 11a and the switching valve 22a of the circulating oxygen deriving path 12a of the adsorption cylinder A in the ozone adsorption / oxygen recycle process.
, The switching valve 23b of the scavenging gas introduction path 13b, the switching valve 24b of the concentrated ozone derivation path 14b, and the switching valve 27 of the low-purity oxygen introduction path 17 in the adsorption cylinder B in the open, desorption / supply process.
Is open, and all other switching valves are closed. The adsorption cylinder A is cooled to a predetermined temperature and the adsorption cylinder B
Is heated to a predetermined temperature in a predetermined temperature rising pattern.

【0019】高純度酸素供給源2から原料酸素供給経路
16を通り、酸素循環経路15からの循環酸素と合流し
た高純度酸素ガスは、オゾン原料としてオゾン発生器1
に導入され、該オゾン発生器1での高電圧無声放電によ
り酸素の一部がオゾン化してオゾン含有酸素ガスとな
り、吸着筒Aのオゾン含有酸素導入経路11a,切換弁
21aを経てオゾン吸着・酸素循環再利用工程にある吸
着筒Aに導入される。これにより、該酸素ガス中のオゾ
ンが、例えば−80℃に冷却保持されているシリカゲル
等の吸着剤に吸着する。
The high-purity oxygen gas that has passed from the high-purity oxygen supply source 2 through the raw material oxygen supply path 16 and merged with the circulating oxygen from the oxygen circulation path 15 is used as an ozone raw material by the ozone generator 1.
The oxygen is partly converted to ozone by the high-voltage silent discharge in the ozone generator 1, and becomes ozone-containing oxygen gas. The ozone-containing oxygen gas is passed through the ozone-containing oxygen introduction path 11a of the adsorption cylinder A and the switching valve 21a. It is introduced into the adsorption column A in the circulation reuse step. As a result, the ozone in the oxygen gas is adsorbed by the adsorbent such as silica gel kept cooled at -80 ° C, for example.

【0020】また、吸着剤に吸着せずに吸着筒Aを導出
した酸素ガスは、循環酸素導出経路12a,切換弁22
a,酸素循環経路15,循環ポンプ4を通って原料酸素
供給経路16の高純度酸素ガスに合流し、オゾン原料と
して循環再利用される。なお、オゾン発生器1で発生さ
せるオゾン含有酸素ガスのオゾン濃度は任意であるが、
オゾン発生器1の効率を考慮すれば、通常は、6〜7質
量%が適当である。
The oxygen gas that has been drawn out of the adsorption column A without being adsorbed by the adsorbent is supplied to the circulation oxygen deriving path 12a and the switching valve 22.
a, through the oxygen circulation path 15 and the circulation pump 4, merge with the high-purity oxygen gas in the raw material oxygen supply path 16, and are circulated and reused as the ozone raw material. The ozone concentration of the ozone-containing oxygen gas generated by the ozone generator 1 is arbitrary,
In consideration of the efficiency of the ozone generator 1, usually 6 to 7% by mass is appropriate.

【0021】一方、脱着・供給工程にある吸着筒Bで
は、ヒーター等による吸着剤の加温と、酸素PSA3か
ら低純度酸素導入経路17,切換弁27、掃気ガス導入
経路13b,切換弁23bを経た低純度酸素ガスが掃気
ガスとして導入され、吸着剤から脱着したオゾンは、掃
気ガスに伴われて吸着筒Bから濃縮オゾン導出経路14
bに導出し、切換弁24bを経てオゾン供給経路20に
よりオゾン消費先に供給される。
On the other hand, in the adsorption cylinder B in the desorption / supply step, the adsorbent is heated by a heater or the like, and the low-purity oxygen introduction path 17, the switching valve 27, the scavenging gas introduction path 13b, and the switching valve 23b are supplied from the oxygen PSA 3 to the low purity oxygen introduction path. The low-purity oxygen gas that has passed through is introduced as a scavenging gas, and the ozone desorbed from the adsorbent is condensed with the scavenging gas from the adsorption column B to the concentrated ozone deriving path 14.
b, and is supplied to the ozone consuming destination through the ozone supply path 20 via the switching valve 24b.

