JP2000201930A - Three-dimensional ultrasonograph - Google Patents

Three-dimensional ultrasonograph

Info

Publication number
JP2000201930A
JP2000201930A JP11011179A JP1117999A JP2000201930A JP 2000201930 A JP2000201930 A JP 2000201930A JP 11011179 A JP11011179 A JP 11011179A JP 1117999 A JP1117999 A JP 1117999A JP 2000201930 A JP2000201930 A JP 2000201930A
Authority
JP
Japan
Prior art keywords
blood flow
interest
region
dimensional
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11011179A
Other languages
Japanese (ja)
Other versions
JP4282130B2 (en
Inventor
Hiroyuki Tsujino
弘行 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP01117999A priority Critical patent/JP4282130B2/en
Publication of JP2000201930A publication Critical patent/JP2000201930A/en
Application granted granted Critical
Publication of JP4282130B2 publication Critical patent/JP4282130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily measure bloodstream with high accuracy. SOLUTION: This three-dimensional ultrasonograph is provided with signal collecting means 1, 2, 3 for collecting receive signals of ultrasonic echoes by scanning a three-dimensional area including a measured object blood passage in a subject, with ultrasonic beams; a bloodstream information acquiring means 5 for obtaining bloodstream information of the three-dimensional area from the receive signals collected by the signal collecting means; a bloodstream image recomposing means 7 for recomposing the bloodstream image of a cross section intersecting the longitudinal direction of the blood passage, on the basis of the bloodstream information obtained by the bloodstream information acquiring means; concerned area setting means 8, 10 for setting a concerned area on the bloodstream image recomposed by the bloodstream image recomposing means; and a bloodstream computing means for computing bloodstream passing through the concerned area set by the concerned area setting means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、3次元的な生体
情報を用いて血流計測を行う3次元超音波診断装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional ultrasonic diagnostic apparatus for measuring a blood flow using three-dimensional biological information.

【0002】[0002]

【従来の技術】従来、医用超音波診断装置を用いた超音
波ドプラ効果に基づく血流計測の中でも血流量の計測は
臨床的に重要とされ、その測定精度を向上させるための
試みが多く行われている(例えば、米国特許第4790
322号参照)。その1つとして、複数の超音波ビーム
走査線に直交する関心領域(ROI:region of inte-r
est)を設定し、その関心領域上の血流情報に元にその
関心領域を通過する血流量を計測する装置が知られてい
る。
2. Description of the Related Art Conventionally, blood flow measurement is clinically important among blood flow measurements based on the ultrasonic Doppler effect using a medical ultrasonic diagnostic apparatus, and many attempts have been made to improve the measurement accuracy. (See, for example, US Pat.
No. 322). One of them is a region of interest (ROI) orthogonal to a plurality of ultrasonic beam scanning lines.
An apparatus is known which sets est) and measures the blood flow passing through the region of interest based on the blood flow information on the region of interest.

【0003】ところで一方、近年、3次元的な生体情報
を取得する3次元超音波診断装置が提案され、注目され
ている。この装置では、被検体の3次元領域を超音波ビ
ームで走査することによりその3次元領域からの受信信
号を収集し、これを3次元ボリューム情報として再構成
して表示するものである。この場合、超音波ビームの3
次元的走査法としては、手動や機械式でスキャン面を移
動させて行うタイプと、2次元アレイプローブを用いて
電子的にリアルタイムに走査させるタイプとが知られて
いる。
On the other hand, in recent years, a three-dimensional ultrasonic diagnostic apparatus for acquiring three-dimensional biological information has been proposed and attracted attention. In this device, a received signal from the three-dimensional area is collected by scanning a three-dimensional area of the subject with an ultrasonic beam, and this is reconstructed and displayed as three-dimensional volume information. In this case, 3 of the ultrasonic beam
As the dimensional scanning method, there are known a type in which a scan surface is moved manually or mechanically, and a type in which electronic scanning is performed in real time using a two-dimensional array probe.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の計測法
は、2次元の断層像上で体積量である血流量を求めるも
ので、その計測原理上、関心領域を通過する血流はその
関心領域の両側で流速分布が軸対象であるといった仮定
が必要である。また、超音波ビームの走査線方向に沿っ
たドプラ速度から血流路内の流速を演算するには走査線
と血流路との間の角度補正が必要であるため、これを回
避するために血流路の互いに直交する2断面での計測を
行っている。従って、従来の血流量の計測では、関心領
域での流速分布が軸対象であるといった仮定により測定
誤差が生じると共に、超音波ドプラ角度の補正をなくす
ための2断面での計測は一般に煩雑であるといった問題
があった。
The above-mentioned conventional measuring method is for obtaining a blood flow volume, which is a volume on a two-dimensional tomographic image. It is necessary to assume that the flow velocity distribution is axially symmetric on both sides of the region. Also, in order to calculate the flow velocity in the blood flow path from the Doppler velocity along the scanning line direction of the ultrasonic beam, it is necessary to correct the angle between the scanning line and the blood flow path. The measurement is performed on two cross sections of the blood flow path orthogonal to each other. Therefore, in the conventional measurement of blood flow, a measurement error occurs due to the assumption that the flow velocity distribution in the region of interest is axially symmetric, and measurement on two cross sections for eliminating correction of the ultrasonic Doppler angle is generally complicated. There was such a problem.

