JP2000202586A - Cooling drum for twin drum type strip continuos casting apparatus - Google Patents

Cooling drum for twin drum type strip continuos casting apparatus

Info

Publication number
JP2000202586A
JP2000202586A JP11002090A JP209099A JP2000202586A JP 2000202586 A JP2000202586 A JP 2000202586A JP 11002090 A JP11002090 A JP 11002090A JP 209099 A JP209099 A JP 209099A JP 2000202586 A JP2000202586 A JP 2000202586A
Authority
JP
Japan
Prior art keywords
drum
cooling
thermal conductivity
insulating layer
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11002090A
Other languages
Japanese (ja)
Inventor
Yasushi Kurisu
泰 栗栖
Noriyuki Suzuki
規之 鈴木
Kazuto Yamamura
和人 山村
Chihiro Yamaji
千博 山地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11002090A priority Critical patent/JP2000202586A/en
Publication of JP2000202586A publication Critical patent/JP2000202586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To profitably dissolve the wearing problem of the end surface part of drum, to restrain the abnormal growth of the stuck metal and to realize the stable continuous casting for a long term by forming a heat-insulating layer having a specified value or lower of the thermal conductivity on the end surface of the drum. SOLUTION: On the end surface 18 of the cooling drum 1b in a twin drum type strip continuos casting apparatus provided with one pair of cooling drums 1 mutually rotated in the reverse direction and one pair of side weirs 2 press-fixed to both end surfaces thereof, the heat insulating layer 9 having <=10 W/m.K thermal conductivity, is formed. In this way, the wear of the cooling drum 1 slidingly moved with the side weir 2 is restrained and the shape is stably secured for long time and the heat- transferring from the end surface 1p of the drum is suitably restrained and the stable continuous casting can be realized for the long term by restraining the growth of the stuck metal at the side weir 2 and the end surface 1p of the drum. Then, it is desirable to set the heat-insulating layer 9 under consideration of the relation between the thickness and the thermal conductivity for stably securing the balance of the restraint to the heat transferring and deterioration caused by heat-up itself.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、双ドラム式薄板連
続鋳造装置において用いられる冷却ドラムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling drum used in a twin-drum continuous thin-plate casting apparatus.

【0002】[0002]

【従来の技術】従来から一般に知られている双ドラム式
薄板連続鋳造装置は、図3に示されるように、回転する
一対の冷却ドラム1a、1bとこのドラムの両端面に当
接される一対のサイド堰2によって形成される移動鋳型
3内に、タンディッシュ4内からノズル5を介して溶湯
6を供給し、移動鋳型3内に所定レベルの湯溜り部3p
をつくりつつ、一対の冷却ドラム1a、1bで冷却して
凝固シェル6sを形成し、この凝固シェル6sを一対の
冷却ドラム1a、1bの最接近部に形成されるギャップ
部において圧接・一体化して薄板6cを連続鋳造するよ
うに構成されている。
2. Description of the Related Art As shown in FIG. 3, a twin-drum continuous thin-plate continuous casting apparatus generally known from the prior art has a pair of rotating cooling drums 1a and 1b and a pair of rotating cooling drums 1a and 1b abutting both end surfaces of the drum. The molten metal 6 is supplied from the inside of the tundish 4 through the nozzle 5 into the moving mold 3 formed by the side weirs 2 of the type, and the pool 3p of a predetermined level is formed in the moving mold 3.
The solidified shell 6s is formed by cooling with the pair of cooling drums 1a and 1b while the solidified shell 6s is formed, and the solidified shell 6s is pressed and integrated at the gap formed at the closest part of the pair of cooling drums 1a and 1b. The thin plate 6c is configured to be continuously cast.

【0003】この双ドラム式薄板連続鋳造装置において
用いられる、一対の冷却ドラム1a、1bは、一般には
熱伝導率の良好なCu、Cu合金によって形成され、図
3に示すように、溶鋼6を外周面で冷却して凝固シェル
6sを形成するため、および熱負荷に対する耐用性を確
保するために、図1に示すように内部に冷却構造7を備
えたものである。この冷却ドラム1の端部には突出端部
1tが形成され、その端面1pにサイド堰2が圧着され
るようになっており、この端面1pはサイド堰との摺動
によって摩耗する。
[0003] A pair of cooling drums 1a and 1b used in this twin-drum thin sheet continuous casting apparatus are generally formed of Cu or Cu alloy having good thermal conductivity. As shown in FIG. In order to form a solidified shell 6s by cooling on the outer peripheral surface and to ensure durability against a thermal load, a cooling structure 7 is provided inside as shown in FIG. A protruding end 1t is formed at an end of the cooling drum 1, and a side weir 2 is pressed against the end surface 1p, and the end surface 1p is worn by sliding with the side weir.

【0004】特に、サイド堰2の振動や熱変形によって
このサイド堰2との間に不均一な間隙が生じやすく、こ
の間隙に溶鋼が侵入・凝固して、摺動面に凹凸が生じ
る。その結果、この摺動面での溶鋼シール機能が急激に
低下して薄鋳片の側端部形状が損なわれるとともに、冷
却ドラム端面およびサイド堰の摩耗が促進され、寿命が
短命化して長期にわたって安定した連続鋳造操業を実現
することができない。
[0004] In particular, an uneven gap is easily formed between the side weir 2 due to vibration and thermal deformation of the side weir 2, and molten steel enters and solidifies in this gap, and irregularities are generated on the sliding surface. As a result, the molten steel sealing function on this sliding surface is sharply reduced and the side end shape of the thin cast piece is impaired, and the wear of the cooling drum end surface and the side dam is promoted, and the life is shortened and the life is shortened. A stable continuous casting operation cannot be realized.

【0005】このような問題を解決するために、例えば
特開平6−336751号公報では、図1(a)に示す
ように、冷却ドラム1の端面1pに、高強度で耐摩耗性
および潤滑性を有する例えばCo−Cr−Al−Y系合
金、あるいはWC等のセラミックスなどからなるコーテ
ィング層8を形成することが提案されている。
In order to solve such a problem, for example, in Japanese Patent Application Laid-Open No. Hei 6-336755, as shown in FIG. 1A, an end face 1p of a cooling drum 1 is provided with high strength, wear resistance and lubricity. It has been proposed to form a coating layer 8 made of, for example, a Co—Cr—Al—Y-based alloy having the above-mentioned or ceramics such as WC.

【0006】また、冷却ドラム1は、前記したように、
内部に冷却構造7を備え、幅方向の表面温度の均一化と
突出端部1tの熱負荷軽減のために、このドラム突出端
部の冷却を強化する工夫もなされている。しかし、特に
サイド堰2と摺動するドラムの突出端部1tの端面1p
によりサイド堰2は抜熱過剰になり、サイド堰2で地金
の異常成長を生じ、早期に連続鋳造操業の継続が困難に
なる場合がある。
The cooling drum 1 is, as described above,
A cooling structure 7 is provided in the inside, and a device has been devised to enhance the cooling of the protruding end of the drum in order to equalize the surface temperature in the width direction and reduce the thermal load on the protruding end 1t. However, in particular, the end face 1p of the protruding end 1t of the drum that slides with the side weir 2
As a result, the side weir 2 becomes excessively heat-dissipated, causing abnormal growth of the metal in the side weir 2, making it difficult to continue the continuous casting operation early.