【0022】この脱着・供給工程は、あらかじめ設定さ
れている所定時間、通常は、吸着筒Bから導出されるオ
ゾン濃縮ガスのオゾン濃度が所定濃度に低下するまで行
われ、濃縮オゾン導出経路14bの切換弁24b及び低
純度酸素導入経路17の切換弁27が閉じられて脱着・
供給工程が終了する。続いて次の吸着工程に入るための
準備操作としての放圧パージ工程が行われる。この放圧
パージ工程では、最初に、放圧経路18の切換弁(ブロ
ー弁)28が開き、吸着筒B内のガスを放出する放圧操
作(ブロー)が行われる。その後、切換弁29bが開
き、高純度酸素供給源2からの高純度酸素ガスが、高純
度酸素導入経路19b,切換弁29bを通って放圧操作
で所定圧力に低下した吸着筒B内に導入され、該吸着筒
B内に存在する低純度酸素ガス(掃気ガス)を、吸着筒
Bから掃気ガス導入経路13b,切換弁23b及び放圧
経路18,切換弁28を通して外部に排出する操作、す
なわちパージ操作が行われる。なお、放圧経路18の下
流には、排出するガス中に含まれるオゾンを除去するた
めのオゾン分解器30を設置しておくことが望ましい。
This desorption / supply step is performed for a predetermined time set beforehand, usually until the ozone concentration of the ozone-enriched gas discharged from the adsorption column B decreases to a predetermined concentration. The switching valve 24b and the switching valve 27 of the low-purity oxygen introduction path 17 are closed and detached.
The supply step ends. Subsequently, a pressure release purge step is performed as a preparatory operation for entering the next adsorption step. In the pressure release purge step, first, the switching valve (blow valve) 28 of the pressure release path 18 is opened, and a pressure release operation (blow) for releasing the gas in the adsorption tube B is performed. Thereafter, the switching valve 29b is opened, and the high-purity oxygen gas from the high-purity oxygen supply source 2 is introduced into the adsorption column B, which has been reduced to a predetermined pressure by the pressure release operation through the high-purity oxygen introduction path 19b and the switching valve 29b. Then, the operation of discharging the low-purity oxygen gas (scavenging gas) existing in the adsorption cylinder B from the adsorption cylinder B to the outside through the scavenging gas introduction path 13b, the switching valve 23b, the pressure release path 18, and the switching valve 28, that is, A purge operation is performed. In addition, it is desirable to install an ozone decomposer 30 for removing ozone contained in the exhaust gas downstream of the pressure release path 18.

【0023】これにより、吸着筒B内のガス、すなわ
ち、脱着・供給工程で掃気ガスとして導入された窒素を
含む低純度酸素ガスは、新たに導入される高純度酸素ガ
スによって吸着筒Bからパージされ、吸着筒B内は、新
たに導入された高純度酸素で満たされた状態になる。
Thus, the gas in the adsorption cylinder B, that is, the low-purity oxygen gas containing nitrogen introduced as a scavenging gas in the desorption / supply process is purged from the adsorption cylinder B by the newly introduced high-purity oxygen gas. Then, the interior of the adsorption cylinder B is filled with the newly introduced high-purity oxygen.

【0024】図2は、吸着筒におけるガスの流れと筒内
のオゾン濃度分布とを示す模式図であって、斜線部がオ
ゾン濃度の高い部分を表している。まず、図2(A)
は、吸着工程終了時の状態を示すもので、図において筒
入口側のオゾン含有酸素導入経路11からオゾン含有酸
素ガス(G1)が導入されるとともに、筒出口側の循環
酸素導出経路12から循環する酸素(G2)が導出され
ており、筒内の吸着剤は、筒出口側近傍までがオゾンO
で飽和した状態になっている。
FIG. 2 is a schematic diagram showing the flow of gas in the adsorption cylinder and the ozone concentration distribution in the cylinder. The hatched portion indicates a portion having a high ozone concentration. First, FIG.
Shows the state at the end of the adsorption step. In the figure, the ozone-containing oxygen gas (G1) is introduced from the ozone-containing oxygen introduction path 11 on the cylinder inlet side and circulated from the circulating oxygen outlet path 12 on the cylinder outlet side. Oxygen (G2) is discharged, and the adsorbent in the cylinder has ozone O up to near the cylinder outlet side.
3 is saturated.