【0005】一方、上述のように3次元超音波診断装置
も知られているが、特に血流情報を得るために必要とさ
れる時間分解能を意識したものではない。従って、従来
の3次元超音波診断装置は、血流情報の中でも特に時間
分解能が重要とされる血流量の計測には不向きである。
On the other hand, although a three-dimensional ultrasonic diagnostic apparatus is also known as described above, it is not particularly conscious of a time resolution required for obtaining blood flow information. Therefore, the conventional three-dimensional ultrasonic diagnostic apparatus is unsuitable for measuring a blood flow in which time resolution is particularly important in blood flow information.

【0006】この発明は、このような従来の問題を考慮
してなされたもので、血流の流量計測を高精度かつ簡便
に行うことができる3次元超音波診断装置を提供するこ
とを目的とする。
The present invention has been made in consideration of such conventional problems, and has as its object to provide a three-dimensional ultrasonic diagnostic apparatus capable of easily and accurately measuring a blood flow. I do.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記目的を
達成するため、流路をその長手方向(軸方向)に交差す
る任意の断面(以下「短軸断面」)上の断層像(以下
「血管短軸像」)の関心領域について血流情報を得るた
めに超音波ビームをスキャンさせることにより、血流路
内で短軸断面に平行な複数の短軸断面での血流情報を取
得し、これらの血流情報に基づいて関心領域内の速度分
布情報を決定し、この速度分布情報を用いて血流量を計
測する装置の着想を得た。これにより、従来の2次元画
像に基づく流量計測における流速分布軸対称の仮定や関
心領域の位置ズレによる測定誤差を大幅に低減すると共
に、血流路の短軸断面として超音波ビーム走査線と直交
する断面の血流情報を用いることでビームと血流路との
間の角度依存性のない流量計測を行うことができること
が分かった。
In order to achieve the above-mentioned object, the present inventor has proposed a tomographic image (hereinafter referred to as a "short-axis cross section") on an arbitrary cross section (hereinafter referred to as "short-axis cross section") intersecting the flow path in the longitudinal direction (axial direction). The blood flow information at a plurality of short-axis cross sections parallel to the short-axis cross section in the blood flow path is obtained by scanning the ultrasound beam to obtain the blood flow information for the region of interest in the “blood vessel short-axis image”. Then, the velocity distribution information in the region of interest was determined based on the obtained blood flow information, and the idea of an apparatus for measuring the blood flow using the velocity distribution information was obtained. This greatly reduces the measurement error due to the assumption of the flow velocity distribution axis symmetry and the positional deviation of the region of interest in the flow measurement based on the conventional two-dimensional image, and also makes the short-axis cross section of the blood flow path orthogonal to the ultrasonic beam scanning line. It has been found that the flow measurement without the angle dependence between the beam and the blood flow path can be performed by using the blood flow information of the cross section to be performed.

【0008】この発明に係る3次元超音波診断装置は、
上記の着想に基づいて完成されてものである。
[0008] A three-dimensional ultrasonic diagnostic apparatus according to the present invention comprises:
It is completed based on the above idea.