【0007】[0007]

【発明が解決しようとする課題】本発明は、冷却ドラム
端面部を、摩耗の問題を有利に解決するとともに地金の
異常成長を抑制し、長期にわたって安定した連続鋳造を
実現できる双ドラム式薄板連続鋳造装置用冷却ドラムを
提供するものである。
SUMMARY OF THE INVENTION The present invention relates to a twin-drum type thin plate capable of realizing stable continuous casting over a long period of time by effectively solving the problem of abrasion and suppressing abnormal growth of a metal at the end face of a cooling drum. A cooling drum for a continuous casting apparatus is provided.

【0008】[0008]

【課題を解決するための手段】本発明は、以下の(1)
〜(7)の発明から構成されるものである。 (1) 互いに反対方向に回転する一対の冷却ドラム
と、該冷却ドラムの両端面に圧着された一対のサイド堰
を備えた双ドラム式薄板連続鋳造装置で用いられる冷却
ドラムにおいて、ドラム端面に熱伝導率が10W/m・
K以下の断熱層を形成したことを特徴とする双ドラム式
薄板連続鋳造装置用の冷却ドラム。 (2) 互いに反対方向に回転する一対の冷却ドラム
と、該冷却ドラムの両端面に圧着された一対のサイド堰
を備えた双ドラム式薄板連続鋳造装置で用いられる冷却
ドラムにおいて、ドラム端面に形成した断熱層の厚みを
t、熱伝導率をλとした場合、下記式 (1/t)×λ=102 W/m2 ・K〜104 W/m2
・K を満足するように該低熱伝導率材からなる断熱層の厚み
tと熱伝導率λが設定されていることを特徴とする双ド
ラム式薄板連続鋳造装置用の冷却ドラム。 (3) 互いに反対方向に回転する一対の冷却ドラム
と、該冷却ドラムの両端面に圧着された一対のサイド堰
を備えた双ドラム式薄板連続鋳造装置で用いられる冷却
ドラムにおいて、ドラム胴部を熱伝導率が100W/m
・K以上の材料で形成し、ドラム端面に熱伝導率が3W
/m・K以下で厚み10〜10000μmの低熱伝導率
材を溶射または肉盛りにより被覆して断熱層を形成した
ことを特徴とする双ドラム式薄板連続鋳造装置用の冷却
ドラム。 (4) (1)〜(3)において、ドラム端面に形成し
た断熱層の室温での硬度(Hv 100g)が200以
上であることを特徴とする双ドラム式薄板連続鋳造装置
用の冷却ドラム。 (5) (1)〜(4)のいずれかにおいて、ドラム端
面に形成した断熱層の熱膨脹係数とドラム胴部材の熱膨
脹係数との比率が50〜120%であることを特徴とす
る双ドラム式薄板連続鋳造装置用の冷却ドラム。 (6) (1)〜(5)のいずれかにおいて、ドラム胴
部の外周面に熱伝導率が30W/m・K以上で厚み10
〜5000μmの伝熱層を形成したことを特徴とする双
ドラム式薄板連続鋳造装置用の冷却ドラム。 (7) (1)〜(6)のいずれかにおいて、ドラム胴
部材と断熱層との間に熱伝導率が30W/m・K以上で
厚み10〜5000μmの中間層を介在させたことを特
徴とする双ドラム式薄板連続鋳造装置用の冷却ドラム。
The present invention provides the following (1).
To (7). (1) In a cooling drum used in a twin-drum continuous casting apparatus having a pair of cooling drums rotating in opposite directions and a pair of side dams pressed on both end surfaces of the cooling drum, heat is applied to the drum end surface. Conductivity 10 W / m
A cooling drum for a twin-drum thin sheet continuous casting apparatus, wherein a heat insulating layer of K or less is formed. (2) A cooling drum used in a twin-drum continuous sheet casting apparatus having a pair of cooling drums rotating in opposite directions and a pair of side dams crimped on both end surfaces of the cooling drum. When the thickness of the heat insulating layer obtained is t and the thermal conductivity is λ, the following formula (1 / t) × λ = 10 2 W / m 2 · K to 10 4 W / m 2
A cooling drum for a twin-drum continuous sheet casting apparatus, wherein the thickness t and the thermal conductivity λ of the heat insulating layer made of the low thermal conductivity material are set so as to satisfy K 1. (3) In a cooling drum used in a twin-drum continuous sheet casting apparatus having a pair of cooling drums rotating in opposite directions and a pair of side dams pressed on both end surfaces of the cooling drum, a drum body is provided. Thermal conductivity is 100W / m
・ Made of a material of K or higher, with a thermal conductivity of 3 W on the drum end surface
A cooling drum for a twin-drum continuous thin-plate casting apparatus, wherein a heat insulating layer is formed by coating a low thermal conductivity material having a thickness of 10 to 10000 [mu] m or less by thermal spraying or overlaying. (4) A cooling drum for a twin-drum continuous sheet casting apparatus according to any one of (1) to (3), wherein the hardness at room temperature (Hv 100 g) of the heat insulating layer formed on the drum end surface is 200 or more. (5) The twin-drum type according to any one of (1) to (4), wherein the ratio of the thermal expansion coefficient of the heat insulating layer formed on the end face of the drum to the thermal expansion coefficient of the drum body member is 50 to 120%. Cooling drum for continuous sheet casting equipment. (6) In any one of the constitutions (1) to (5), the outer peripheral surface of the drum body has a heat conductivity of 30 W / m · K or more and a thickness of 10
A cooling drum for a twin-drum thin-sheet continuous casting apparatus, wherein a heat transfer layer of up to 5000 μm is formed. (7) In any one of (1) to (6), an intermediate layer having a thermal conductivity of 30 W / m · K or more and a thickness of 10 to 5000 μm is interposed between the drum body member and the heat insulating layer. Cooling drum for twin-drum continuous sheet casting equipment.

【0009】[0009]

【発明の実施の形態】本発明では、サイド堰と摺動する
冷却ドラム端部の摩耗を抑制して形状を長時間にわたっ
て安定確保するとともに、ドラム端面からの抜熱を適度
に抑制して、サイド堰とドラム端面間での地金の成長を
抑制することにより、長期にわたって安定した連続鋳造
を実現するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the abrasion of the end of the cooling drum that slides with the side weir is suppressed to secure the shape over a long period of time, and the heat removal from the drum end is appropriately suppressed. By suppressing the growth of the metal between the side weir and the end face of the drum, stable continuous casting is realized over a long period of time.

【0010】そのため前記(1)の発明では、ドラム端
面に熱伝導率10W/m・K以下の断熱層を形成するこ
とが必要になる。熱伝導率が10W/m・Kを超えると
抜熱抑制効果が十分でなく、地金の成長を抑制できな
い。また、前記(2)の発明においては、ドラム端面に
低熱伝導率材料からなる断熱層を形成する場合には、抜
熱抑制と自身の温度上昇による劣化とのバランスを安定
確保するために、断熱層の厚みtと、熱伝導率λとの関
係を考慮して設定することが好ましい。
Therefore, in the invention (1), it is necessary to form a heat insulating layer having a thermal conductivity of 10 W / m · K or less on the end face of the drum. If the thermal conductivity exceeds 10 W / m · K, the effect of suppressing heat removal is not sufficient, and the growth of the base metal cannot be suppressed. Further, in the invention of the above (2), when a heat insulating layer made of a material having a low thermal conductivity is formed on the end face of the drum, the heat insulating layer is required to stably maintain a balance between the suppression of heat removal and the deterioration due to the temperature rise of the heat insulating layer. It is preferable to set in consideration of the relationship between the thickness t of the layer and the thermal conductivity λ.