【0025】脱着工程に切換えられると、図2(B)に
示すように、筒出口側の掃気ガス導入経路13から掃気
ガスとして低純度酸素ガス(G3)が導入され、吸着剤
から脱着したオゾンを伴って筒入口側の濃縮オゾン導出
経路14にオゾン濃縮ガス(G4)として導出される。
そして、脱着工程が終了すると、図2(C)に示すよう
に、筒出口側の掃気ガス導入経路13を介して放圧経路
18からの放圧が行われ、筒内のガス(低純度酸素ガス
(G3))が所定圧力まで排出される。さらに、図2
(D)に示すように、筒入口側の高純度酸素導入経路1
9から高純度酸素ガス(G5)を筒内に導入することに
より、筒内に残留している低純度酸素ガス(G3)がパ
ージされる。
When the mode is switched to the desorption step, as shown in FIG. 2B, low-purity oxygen gas (G3) is introduced as a scavenging gas from the scavenging gas introduction path 13 on the cylinder outlet side, and the ozone desorbed from the adsorbent is discharged. With this, it is led out as an ozone-enriched gas (G4) to the concentrated ozone outlet path 14 on the cylinder inlet side.
When the desorption step is completed, as shown in FIG. 2 (C), the pressure is released from the pressure release path 18 via the scavenging gas introduction path 13 on the cylinder outlet side, and the gas (low-purity oxygen) in the cylinder is released. Gas (G3)) is discharged to a predetermined pressure. Further, FIG.
As shown in (D), high-purity oxygen introduction route 1 on the cylinder inlet side
By introducing the high-purity oxygen gas (G5) into the cylinder from step 9, the low-purity oxygen gas (G3) remaining in the cylinder is purged.

【0026】この高純度酸素ガスの導入によるパージ操
作を所定時間行うことにより、筒内の低純度酸素ガス、
すなわち、該低純度酸素ガスに含まれている窒素を筒外
に排出することができる。したがって、次のオゾン吸着
・酸素循環再利用工程において筒内のガスをオゾン発生
器1に循環させて再利用しても、オゾン発生器1で窒素
酸化物が発生することがなくなる。
By performing the purging operation by introducing the high-purity oxygen gas for a predetermined time, the low-purity oxygen gas in the cylinder can be removed.
That is, nitrogen contained in the low-purity oxygen gas can be discharged outside the cylinder. Therefore, even if the gas in the cylinder is circulated and reused in the ozone generator 1 in the next ozone adsorption / oxygen recycle process, no nitrogen oxide is generated in the ozone generator 1.

【0027】これにより、従来のような窒素酸化物除去
装置を設置する必要がなくなり、設備コストや保守コス
トの削減を図れる。また、掃気ガスの全てに高純度酸素
ガスを使用する場合に比べて高純度酸素ガスの消費量が
少なくて済むので、運転コストを低減することができ
る。
This eliminates the need for installing a conventional nitrogen oxide removing apparatus, and can reduce equipment costs and maintenance costs. Further, the consumption of the high-purity oxygen gas can be reduced as compared with the case where the high-purity oxygen gas is used for all of the scavenging gas, so that the operation cost can be reduced.

【0028】なお、吸着筒の放圧操作は、脱着工程を終
了後に直ちに行ってもよいが、筒内の吸着剤に吸着した
状態で残っているオゾンが放圧操作によって筒外に排出
されるとオゾンのロスとなるため、オゾンが吸着剤に吸
着した状態を保てる温度まで冷却してから放圧操作を行
うことが好ましい。また、脱着工程終了時は、濃縮オゾ
ン導出経路14が接続された筒入口側のオゾン濃度が高
いので、掃気ガス導入経路13が接続された筒出口側か
ら放圧操作を行うことにより、放圧操作でのオゾン放出
量を最小限にすることができる。
The pressure release operation of the adsorption cylinder may be performed immediately after the completion of the desorption step, but ozone remaining adsorbed on the adsorbent in the cylinder is discharged outside the cylinder by the pressure release operation. Therefore, it is preferable to perform the pressure release operation after cooling to a temperature at which ozone can be kept adsorbed by the adsorbent. At the end of the desorption step, the ozone concentration on the cylinder inlet side to which the concentrated ozone deriving path 14 is connected is high, so that the pressure release operation is performed from the cylinder outlet side to which the scavenging gas introduction path 13 is connected. Ozone emissions during operation can be minimized.

【0029】さらに、放圧操作やパージ操作の操作条件
は、吸着筒の容積や形状等に応じて適宜に設定すること
ができ、放圧ガスやパージガスの流量も任意に設定する
ことができるが、通常、放圧操作は、筒内の圧力が大気
圧近くになるまで行うことが好ましい。また、放圧ガス
の流量やパージガス(高純度酸素ガス)の流量は、吸着
剤に悪影響を与えない範囲で多めに設定すればよく、適
当な時間内で吸着筒から窒素ガスをパージできるように
設定すればよい。
Further, the operating conditions of the pressure release operation and the purge operation can be appropriately set according to the volume and shape of the adsorption column, and the flow rates of the pressure release gas and the purge gas can be arbitrarily set. Usually, it is preferable to perform the pressure release operation until the pressure in the cylinder becomes close to the atmospheric pressure. Also, the flow rate of the depressurized gas and the flow rate of the purge gas (high-purity oxygen gas) may be set as large as possible without adversely affecting the adsorbent, so that the nitrogen gas can be purged from the adsorption cylinder within an appropriate time. Just set it.