【0009】すなわち、請求項1記載の発明は、被検体
内の計測対象の血流路を含む3次元領域を超音波ビーム
で走査することにより超音波エコーの受信信号を収集す
る信号収集手段と、この信号収集手段により収集された
受信信号から前記3次元領域の血流情報を得る血流情報
取得手段と、この血流情報取得手段により得られた血流
情報に基づいて前記血流路の長手方向に交差する断面の
血流像を再構成する血流像再構成手段と、この血流像再
構成手段により再構成された血流像上に関心領域を設定
する関心領域設定手段と、この関心領域設定手段により
設定された関心領域を通過する血流量を演算する血流量
演算手段とを備えたことを特徴とする。
That is, according to the first aspect of the present invention, there is provided a signal collecting means for collecting a reception signal of an ultrasonic echo by scanning a three-dimensional region including a blood flow path to be measured in a subject with an ultrasonic beam. Blood flow information obtaining means for obtaining the blood flow information of the three-dimensional region from the received signals collected by the signal collecting means; and blood flow information of the blood flow path based on the blood flow information obtained by the blood flow information obtaining means. Blood flow image reconstruction means for reconstructing a blood flow image of a cross section that intersects in the longitudinal direction, and a region of interest setting means for setting a region of interest on a blood flow image reconstructed by the blood flow image reconstruction means, A blood flow calculating means for calculating a blood flow passing through the region of interest set by the region of interest setting means.

【0010】請求項2記載の発明は、被検体の計測対象
の血流路を含む3次元領域を超音波ビームで走査するこ
とにより超音波エコーの受信信号を収集する信号収集手
段と、この信号収集手段により収集された受信信号から
前記3次元領域の3次元断層像を得る断層像取得手段
と、この断層像取得手段により得られた3次元断層像上
に関心領域を設定する関心領域設定手段と、この関心領
域設定手段により設定された関心領域に対して超音波ビ
ームを走査することにより前記関心領域のみの血流情報
を得る血流情報取得手段と、この血流情報取得手段によ
り得られた血流情報に基づいて前記関心領域を通過する
血流量を演算する血流量演算手段とを備えたことを特徴
とする。
According to a second aspect of the present invention, there is provided a signal collecting means for collecting a reception signal of an ultrasonic echo by scanning a three-dimensional region including a blood flow path of a measurement object of an object with an ultrasonic beam, and the signal collection means. Tomographic image obtaining means for obtaining a three-dimensional tomographic image of the three-dimensional area from the received signals collected by the collecting means, and a region of interest setting means for setting a region of interest on the three-dimensional tomographic image obtained by the tomographic image obtaining means A blood flow information obtaining unit that obtains blood flow information of only the region of interest by scanning the region of interest set by the region of interest with an ultrasonic beam, and a blood flow information obtaining unit that obtains the blood flow information. And a blood flow calculating means for calculating a blood flow passing through the region of interest based on the obtained blood flow information.

【0011】請求項3記載の発明は、請求項1又は2記
載の発明において、前記関心領域は、前記血流路の長手
方向に交差する断面と平行な複数の断面を含み、前記血
流量を演算する手段は、前記複数の断面の血流情報から
前記関心領域を通過する血流量を演算する手段であるこ
とを特徴とする。
According to a third aspect of the present invention, in the first or second aspect of the present invention, the region of interest includes a plurality of cross sections parallel to a cross section intersecting the longitudinal direction of the blood flow path, and the blood flow is controlled. The calculating means is means for calculating a blood flow passing through the region of interest from the blood flow information of the plurality of cross sections.

【0012】請求項4記載の発明は、請求項1から3ま
でのいずれか1項記載の発明において、前記血流路を交
差する断面は、前記超音波ビームの走査線に直交する断
面であることを特徴とする。
According to a fourth aspect of the present invention, in the first aspect of the present invention, a cross section crossing the blood flow path is a cross section orthogonal to a scanning line of the ultrasonic beam. It is characterized by the following.

【0013】請求項5記載の発明は、請求項1から4ま
でのいずれか1項記載の発明において、前記血流路を交
差する断面の血流像と、前記血流路の基準面の血流像と
を同一画面上に表示する手段をさらに備えたことを特徴
とする。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a blood flow image of a cross section intersecting the blood flow path and a blood flow image of a reference surface of the blood flow path are provided. It is characterized by further comprising means for displaying a flow image on the same screen.