【0011】本発明者らは実験により、内部冷却構造に
よる冷却条件を一定にした場合では、 (1/t)×λ=102 W/m2 ・K〜104 W/m2
・K を満足するように該低熱伝導率材料の厚みtと熱伝導率
λを設定すれば抜熱抑制と自身の温度上昇による劣化と
のバランスを安定確保できることを確認している。
The present inventors have conducted experiments and found that when the cooling conditions by the internal cooling structure were kept constant, (1 / t) × λ = 10 2 W / m 2 · K to 10 4 W / m 2
It has been confirmed that if the thickness t and the thermal conductivity λ of the low thermal conductivity material are set so as to satisfy K 1, the balance between the suppression of heat removal and the deterioration due to the temperature rise of the material itself can be stably secured.

【0012】(1/t)×λ<102 W/m2 ・Kの場
合は、断熱効果が不十分で地金の成長を十分に抑制する
ことができない。(1/t)×λ>104 W/m2 ・K
の場合は、断熱効果が大き過ぎ、ドラム端部外周の表面
温度が大きくなり、低熱伝導材が酸化または摩耗しやす
くなるので好ましくない。
In the case of (1 / t) × λ <10 2 W / m 2 · K, the heat insulating effect is insufficient and the growth of the metal cannot be sufficiently suppressed. (1 / t) × λ> 10 4 W / m 2 · K
In the case of (1), the heat insulating effect is too large, the surface temperature of the outer periphery of the drum end increases, and the low heat conductive material is easily oxidized or worn, which is not preferable.

【0013】また、(3)の発明においては、冷却ドラ
ムのドラム胴部を熱伝導率が100W/m・K以上の高
熱伝導率材料で形成して内部冷却構造によるドラム胴部
の冷却効果を高めるとともに、サイド堰、凝固シェルと
接触して変形・摩耗を生じやすいドラム端面に厚みが1
0〜10000μmで熱伝導率が3W/m・K以下の低
熱伝導率材を被覆して断熱層を形成し、ドラム端面から
の抜熱を抑制し地金の成長を抑制するものである。
Further, in the invention of (3), the drum body of the cooling drum is formed of a high thermal conductivity material having a thermal conductivity of 100 W / m · K or more, and the cooling effect of the drum body by the internal cooling structure is obtained. In addition to increasing the thickness, the thickness of the drum end face that is likely to deform and
A heat insulating layer is formed by coating a low thermal conductivity material having a thermal conductivity of 3 W / m · K or less at 0 to 10000 μm, thereby suppressing heat removal from the drum end face and suppressing growth of the base metal.

【0014】冷却ドラム端部の摩耗は、サイド堰を形成
する材料によって影響を受けるが、本発明では、サイド
堰より高価な冷却ドラムを長期間使用すること前提とす
るものであり、サイド堰の摺動面の硬度(Hv 100
g)は、200程度までのセラミックス材料で形成する
ことを前提とする。
Although the wear of the end of the cooling drum is affected by the material forming the side weir, the present invention assumes that a cooling drum more expensive than the side weir is used for a long period of time. Hardness of sliding surface (Hv 100
g) is based on the premise that the ceramic material is formed of up to about 200 ceramic materials.

【0015】したがって、サイド堰と摺動するドラム端
面に断熱層を形成するための低熱伝導率材としては、上
記の条件の他に室温での硬度(Hv 100g)がサイ
ド堰の摺動面の硬度(Hv 100g)以上であること
が好ましく、硬度(Hv 100g)は200以上のS
iO2 、ZrO2 、ZrO2 −CoCrAlY、62A
l−10Cr−10Fe−18Co、Al−Cu−Fe
−Crなどを用いてドラム端部での摩耗も抑制すること
ができる。硬度Hvが200未満では、摩耗の抑制効果
を十分に確保することができない。
Therefore, in addition to the above conditions, the low thermal conductivity material for forming the heat insulating layer on the drum end surface that slides on the side weir has a hardness (Hv 100 g) at room temperature of the sliding surface of the side weir. Hardness (Hv 100 g) or more is preferable, and hardness (Hv 100 g) is 200 or more S
iO 2, ZrO 2, ZrO 2 -CoCrAlY, 62A
1-10Cr-10Fe-18Co, Al-Cu-Fe
Using -Cr or the like can also suppress wear at the drum end. If the hardness Hv is less than 200, the effect of suppressing wear cannot be sufficiently ensured.

【0016】本発明で、ドラム胴部に用いる高熱伝導率
材は、内部冷却構造による冷却の伝達を良好にするた
め、熱伝導率が100W/m・K以上のCu、Cu合金
などが適性がある。熱伝導率が100W/m・K未満で
は、ドラム表面およびドラム端面への冷却の伝達が十分
でない。
In the present invention, the high thermal conductivity material used for the drum body is preferably made of Cu, Cu alloy or the like having a thermal conductivity of 100 W / m · K or more in order to improve the transmission of cooling by the internal cooling structure. is there. When the thermal conductivity is less than 100 W / m · K, the transfer of cooling to the drum surface and the drum end surface is not sufficient.

【0017】断熱層を形成するための低熱伝導率材の被
覆手段としては、異材間でも比較的簡易にかつ強固に被
覆が可能な溶射または肉盛りを用い、この被覆の厚みを
10〜10000μmの範囲で選択することが好まし
い。10μm未満の被覆では摩耗しやすく寿命を長期間
維持することは難しい。また、10000μm以上の被
覆では過剰被覆になりコスト増になるため不経済であ
る。
As a means for coating the low thermal conductivity material for forming the heat insulating layer, thermal spraying or overlaying capable of relatively easily and firmly coating between different materials is used, and the thickness of this coating is 10 to 10000 μm. It is preferable to select within a range. A coating with a thickness of less than 10 μm is liable to wear and it is difficult to maintain a long life. On the other hand, a coating of 10,000 μm or more is uneconomical because it results in an excessive coating and an increase in cost.

【0018】また、ドラム端部に断熱層を形成する低熱
伝導率材の熱膨脹係数は、ドラム胴部材との接合強度を
十分に確保するために、ドラム胴部材との熱膨張差が小
さいことが好ましく、その意味ではドラム胴部材の熱膨
張係数との比率を50〜120%にすることが好まし
い。50%未満120%超では断熱層が早期に剥離し長
時間にわたって断熱層効果を安定維持できなくなる。
The coefficient of thermal expansion of the low thermal conductivity material forming the heat insulating layer at the end of the drum is such that the difference in thermal expansion from the drum body member is small in order to ensure sufficient bonding strength with the drum body member. In this sense, it is preferable that the ratio with the coefficient of thermal expansion of the drum body member be 50 to 120%. If it is less than 50% and more than 120%, the heat-insulating layer is peeled off early and the effect of the heat-insulating layer cannot be stably maintained for a long time.