【0030】このような放圧パージ工程を終えた吸着筒
は、前述のオゾン吸着・酸素循環再利用工程に切換えら
れ、各吸着筒においてオゾン吸着・酸素循環再利用工
程,脱着・供給工程及び放圧パージ工程が繰返して行わ
れる。
The adsorption cylinder after the pressure release purge step is switched to the above-mentioned ozone adsorption / oxygen circulation / reuse step, and the ozone adsorption / oxygen circulation / reuse step, desorption / supply step, and discharge step are performed in each adsorption cylinder. The pressure purge step is performed repeatedly.

【0031】[0031]

【実施例】吸着剤としてシリカゲルを充填した内容積
0.09mの吸着筒を使用し、筒内圧力を0.5MP
a、各ガスの流量を0.05Nm/min、脱着時間
を100分にそれぞれ設定した。この場合、掃気ガスの
全てに高純度酸素ガスを使用すると、その必要量は5N
となる。
EXAMPLES Using the adsorption column having an internal volume of 0.09 m 3 filled with silica gel as an adsorbent, 0.5 MPa cylinder pressure
a, the flow rate of each gas was set to 0.05 Nm 3 / min, and the desorption time was set to 100 minutes. In this case, if high-purity oxygen gas is used for all of the scavenging gas, the required amount is 5N.
the m 3.

【0032】上記条件において、脱着工程において掃気
ガスとして使用する低純度酸素ガス量は、同じ5Nm
となる。そして、放圧パージ工程の時間を検討した結
果、高純度酸素を導入するパージ操作の時間を20分間
に設定することにより、筒内の低純度酸素ガスを確実に
パージできることを確認した。したがって、パージ操作
で使用する高純度酸素ガスの消費量を、従来の5Nm
から1Nmに低減することができた。
Under the above conditions, the amount of low-purity oxygen gas used as a scavenging gas in the desorption step is the same 5 Nm 3
Becomes Then, as a result of examining the time of the pressure release purge step, it was confirmed that the low-purity oxygen gas in the cylinder could be reliably purged by setting the time of the purge operation for introducing high-purity oxygen to 20 minutes. Therefore, the consumption of the high-purity oxygen gas used in the purge operation is reduced to 5 Nm 3
From 1 to 3 Nm 3 .

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
脱着工程の掃気ガスとして窒素を含むガスを使用して
も、窒素がオゾン発生器に流入することがないので、設
備コストや運転コストが多大な窒素酸化物除去装置を設
置する必要がなく、掃気ガスの全てに高純度酸素ガスを
使用する場合に比べて高純度酸素ガスの消費量を大幅に
低減することができる。しかも、従来の装置に対して簡
単な配管及び切換弁の追加で実施することができるの
で、高濃度オゾンの供給を低コストで行うことができ
る。
As described above, according to the present invention,
Even if a nitrogen-containing gas is used as a scavenging gas in the desorption step, nitrogen does not flow into the ozone generator, so there is no need to install a nitrogen oxide removing device, which requires a large facility cost and operating cost, and purifies the gas. The consumption of high-purity oxygen gas can be significantly reduced as compared with the case where high-purity oxygen gas is used for all of the gases. In addition, since simple piping and a switching valve can be added to the conventional apparatus, high-concentration ozone can be supplied at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の高濃度オゾン供給装置の一形態例を
示す概略系統図である。
FIG. 1 is a schematic system diagram showing one embodiment of a high-concentration ozone supply device of the present invention.

【図2】 吸着筒におけるガスの流れと筒内のオゾン濃
度分布とを示す模式図である。
FIG. 2 is a schematic diagram showing a gas flow in an adsorption cylinder and an ozone concentration distribution in the cylinder.