【0014】請求項6記載の発明は、請求項5記載の発
明において、前記血流路の基準面上に血流方向に関する
情報を指定する手段と、この手段により指定された血流
方向に関する情報を利用して血流速度の絶対値を求める
手段とを備えたことを特徴とする。
According to a sixth aspect of the present invention, in the invention of the fifth aspect, means for designating information on a blood flow direction on a reference plane of the blood flow path, and information on the blood flow direction designated by the means. Means for calculating the absolute value of the blood flow velocity by utilizing the method.

【0015】請求項7記載の発明は、請求項1から6ま
でのいずれか1項記載の発明において、前記関心領域を
複数指定する手段と、この手段により指定された複数の
関心領域をそれぞれ通過する血流量を演算する手段と、
この手段により演算される複数の関心領域の血流量から
別の特徴量を算出する手段とをさらに備えたことを特徴
とする。
According to a seventh aspect of the present invention, in the first aspect of the present invention, the means for designating a plurality of the regions of interest and the plurality of regions of interest respectively designated by the means are passed. Means for calculating the blood flow to be performed;
Means for calculating another characteristic amount from the blood flow rates of the plurality of regions of interest calculated by this means.

【0016】[0016]

【発明の実施の形態】以下、この発明に係る3次元超音
波診断装置の実施の形態を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a three-dimensional ultrasonic diagnostic apparatus according to the present invention will be described with reference to the drawings.

【0017】図1に示す3次元超音波診断装置は、その
全体の制御中枢であるシステムコントローラ11と、こ
のコントローラ11による制御の元で動作する装置本体
SSと、この装置本体SSに接続される2Dアレイプロ
ーブ1とを備えている。このうち、装置本体SSには、
送信系2、受信系3、Bモード処理系4、ドプラ処理系
5、ディジタル・スキャン・コンバータ(DSC)6、
3次元ディジタル・スキャン・コンバータ(3D−DS
C)7、表示系8、流量演算部9、及びROI入力部1
0が含まれる。
The three-dimensional ultrasonic diagnostic apparatus shown in FIG. 1 is connected to a system controller 11, which is a control center of the whole, an apparatus main body SS which operates under the control of the controller 11, and this apparatus main body SS. 2D array probe 1. Of these, the device main body SS
Transmitting system 2, receiving system 3, B-mode processing system 4, Doppler processing system 5, digital scan converter (DSC) 6,
3D digital scan converter (3D-DS
C) 7, display system 8, flow rate calculation unit 9, and ROI input unit 1
0 is included.

【0018】2Dアレイプローブ1は、複数の超音波振
動子を二次元アレイ状に配列した構成で、この各振動子
を送信系2からの駆動信号を受けて所定の遅延パターン
条件で駆動することにより、図2に示すように超音波ビ
ーム3DBを被検体OB内の計測対称の血流路(血管)
BLを含む3次元領域で空間的にフォーカス可能にボリ
ュームスキャン(3次元スキャン)させると共に、この
超音波ビーム3DBにおける3次元領域内の各点からの
超音波エコーの受信信号を収集し、これを受信系3に送
る。この受信系3にて超音波ビーム3DBの方向毎に得
られた受信信号は、Bモード処理系4にて断層像データ
に変換されると共に、ドプラ処理系5にて血流情報にそ
れぞれ変換され、これらのデータに基づく画像がDSC
6及び3D−DSC7を介して表示系8のモニタ上に表
示される。
The 2D array probe 1 has a configuration in which a plurality of ultrasonic transducers are arranged in a two-dimensional array. Each of the transducers receives a drive signal from the transmission system 2 and is driven under a predetermined delay pattern condition. As a result, as shown in FIG. 2, the ultrasonic beam 3DB is applied to a measurement-symmetric blood flow path (blood vessel) in the subject OB.
A volume scan (three-dimensional scan) is performed so as to be spatially focusable in a three-dimensional region including the BL, and a reception signal of an ultrasonic echo from each point in the three-dimensional region in the ultrasonic beam 3DB is collected, and is collected. Send to receiving system 3. The reception signal obtained for each direction of the ultrasonic beam 3DB by the receiving system 3 is converted into tomographic image data by the B-mode processing system 4 and is converted into blood flow information by the Doppler processing system 5, respectively. The image based on these data is DSC
It is displayed on the monitor of the display system 8 via the 6 and 3D-DSC7.