【0019】なお、上記の低熱伝導率材による断熱層
は、高熱伝導率材によるドラム胴部材に直接に溶射また
は肉盛りにより形成してもよいが、断熱層をSiO2
どの比較的硬度の小さいセラミックス系の材料で形成す
る場合には、断熱層の形成強度を確保し、ドラム突出端
部の強度を安定確保するために、中間層を介在させるこ
とが有効である。
The heat-insulating layer made of a material having a low thermal conductivity may be formed by directly spraying or building up a drum body made of a material having a high thermal conductivity, but the heat-insulating layer may be made of a relatively hard material such as SiO 2. When formed of a small ceramic material, it is effective to interpose an intermediate layer in order to secure the formation strength of the heat insulating layer and to stably secure the strength of the protruding end of the drum.

【0020】この中間層の形成材としては、熱伝導率が
30W/m・K以上で、ドラム胴部材と断熱層との溶射
や肉盛りによる接着性が良好で、硬度(Hv 100
g)がドラム胴部材の硬度より大きく強化機能を有する
材料、例えばNi、Cr、Co系の材料が適性がある。
As a material for forming the intermediate layer, the thermal conductivity is 30 W / m · K or more, the adhesion between the drum body member and the heat insulating layer by thermal spraying or overlaying is good, and the hardness (Hv 100
g) is larger than the hardness of the drum body member and has a reinforcing function, for example, Ni, Cr, Co-based material is suitable.

【0021】この場合の中間層は、伝熱層としても機能
するものであり、熱伝導率は30W/m・K以上にし、
内部冷却構造により突出端部を適度に冷却可能にするこ
とが好ましく、この中間層の厚みは10〜5000μm
程度にすることが好ましい。厚みが10μm未満では十
分な強度が得られないし、5000μm超では、形成コ
ストが増大し、熱膨脹係数差により剥離しやすくなる。
The intermediate layer in this case also functions as a heat transfer layer, and has a thermal conductivity of 30 W / m · K or more.
It is preferable that the protruding end can be appropriately cooled by an internal cooling structure, and the thickness of the intermediate layer is 10 to 5000 μm.
It is preferable to set the degree. If the thickness is less than 10 μm, sufficient strength cannot be obtained. If the thickness is more than 5000 μm, the formation cost increases and the film tends to peel off due to the difference in thermal expansion coefficient.

【0022】なお、中間層を形成する材料の熱膨脹係数
は、ドラム胴部材および断熱層との接合強度を十分に確
保するために、ドラム胴部材および断熱層との熱膨張差
が小さいことが好ましく、その意味ではドラム胴部材の
熱膨張係数との比率を50〜120%にすることが好ま
しい。50%未満120%超では中間層がドラム胴部材
および断熱層と早期に剥離し、長時間にわたって断熱層
効果を安定維持できなくなる。
The coefficient of thermal expansion of the material forming the intermediate layer is preferably such that the difference in thermal expansion between the drum body member and the heat insulating layer is small in order to ensure sufficient bonding strength between the drum body member and the heat insulating layer. In that sense, it is preferable to set the ratio of the thermal expansion coefficient of the drum body member to 50 to 120%. If it is less than 50% and more than 120%, the intermediate layer is separated from the drum body member and the heat insulating layer at an early stage, and the effect of the heat insulating layer cannot be stably maintained for a long time.

【0023】また、ドラム外周面での冷却伝熱を安定さ
せるためには、ドラム外周面に熱伝導率30W/m・K
以上で、ドラム胴部材との溶射や肉盛りによる接着性の
良好な材料、例えばNi、Cr、Co系の材料が適性が
ある。この伝熱層の厚みは10〜5000μm程度にす
ることが好ましい。厚みが10μm未満では十分な強度
が得られないし、5000μm超では、形成コストが増
大するし、熱膨脹係数差により剥離しやすくなるので好
ましくない。
Further, in order to stabilize the cooling heat transfer on the outer peripheral surface of the drum, a heat conductivity of 30 W / m · K
As described above, a material having good adhesion by thermal spraying or overlaying with the drum body member, for example, a Ni, Cr, or Co material is suitable. It is preferable that the thickness of the heat transfer layer be about 10 to 5000 μm. If the thickness is less than 10 μm, sufficient strength cannot be obtained. If the thickness is more than 5000 μm, the formation cost increases and the film tends to peel off due to a difference in thermal expansion coefficient, which is not preferable.

【0024】上記の中間層と伝熱層は独立して形成して
もよいし、連続して形成してもよい。ドラム胴部と中間
層と伝熱層間では熱伝達が行われるので、熱伝達効率を
良好にするためには、密な接合が外側から容易に被覆で
きる溶射、肉盛り、メッキなどが好適である。なお、中
間層、伝熱層の熱伝導率が30W/m・K未満の場合で
は、特に厚みを大きくした場合にドラム端部を適度に冷
却できず、ドラム突出端部の強度が低下するので好まし
くない。
The intermediate layer and the heat transfer layer may be formed independently or may be formed continuously. Since heat transfer is performed between the drum body, the intermediate layer and the heat transfer layer, in order to improve the heat transfer efficiency, thermal spraying, overlaying, plating, and the like that can easily cover a tight junction from the outside are preferable. . In the case where the thermal conductivity of the intermediate layer and the heat transfer layer is less than 30 W / m · K, particularly when the thickness is increased, the drum end cannot be cooled appropriately, and the strength of the drum protruding end is reduced. Not preferred.

【0025】[0025]

【実施例】以下に本発明の冷却ドラムの構造例を図1〜
図2に示す実施例に基づいて説明する。図1において、
1aは前記図3に示した従来の標準的な冷却ドラムで、
サイド堰2が当接される端部には、幅x1〜10mm、高
さh1〜20mmの突出端部1tがリング状に形成され、
この突出端部1tの端面1pとドラム胴部1bの端面1
f間に傾斜角θが80度未満の傾斜面1cが形成された
ものであり、胴部1bには冷却構造7を備えたものであ
る。
FIG. 1 is a structural example of a cooling drum according to the present invention.
A description will be given based on the embodiment shown in FIG. In FIG.
1a is a conventional standard cooling drum shown in FIG.
A protruding end 1t having a width of x1 to 10 mm and a height of h1 to 20 mm is formed in a ring shape at an end to which the side weir 2 is abutted.
The end face 1p of the protruding end 1t and the end face 1 of the drum body 1b
An inclined surface 1c having an inclined angle θ of less than 80 degrees is formed between f, and the body 1b is provided with a cooling structure 7.

【0026】本発明では、このような構造を有する冷却
ドラム1aにおいて、ドラム胴部1bを100W/m・
K以上の高熱伝導率材料で形成し、サイド堰2や凝固シ
ェルと接触して摩耗を生じやすい突出端部1tの端面1
pに厚みtが10〜10000μmで熱伝導率が3W/
m・K以下の低熱伝導率材を被覆して断熱層9を形成
し、突出端部1tの端面1pからの抜熱を抑制し地金の
成長を抑制するものである。
In the present invention, in the cooling drum 1a having such a structure, the drum body 1b is set at 100 W / m ·
The end face 1 of the protruding end 1t which is formed of a material having a high thermal conductivity of K or more and is likely to be worn by contact with the side weir 2 and the solidified shell.
p has a thickness t of 10 to 10000 μm and a thermal conductivity of 3 W /
The heat insulating layer 9 is formed by coating a low thermal conductivity material of m · K or less to suppress the heat removal from the end face 1p of the protruding end 1t, thereby suppressing the growth of the metal.