【符号の説明】[Explanation of symbols]

A,B…吸着筒、1…オゾン発生器、2…高純度酸素供
給源、3…酸素PSA、4…循環ポンプ、11a,11
b…オゾン含有酸素導入経路、12a,12b…循環酸
素導出経路、13a,13b…掃気ガス導入経路、14
a,14b…濃縮オゾン導出経路、15…酸素循環経
路、16…原料酸素供給経路、17…低純度酸素導入経
路、18…放圧経路、19a,19b…高純度酸素導入
経路、20…オゾン供給経路、21a,21b,22
a,22b,23a,23b,24a,24b,27,
28,29a,29b…切換弁、30…オゾン分解器
A, B: adsorption cylinder, 1: ozone generator, 2: high-purity oxygen supply source, 3: oxygen PSA, 4: circulation pump, 11a, 11
b: ozone-containing oxygen introduction path, 12a, 12b: circulating oxygen derivation path, 13a, 13b: scavenging gas introduction path, 14
a, 14b: a concentrated ozone deriving route, 15: an oxygen circulation route, 16: a raw material oxygen supply route, 17: a low-purity oxygen introduction route, 18: a pressure release route, 19a, 19b: a high purity oxygen introduction route, 20: ozone supply Routes, 21a, 21b, 22
a, 22b, 23a, 23b, 24a, 24b, 27,
28, 29a, 29b: switching valve, 30: ozone decomposer

フロントページの続き Fターム(参考) 4D012 CA13 CB06 CD01 CG01 CJ02 CJ06 4D050 AA01 AA12 BB02 BD04 BD06 BD08 4G042 AA07 CB12 CB15 CB16 CE04 4L055 AD08 BB18 CB47 Continued on the front page F term (reference) 4D012 CA13 CB06 CD01 CG01 CJ02 CJ06 4D050 AA01 AA12 BB02 BD04 BD06 BD08 4G042 AA07 CB12 CB15 CB16 CE04 4L055 AD08 BB18 CB47

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 オゾン発生器で発生させたオゾンを含有
する酸素ガスを低温に冷却した吸着筒に導入して該酸素
ガス中のオゾンを前記吸着筒内の吸着剤に吸着させると
ともに、該吸着筒を導出する酸素ガスを原料の高純度酸
素ガスに混合して前記オゾン発生器に導入するオゾン吸
着・酸素循環再利用工程と、 該工程を終了した吸着筒を加温しながら掃気ガスを導入
して前記吸着剤に吸着したオゾンを脱着させ、該掃気ガ
スにオゾンを同伴させてオゾン消費先に供給するオゾン
脱着・供給工程とを交互に繰返して高濃度オゾンを供給
する方法において、 前記オゾン脱着・供給工程の掃気ガスに非高純度酸素ガ
スを使用して行うとともに、該オゾン脱着・供給工程の
後に、吸着筒内を放圧してから該吸着筒内を高純度酸素
ガスでパージする放圧パージ工程を行うことを特徴とす
る高濃度オゾンの供給方法。
1. An oxygen gas containing ozone generated by an ozone generator is introduced into an adsorption column cooled at a low temperature, and the ozone in the oxygen gas is adsorbed by an adsorbent in the adsorption column. An ozone adsorption / oxygen recycle step of mixing the oxygen gas leading out of the cylinder with the high-purity oxygen gas of the raw material and introducing the mixture into the ozone generator; and introducing a scavenging gas while heating the adsorption cylinder after the step is completed. A method of supplying high-concentration ozone by alternately repeating the ozone desorbing / supplying step of desorbing ozone adsorbed on the adsorbent and supplying the ozone consuming destination with the scavenging gas accompanied by ozone. A non-high-purity oxygen gas is used as a scavenging gas in the desorption / supply step, and after the ozone desorption / supply step, the pressure in the adsorption cylinder is released, and then the interior of the adsorption cylinder is purged with high-purity oxygen gas. Pressure The method of supplying the high-concentration ozone and performs di step.
【請求項2】 前記放圧を吸着筒の掃気ガス導入側で行
うことを特徴とする高濃度オゾンの供給方法。
2. A method for supplying high-concentration ozone, wherein the pressure release is performed on a scavenging gas introduction side of an adsorption column.
【請求項3】 オゾン原料となる高純度酸素ガスを供給
する高純度酸素ガス供給源と、該高純度酸素ガス供給源
から供給される高純度酸素ガスを原料としてオゾンを発
生するオゾン発生器と、オゾンを優先的に吸着する吸着
剤が充填され、オゾン発生器で発生したオゾンを相対的
に低温の吸着工程で吸着し、相対的に高温の脱着工程で
脱着する操作が交互に行われる吸着筒と、前記吸着工程
で吸着剤に吸着せずに吸着筒から導出した酸素ガスを前
記高純度酸素ガス供給源から供給される高純度酸素ガス
に混合する酸素循環経路と、前記脱着工程で吸着剤から
脱着したオゾンを同伴して吸着筒から導出するための掃
気ガスを吸着筒内に導入する掃気ガス導入経路と、掃気
ガスとして非高純度酸素ガスを供給する非高純度酸素ガ
ス供給源と、吸着筒から導出したオゾン同伴掃気ガスを
オゾン消費先に供給するオゾン供給経路とを備えるとと
もに、前記吸着筒内のガスを放出する放圧経路と、吸着
筒内に高純度酸素ガスを導入する高純度酸素導入経路と
を設けたことを特徴とする高濃度オゾンの供給装置。
3. A high-purity oxygen gas supply source for supplying high-purity oxygen gas as an ozone raw material, and an ozone generator for generating ozone using the high-purity oxygen gas supplied from the high-purity oxygen gas source as a raw material. , Adsorbent that preferentially adsorbs ozone is filled, and the operation of adsorbing ozone generated by an ozone generator in a relatively low temperature adsorption process and desorbing in a relatively high temperature desorption process is performed alternately. A cylinder, an oxygen circulation path for mixing oxygen gas derived from the adsorption cylinder without adsorbing the adsorbent in the adsorption step with high-purity oxygen gas supplied from the high-purity oxygen gas supply source, and adsorbing in the desorption step A scavenging gas introduction path for introducing scavenging gas into the adsorption cylinder to accompany ozone desorbed from the adsorbent, and a non-high-purity oxygen gas supply source for supplying non-high-purity oxygen gas as a scavenging gas. , Adsorption cylinder An ozone supply path for supplying an ozone-conducting scavenging gas derived from the ozone consuming destination, a pressure release path for releasing gas in the adsorption cylinder, and a high-purity oxygen for introducing high-purity oxygen gas into the adsorption cylinder. An apparatus for supplying high-concentration ozone, comprising an introduction path.
JP11010563A 1999-01-19 1999-01-19 Supply of high-concentration ozone and apparatus therefor Pending JP2000203807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11010563A JP2000203807A (en) 1999-01-19 1999-01-19 Supply of high-concentration ozone and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11010563A JP2000203807A (en) 1999-01-19 1999-01-19 Supply of high-concentration ozone and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2000203807A true JP2000203807A (en) 2000-07-25