【0027】この断熱層9は、ドラム胴部1b材に直接
的に形成してもよい場合もあるが、十分な形成強度が得
られない場合は、図2に示すように、ドラム胴部1bと
突出端部1tの断熱層9との間に、中間層10としてド
ラム胴部1bより硬度の大きい例えばNiめっき層を介
在させ、突出端部1tの断熱層9の形成強度をより安定
的に確保することが好ましい。また、突出端部1tに対
する内部冷却構造7による冷却効果を確保することがよ
り好ましい。また、ドラム胴部1b外周に伝熱層11と
して厚みが10〜5000μmの例えばNiめっき層を
形成することが好ましい。なお、ここでは中間層10と
伝熱層11とは連続形成する。
In some cases, the heat insulating layer 9 may be formed directly on the material of the drum body 1b. However, when sufficient formation strength cannot be obtained, as shown in FIG. For example, a Ni plating layer having a higher hardness than the drum body 1b is interposed as the intermediate layer 10 between the heat-insulating layer 9 at the protruding end 1t and the heat-insulating layer 9 at the protruding end 1t. It is preferable to secure them. It is more preferable to secure the cooling effect of the internal cooling structure 7 on the protruding end 1t. Further, it is preferable to form, for example, a Ni plating layer having a thickness of 10 to 5000 μm as the heat transfer layer 11 on the outer periphery of the drum body 1b. Here, the intermediate layer 10 and the heat transfer layer 11 are formed continuously.

【0028】[0028]

【実験例】この実験は、図1に示すような冷却ドラムの
ドラム胴部1bと突出端部1tを熱伝導率が350W/
m・K、硬度Hv150、熱膨張係数が18×10-6
℃のCu合金材で一体に形成し、その外周面に伝熱層1
1として熱伝導率が90W/m・K、硬度(Hv 10
0g)200、熱膨張係数が16×10-6/℃で厚みが
1000μmのNiめっきを施すとともに、ドラム突出
端部1tの端面1pに中間層10として熱伝導率が90
W/m・K、硬度(Hv 100g)200、熱膨張係
数が16×10-6/℃で厚みが1000μmのNiめっ
きを施して、その上面に断熱層9を形成した冷却ドラム
についてのものである。
Experimental Example In this experiment, the thermal conductivity of the drum body 1b and the protruding end 1t of the cooling drum as shown in FIG.
m · K, hardness Hv150, coefficient of thermal expansion 18 × 10 −6 /
And a heat transfer layer 1 on its outer peripheral surface.
The thermal conductivity is 90 W / m · K and the hardness (Hv 10
0g) 200, Ni plating having a thermal expansion coefficient of 16 × 10 −6 / ° C. and a thickness of 1000 μm, and a thermal conductivity of 90 as an intermediate layer 10 on the end face 1p of the drum protruding end 1t.
W / m · K, hardness (Hv 100 g) 200, thermal expansion coefficient 16 × 10 −6 / ° C. Ni plating with a thickness of 1000 μm is applied, and the heat insulating layer 9 is formed on the upper surface of the cooling drum. is there.

【0029】この実験では、断熱層9の形成材料と、形
成条件を変えて製作した冷却ドラムを用いて鋳造速度4
0m/min で厚み3mmの薄鋳片10tを連続鋳造し、サイ
ド堰2の摺動面付近での地金発生状況と、突出端部1t
のサイド堰2との摺動面の摩耗状況を調査した。実験条
件を表1に、実験結果を表2に、それぞれ比較例ととも
に説明する。
In this experiment, the casting speed was set to 4 using a material for forming the heat insulating layer 9 and a cooling drum manufactured by changing the forming conditions.
Continuous casting of thin slab 10t with a thickness of 3mm at 0m / min.
Of the sliding surface with the side weir 2 was examined. The experimental conditions are described in Table 1, and the experimental results are described in Table 2, together with Comparative Examples.

【0030】なお、この実験例では、冷却ドラム突出端
部1tの断熱層9と摺動するサイド堰2の摺動面は、硬
度(Hv 100g)が150のBN系のセラミックス
材で形成した。鋳造条件と冷却ドラム寸法、サイド堰条
件は実験例と比較例は共通である。
In this experimental example, the sliding surface of the side weir 2 sliding on the heat insulating layer 9 at the protruding end 1t of the cooling drum was formed of a BN ceramic material having a hardness (Hv of 100 g) of 150. The experimental condition and the comparative example are common in the casting conditions, cooling drum dimensions, and side weir conditions.

【0031】[実験条件] 冷却ドラム 径 :1000mm 幅 :1000mm[Experimental conditions] Cooling drum diameter: 1000 mm Width: 1000 mm

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】(実験例1)この実験例1では、表1に示
すように、ドラム突出端部1tの端面に熱伝導率が0.
1W/m・K、熱膨張係数1×10-6/℃でCu合金よ
り高硬度(Hv100g)200のSiO2 材を溶射し
て厚み10μmの断熱層9を形成したものであり、断熱
層9の厚み(1/t)×熱伝導率λ=10000になる
ように断熱層9の厚みtと熱伝導率λを設定した。この
実験例でのドラム突出端部1tのサイド堰との摺動面の
摩耗量(摩耗深さ)は、表2に示すように10μmであ
った。また、サイド堰2とドラム突出端部1tの摺動面
間での地金の成長は抑制されていた。
(Experimental Example 1) In Experimental Example 1, as shown in Table 1, the end face of the drum protruding end 1t has a thermal conductivity of 0.1 mm.
A heat insulating layer 9 having a thickness of 10 μm is formed by spraying a SiO 2 material having a hardness of 1 W / m · K and a thermal expansion coefficient of 1 × 10 −6 / ° C. and a hardness (Hv 100 g) of 200 from a Cu alloy. The thickness t of the heat insulating layer 9 and the thermal conductivity λ were set so that the thickness (1 / t) × the thermal conductivity λ = 10000. The wear amount (wear depth) of the sliding surface of the drum protruding end portion 1t with the side weir in this experimental example was 10 μm as shown in Table 2. The growth of the metal between the sliding surfaces of the side weir 2 and the drum protruding end 1t was suppressed.

【0035】(実験例2)この実験例2では、表1に示
すように、ドラム突出端部1tの端面に熱伝導率が1W
/m・K、熱膨張係数8×10-6/℃でCu合金より高
硬度(Hv 100g)620のZrO2 材を溶射して
厚み100μmの断熱層9を形成したものであり、断熱
層の厚み(1/t)×熱伝導率λ=10000になるよ
うに断熱層の厚みtと熱伝導率λを設定した。この実験
例でのドラム突出端部1tのサイド堰2との摺動面の摩
耗量(摩耗深さ)は、表2に示すように5μmで、実験
例1より良好な値を示した。また、サイド堰とドラム突
出端部1tの摺動面間での地金の成長は良く抑制されて
いた。
(Experimental Example 2) In Experimental Example 2, as shown in Table 1, the end face of the drum protruding end portion 1t had a thermal conductivity of 1 W.
/ M · K, a thermal expansion coefficient of 8 × 10 −6 / ° C., and a ZrO 2 material having a hardness of 620 (Hv: 100 g) higher than that of the Cu alloy formed by thermal spraying to form a heat insulating layer 9 having a thickness of 100 μm. The thickness t of the heat insulating layer and the thermal conductivity λ were set so that the thickness (1 / t) × the thermal conductivity λ = 10000. As shown in Table 2, the wear amount (wear depth) of the sliding surface of the drum protruding end portion 1t with the side weir 2 in this experimental example was 5 μm, which was a better value than Experimental Example 1. Further, the growth of the metal between the sliding surfaces of the side weir and the drum protruding end 1t was well suppressed.

【0036】(実験例3)この実験例3では、表1に示
すように、ドラム突出端部1tの端面に熱伝導率が1W
/m・K、熱膨張係数10×10-6/℃でCu合金より
高硬度(Hv 100g)400のZrO2 −CoCr
AlYを溶射して厚み500μmの断熱層9を形成した
ものであり、断熱層の厚み(1/t)×熱伝導率λ=2
000になるように断熱層の厚みtと熱伝導率λを設定
した。この実験例でのドラム突出端部1tのサイド堰2
との摺動面の摩耗量(摩耗深さ)は、表2に示すように
7μmで、実験例1より良好な値を示した。また、サイ
ド堰とドラム突出端部1tの摺動面間での地金の成長は
良く抑制されていた。
(Experimental Example 3) In Experimental Example 3, as shown in Table 1, the thermal conductivity was 1 W at the end face of the drum protruding end 1t.
/ M · K, a coefficient of thermal expansion of 10 × 10 −6 / ° C. and higher hardness (Hv 100 g) 400 than Cu alloy 400 ZrO 2 —CoCr
The thermal insulation layer 9 having a thickness of 500 μm was formed by spraying AlY. The thickness of the thermal insulation layer (1 / t) × thermal conductivity λ = 2
The thickness t of the heat insulating layer and the thermal conductivity λ were set so as to be 000. Side weir 2 at drum protruding end 1t in this experimental example
As shown in Table 2, the wear amount (wear depth) of the sliding surface was 7 μm, which was a better value than that of Experimental Example 1. Further, the growth of the metal between the sliding surfaces of the side weir and the drum protruding end 1t was well suppressed.

【0037】(実験例4)この実験例4では、表1に示
すように、ドラム突出端部1tの端面に熱伝導率が2W
/m・K、熱膨張係数13×10-6/℃でCu合金より
高硬度(Hv 100g)700の62Al−10Cr
−10Fe−18Coを肉盛りして厚み5000μmの
断熱層9を形成したものであり、断熱層の厚み(1/
t)×熱伝導率λ=400になるように断熱層の厚みt
と熱伝導率λを設定した。この実験例でのドラム突出端
部1tのサイド堰2との摺動面の摩耗量(摩耗深さ)
は、表2に示すように3μmで、実験例1より良好な値
を示した。また、サイド堰とドラム突出端部1tの摺動
面間での地金の成長は良く抑制されていた。
(Experimental Example 4) In Experimental Example 4, as shown in Table 1, the end face of the drum protruding end 1t had a thermal conductivity of 2 W
/ M · K, thermal expansion coefficient 13 × 10 -6 / ° C, higher hardness than Cu alloy (Hv 100g), 62Al-10Cr of 700
The heat insulating layer 9 having a thickness of 5000 μm is formed by building up -10 Fe-18Co, and the thickness of the heat insulating layer (1/1)
t) × thickness t of the heat insulating layer so that the thermal conductivity λ = 400
And the thermal conductivity λ were set. Abrasion amount (abrasion depth) of the sliding surface of drum protruding end 1t with side weir 2 in this experimental example
Was 3 μm, as shown in Table 2, and showed a better value than Experimental Example 1. Further, the growth of the metal between the sliding surfaces of the side weir and the drum protruding end 1t was well suppressed.

【0038】(実験例5)この実験例5では、表1に示
すように、ドラム突出端部1tの端面に熱伝導率が3W
/m・K、熱膨張係数13×10-6/℃でCu合金より
高硬度(Hv 100g)650のAl−Cu−Fe−
Crを肉盛りして厚み10000μmの断熱層9を形成
したものであり、断熱層の厚み(1/t)×熱伝導率λ
=20000になるように断熱層の厚みtと熱伝導率λ
を設定した。この実験例5でのドラム突出端部1tのサ
イド堰2との摺動面の摩耗量(摩耗深さ)は、表2に示
すように3μmであった。また、サイド堰2とドラム突
出端部1tの摺動面間での地金の成長が十分に抑制され
ていた。
(Experimental Example 5) In Experimental Example 5, as shown in Table 1, the end face of the drum protruding end 1t had a thermal conductivity of 3 W
/ M · K, thermal expansion coefficient 13 × 10 −6 / ° C., higher hardness (Hv 100 g) 650 than Cu alloy, 650 Al-Cu-Fe-
The heat insulating layer 9 having a thickness of 10000 μm was formed by overlaying Cr, and the thickness of the heat insulating layer (1 / t) × thermal conductivity λ
= Thickness of thermal insulation layer and thermal conductivity λ such that
It was set. As shown in Table 2, the wear amount (wear depth) of the sliding surface of the drum protruding end 1t with the side weir 2 in Experimental Example 5 was 3 μm. Further, the growth of the metal between the sliding surfaces of the side weir 2 and the drum protruding end 1t was sufficiently suppressed.

【0039】(比較例1)この比較例1では、ドラム胴
部1bとドラム突出端部1tを熱伝導率が350W/m
・K、硬度(Hv 100g)150、熱膨張係数が1
8×10-6/℃のCu合金材で一体的に形成した冷却ド
ラムで、図4に示すように、伝熱層、中間層、断熱層を
有しないものを用いた。この比較例1でのドラム突出端
部1tの端面の摩耗量(摩耗深さ)は、表2に示すよう
に100μmであり、サイド堰付近で地金の成長傾向が
認められた。
(Comparative Example 1) In Comparative Example 1, the drum body 1b and the drum protruding end 1t have a thermal conductivity of 350 W / m.
-K, hardness (Hv 100g) 150, coefficient of thermal expansion 1
A cooling drum integrally formed of a Cu alloy material of 8 × 10 −6 / ° C. and having no heat transfer layer, intermediate layer, and heat insulating layer as shown in FIG. 4 was used. The amount of abrasion (abrasion depth) of the end face of the drum protruding end 1t in Comparative Example 1 was 100 μm as shown in Table 2, and a growth tendency of the metal was observed near the side weir.