Family

ID=11753724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11010563A Pending JP2000203807A (en) 1999-01-19 1999-01-19 Supply of high-concentration ozone and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2000203807A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037610A (en) * 2000-07-27 2002-02-06 Kansai Electric Power Co Inc:The Method of storing and taking out ozone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037610A (en) * 2000-07-27 2002-02-06 Kansai Electric Power Co Inc:The Method of storing and taking out ozone

Similar Documents

Publication Publication Date Title
US6752851B2 (en) Gas separating and purifying method and its apparatus
CA2240228C (en) Processes and apparatus for producing a gaseous product
EP1359120A1 (en) Ozone production methods
US8337674B2 (en) Ozone production by pressure swing adsorption using a noble gas additive
JP2013056810A (en) Method and apparatus for concentrating ozone gas
JPS6272504A (en) Production of nitrogen having high purity
FI91240C (en) A process for producing oxygen or ozone
JP2009222352A (en) Separation method for blast furnace gas
US10058815B2 (en) Methods for separating ozone
WO2019234882A1 (en) Ozone supply device and ozone supply method
JP2006528594A (en) Adsorption method for producing hydrogen and apparatus for carrying out said method
JP2008267778A (en) Heat treatment system
WO2017187786A1 (en) Ozone gas concentration method and ozone gas concentration device
WO2010010610A1 (en) Method of concentrating ozone gas and apparatus therefor
JP2000203807A (en) Supply of high-concentration ozone and apparatus therefor
JPH08268702A (en) Method and device for processing gas mixture containing ozone
JP2000203806A (en) Supply of high-concentration ozone and apparatus therefor
JP3766983B2 (en) Ozone generation concentrator
JP2005246137A (en) Method and apparatus for gas separation
JP2003246611A (en) Helium purifying apparatus
JPH09142808A (en) Control of ozonizer
JP2001172004A (en) Method and apparatus for supplying ozone
KR102180199B1 (en) Method for concentrating ozone gas, and apparatus for concentrating ozone gas
JP2022097832A (en) Gas separation system, and hydrocarbon manufacturing system
JP2002068712A (en) Method for supplying high concentration ozone gas and its apparatus