【0040】(比較例2)この比較例2では、ドラム胴
部1bとドラム突出端部1tを熱伝導率が350W/m
・K、硬度(Hv 100g)150、熱膨張係数が1
8×10-6/℃のCu合金材で形成し、ドラム突出端部
1tの端面に熱伝導率が10W/m・K、熱膨張係数1
0×10-6/℃でCu合金より高硬度(Hv 100
g)150のCoCrAlYを溶射して厚み50μmの
コーティング層8(断熱層9)を形成した、図5に示す
ような冷却ドラムであり、(1/t)×熱伝導率λ=2
00000になるようにコーティング層8(断熱層9)
の厚みtと熱伝導率λを設定したものを用いた。この比
較例2でのドラム突出端部1tのサイド堰2との摺動面
の摩耗量(摩耗深さ)は、表2に示すように50μm
で、比較例1より良好な値を示したが、上記の本発明の
実験例に比較して大きい値を示した。また、サイド堰付
近で地金の成長傾向が認められた。
(Comparative Example 2) In Comparative Example 2, the drum body 1b and the protruding end 1t of the drum had a thermal conductivity of 350 W / m.
-K, hardness (Hv 100g) 150, coefficient of thermal expansion 1
It is formed of a Cu alloy material of 8 × 10 −6 / ° C., and has a thermal conductivity of 10 W / m · K and a thermal expansion coefficient of 1 on the end surface of the drum protruding end 1 t.
0 × 10 −6 / ° C. higher hardness than Cu alloy (Hv 100
g) A cooling drum as shown in FIG. 5 in which a CoCrAlY of 150 was sprayed to form a coating layer 8 (heat insulating layer 9) having a thickness of 50 μm, and (1 / t) × thermal conductivity λ = 2
Coating layer 8 (heat insulation layer 9) so as to be 00000
Of which the thickness t and the thermal conductivity λ were set. As shown in Table 2, the wear amount (wear depth) of the sliding surface of the drum protruding end portion 1t with the side weir 2 in Comparative Example 2 was 50 μm.
Showed a better value than Comparative Example 1, but showed a larger value than the experimental example of the present invention described above. In addition, there was a tendency for metal to grow near the side weir.

【0041】なお、本発明は、上記の実施例、実験例に
限定されるものではなく、また、本発明の冷却ドラムを
適用する双ドラム式薄板連続鋳造装置は上記の実施例に
限定されるものではない。例えば、冷却ドラムの冷却構
造とその配置、冷却ドラム条件(端面の材質、寸法、形
状、胴部と端部の材料組み合わせ、被覆(接合)手段等
については、サイド堰条件(構造、寸法、形状、材料の
組み合わせ)、連続鋳造の操業条件(温度、速度、寸法
等)等に応じて、選択されるものであり、上記本発明の
請求項の範囲内で変更があるものである。
It should be noted that the present invention is not limited to the above-described embodiments and experimental examples, and a twin-drum continuous sheet casting apparatus to which the cooling drum of the present invention is applied is limited to the above-described embodiments. Not something. For example, regarding the cooling structure of the cooling drum and its arrangement, the cooling drum conditions (material, dimensions, and shape of the end face, the material combination of the body and the end, the coating (joining) means, etc., the side weir conditions (structure, dimensions, and shape) , Combination of materials), operating conditions of continuous casting (temperature, speed, size, etc.), etc., and are changed within the scope of the claims of the present invention.

【0042】[0042]

【発明の効果】本発明においては、サイド堰、凝固シェ
ルと接触する冷却ドラムの端面に、低熱伝導率材からな
る断熱層を形成し、この端面での摩耗を抑制するととも
に、抜熱を抑制することにより、サイド堰付近での地金
の成長を抑制でき、冷却ドラムの形状を長期にわたって
維持し安定した連続鋳造を実現することができる。
According to the present invention, a heat insulating layer made of a material having a low thermal conductivity is formed on the end face of the cooling drum in contact with the side weir and the solidified shell, thereby suppressing wear on the end face and suppressing heat removal. By doing so, the growth of the metal in the vicinity of the side weir can be suppressed, and the shape of the cooling drum can be maintained for a long period of time to realize stable continuous casting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)図は、本発明を適用する冷却ドラムの端
部構造例を示す側断面説明図、(b)図は、(a)図の
側面説明図。
FIG. 1A is an explanatory side sectional view showing an example of an end structure of a cooling drum to which the present invention is applied, and FIG. 1B is an explanatory side view of FIG.

【図2】本発明の冷却ドラムの実施例における端部構造
例を示す側断面説明図。
FIG. 2 is an explanatory side sectional view showing an example of an end structure in the embodiment of the cooling drum of the present invention.

【図3】本発明を適用する双ドラム式薄板連続鋳造装置
の一般的構造例を示す正面説明図。
FIG. 3 is an explanatory front view showing a general structural example of a twin-drum continuous thin-plate casting apparatus to which the present invention is applied.

【図4】(a)図は、標準的な双ドラム式薄板連続鋳造
装置で用いられる冷却ドラム端部の基本構造例を示す側
断面説明図、(b)図は、(a)図の側面説明図。
FIG. 4 (a) is a side sectional explanatory view showing an example of a basic structure of a cooling drum end portion used in a standard twin-drum type continuous thin plate casting apparatus, and FIG. 4 (b) is a side view of FIG. FIG.

【図5】双ドラム式薄板連続鋳造装置で用いられる従来
の冷却ドラムの端部の構造例を示す側断面説明図。
FIG. 5 is an explanatory side sectional view showing an example of a structure of an end portion of a conventional cooling drum used in a twin-drum thin sheet continuous casting apparatus.

【符号の説明】[Explanation of symbols]

1a、1b 冷却ドラム 1t 突出端部 1p 端面 1s 軸 2 サイド堰 3 移動鋳型(湯溜
り部) 4 タンディッシュ 5 ノズル 6 溶鋼 6s 凝固シェル 6c 薄板(鋳片) 7 冷却構造 8 コーティング層 9 断熱層 10 中間層 11 伝熱層
1a, 1b Cooling drum 1t Projecting end 1p End face 1s Shaft 2 Side weir 3 Moving mold (pool pool) 4 Tundish 5 Nozzle 6 Molten steel 6s Solidified shell 6c Thin plate (slab) 7 Cooling structure 8 Coating layer 9 Heat insulating layer 10 Intermediate layer 11 Heat transfer layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山村 和人 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 山地 千博 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4E004 DA13 NA05 NB07 QA01 QA03 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuto Yamamura 20-1 Shintomi, Futtsu-shi, Chiba Prefecture Nippon Steel Corporation Technology Development Division (72) Inventor Chihiro Yamachi 20-1 Shintomi, Futtsu-shi, Chiba New Nippon Steel Corporation Technology Development Division F-term (reference) 4E004 DA13 NA05 NB07 QA01 QA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 互いに反対方向に回転する一対の冷却ド
ラムと、該冷却ドラムの両端面に圧着された一対のサイ
ド堰を備えた双ドラム式薄板連続鋳造装置で用いられる
冷却ドラムにおいて、ドラム端面に熱伝導率が10W/
m・K以下の断熱層を形成したことを特徴とする双ドラ
ム式薄板連続鋳造装置用の冷却ドラム。
An end face of a cooling drum used in a twin-drum continuous thin-plate casting apparatus having a pair of cooling drums rotating in opposite directions and a pair of side dams pressed on both end surfaces of the cooling drum. Has a thermal conductivity of 10W /
A cooling drum for a twin-drum continuous sheet casting machine, wherein a heat insulating layer of m · K or less is formed.
【請求項2】 互いに反対方向に回転する一対の冷却ド
ラムと、該冷却ドラムの両端面に圧着された一対のサイ
ド堰を備えた双ドラム式薄板連続鋳造装置で用いられる
冷却ドラムにおいて、ドラム端面に形成した断熱層の厚
みをt、熱伝導率をλとした場合、下記式 (1/t)×λ=102 W/m2 ・K〜104 W/m2
・K を満足するように該低熱伝導率材からなる断熱層の厚み
tと熱伝導率λが設定されていることを特徴とする双ド
ラム式薄板連続鋳造装置用の冷却ドラム。
2. An end face of a cooling drum used in a twin-drum continuous sheet casting apparatus having a pair of cooling drums rotating in opposite directions and a pair of side dams pressed on both end surfaces of the cooling drum. When the thickness of the heat-insulating layer formed as described above is t and the thermal conductivity is λ, the following formula (1 / t) × λ = 10 2 W / m 2 · K to 10 4 W / m 2
A cooling drum for a twin-drum continuous sheet casting apparatus, wherein the thickness t and the thermal conductivity λ of the heat insulating layer made of the low thermal conductivity material are set so as to satisfy K 1.
【請求項3】 互いに反対方向に回転する一対の冷却ド
ラムと、該冷却ドラムの両端面に圧着された一対のサイ
ド堰を備えた双ドラム式薄板連続鋳造装置で用いられる
冷却ドラムにおいて、ドラム胴部を熱伝導率が100W
/m・K以上の材料で形成し、ドラム端面に熱伝導率が
3W/m・K以下で厚み10〜10000μmの低熱伝
導率材を溶射または肉盛りにより被覆して断熱層を形成
したことを特徴とする双ドラム式薄板連続鋳造装置用の
冷却ドラム。
3. A cooling drum used in a twin-drum type continuous casting apparatus having a pair of cooling drums rotating in opposite directions and a pair of side dams pressed on both end surfaces of the cooling drum. 100W thermal conductivity
/ M · K or more, and a thermal insulation layer formed by thermal spraying or overlaying a low thermal conductivity material having a thermal conductivity of 3 W / m · K or less and a thickness of 10 to 10000 μm on the drum end surface. A cooling drum for twin-drum continuous sheet casting equipment.
【請求項4】 ドラム端面に形成した断熱層の室温での
硬度(Hv 100g)が200以上であることを特徴
とする請求項1〜請求項3のいずれか1項記載の双ドラ
ム式薄板連続鋳造装置用の冷却ドラム。
4. The twin-drum continuous thin plate according to claim 1, wherein the heat-insulating layer formed on the end face of the drum has a hardness at room temperature (Hv of 100 g) of 200 or more. Cooling drum for casting equipment.
【請求項5】 ドラム端面に形成した断熱層の熱膨脹係
数とドラム胴部材の熱膨脹係数との比率が50〜120
%であることを特徴とする請求項1〜請求項4のいずれ
か1項記載の双ドラム式薄板連続鋳造装置用の冷却ドラ
ム。
5. The ratio of the coefficient of thermal expansion of the heat insulating layer formed on the end face of the drum to the coefficient of thermal expansion of the drum body member is 50 to 120.
%. The cooling drum for a twin-drum continuous thin plate casting apparatus according to claim 1, wherein
【請求項6】 ドラム胴部の外周面に熱伝導率が30W
/m・K以上で厚み10〜5000μmの伝熱層を形成
したことを特徴とする請求項1〜請求項5のいずれか1
項記載の双ドラム式薄板連続鋳造装置用の冷却ドラム。
6. The outer peripheral surface of the drum body has a thermal conductivity of 30 W.
6. A heat transfer layer having a thickness of 10/5000 [mu] m or more and a thickness of 10/5000 [mu] K or more.
4. A cooling drum for a twin-drum continuous sheet casting apparatus according to claim 1.
【請求項7】 ドラム胴部材と断熱層との間に熱伝導率
が30W/m・K以上で厚み10〜5000μmの中間
層を介在させたことを特徴とする請求項1〜請求項6の
いずれか1項記載の双ドラム式薄板連続鋳造装置用の冷
却ドラム。
7. An intermediate layer having a thermal conductivity of 30 W / m · K or more and a thickness of 10 to 5000 μm is interposed between the drum body member and the heat insulating layer. A cooling drum for a twin-drum continuous sheet casting apparatus according to any one of the preceding claims.
JP11002090A 1999-01-07 1999-01-07 Cooling drum for twin drum type strip continuos casting apparatus Pending JP2000202586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002090A JP2000202586A (en) 1999-01-07 1999-01-07 Cooling drum for twin drum type strip continuos casting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002090A JP2000202586A (en) 1999-01-07 1999-01-07 Cooling drum for twin drum type strip continuos casting apparatus

Publications (1)

Publication Number Publication Date
JP2000202586A true JP2000202586A (en) 2000-07-25

Family

ID=11519662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002090A Pending JP2000202586A (en) 1999-01-07 1999-01-07 Cooling drum for twin drum type strip continuos casting apparatus

Country Status (1)

Country Link
JP (1) JP2000202586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104496A (en) * 2012-11-29 2014-06-09 Mitsubishi-Hitachi Metals Machinery Inc Side weir and operation method of both-drum type continuous casting machine having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014104496A (en) * 2012-11-29 2014-06-09 Mitsubishi-Hitachi Metals Machinery Inc Side weir and operation method of both-drum type continuous casting machine having the same

Similar Documents

Publication Publication Date Title
MXPA05000464A (en) Casting rolling plant.
JP2000202586A (en) Cooling drum for twin drum type strip continuos casting apparatus
JPS5841137B2 (en) Belt
JP2000246399A (en) Cooling drum for twin drum type thin plate continuous casting device
JP3380425B2 (en) Twin drum type continuous casting drum
JP3145766B2 (en) Continuous casting of duplex stainless steel sheet
JPS61159247A (en) Quick cooling roll for producing high-silicon thin steel strip
JPH0665427B2 (en) Nozzle for continuous casting
JPS6133736A (en) Backup device of short side gate in twin roll type casting and rolling mill
JP3346089B2 (en) Continuous casting mold
JPH054925Y2 (en)
JPH0749138B2 (en) Thin plate continuous casting equipment
JP3055590B2 (en) Cooling drum for continuous casting of thin cast slab and method of manufacturing the same
JPH11290997A (en) Cooling drum for twin drum type continuous thin sheet casting apparatus
JP3135455B2 (en) Twin drum type continuous casting machine
JPH0328991Y2 (en)
JPS59153550A (en) Mold for continuous casting
JPH06335751A (en) Twin roll type thin sheet continuous casting apparatus
JP6511969B2 (en) Twin roll vertical casting machine
JPS61279343A (en) Twin roll type mold of continuous casting installation for thin sheet
JPH06126390A (en) Drum of continuous casting equipment for metallic sheet
JP2790420B2 (en) Carbon steel slab by twin roll continuous casting and its manufacturing method
JPS5813443A (en) Copper plate of mold for continuous casting installation
JP2002028758A (en) Cooling drum for twin-drum type continuous thin plate casting and its producing method
JPS59174254A (en) Endless belt type continuous casting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805