【0019】ここで、3D−DSC7内には、図3に示
すように3D座標演算部10及びその3Dメモリ11
と、再構成画像演算部12及びそのメモリ13とが含ま
れる。そこで、3D座標演算部10にてビーム方向毎の
データから実空間に対応したデータに変換され、3Dメ
モリ11に記憶されると共に、再構成画像演算部12に
て上記の実空間データから任意の断面への投影像または
ボリューム像作成・表示のための演算が行われ、これら
のデータがメモリ13に保存される。そして、再構成さ
れた画像が投影像またはボリューム像として表示系8の
画面に表示される。この表示法としては、通常の2次元
表示、複数断面の分割同時表示、ボリュームレンダリン
グによる3D表示等のいずれも設定可能である。
In the 3D-DSC 7, a 3D coordinate calculator 10 and its 3D memory 11 are provided as shown in FIG.
And a reconstructed image calculation unit 12 and its memory 13. Therefore, the data for each beam direction is converted into data corresponding to the real space by the 3D coordinate calculation unit 10, stored in the 3D memory 11, and the reconstructed image calculation unit 12 converts an arbitrary An operation for creating and displaying a projection image or a volume image on a cross section is performed, and these data are stored in the memory 13. Then, the reconstructed image is displayed on the screen of the display system 8 as a projection image or a volume image. As this display method, any of a normal two-dimensional display, a divisional simultaneous display of a plurality of sections, a 3D display by volume rendering, and the like can be set.

【0020】この状態で、血流計測が行われる。この血
流計測の原理を図4に基づいて説明する。まず、図4に
示す血流路BL内の軸方向(長軸方向)AXに直交する
短軸断面PL1においては、血流の流量Qは、その短軸
断面PL1の断面積S0 と血流路BLの軸方向AXの流
速v0 との内積により、
In this state, blood flow measurement is performed. The principle of this blood flow measurement will be described with reference to FIG. First, in a short-axis cross section PL1 orthogonal to the axial direction (long-axis direction) AX in the blood flow path BL shown in FIG. 4, the flow rate Q of the blood flow is determined by the cross-sectional area S0 of the short-axis cross section PL1 and the blood flow path. By the inner product of the flow velocity v0 in the axial direction AX of BL,

【数1】 の積分式で求められる。(Equation 1) It can be obtained by the integral equation.

【0021】ここで、超音波ドプラ効果に基づく血流測
定では、血流路BLの軸方向の速度v0ではなく、超音
波ビームの走査線方向BLに沿った速度 がドプラ速度
vdとして検出される。そこで、血流路BL内に走査線
LAと直交する短軸断面(C面)PL2を考え、この走
査線LAと血流路BLの軸方向AXとの成す角度をθと
したとき、前述の流速v0及び断面積S0は、ドプラ速度
vdと、走査線方向BLに直交する短軸断面PL2の断
面積Sとを用いて、
Here, in the blood flow measurement based on the ultrasonic Doppler effect, the velocity along the scanning line direction BL of the ultrasonic beam is detected as the Doppler velocity vd instead of the velocity v0 in the axial direction of the blood flow path BL. . Therefore, a short-axis cross section (C plane) PL2 orthogonal to the scanning line LA is considered in the blood flow path BL, and when the angle between the scanning line LA and the axial direction AX of the blood flow path BL is θ, the above-described angle is obtained. The flow velocity v0 and the cross-sectional area S0 are calculated using the Doppler velocity vd and the cross-sectional area S of the short-axis cross section PL2 orthogonal to the scanning line direction BL.

【数2】 で表わすことができる。(Equation 2) Can be represented by

【0022】この[数2]式を上記[数1]式に代入す
ると、
By substituting this [Equation 2] into the above [Equation 1],

【数3】 の式が得られる。(Equation 3) Is obtained.

【0023】従って、血流路BLにおける走査線方向と
直交する短軸断面PL2の断面積Sとドプラ速度vdと
が求まると、この両者の積により、θを使わずに、すな
わち角度依存性がなく血流量を直接演算できることが分
かる。
Accordingly, when the cross-sectional area S of the short-axis cross section PL2 orthogonal to the scanning line direction in the blood flow path BL and the Doppler velocity vd are obtained, the product of the two does not use θ, that is, the angle dependence is reduced. It can be seen that the blood flow can be calculated directly without any calculation.

【0024】このような血流量計測に際し、計測部位の
血流路BLを含む血流画像が表示系8のモニタ上に通常
の2次元表示、複断面の分割同時表示、又はボリューム
レンダリングによる3D表示等により表示されると共
に、その画像上でマーカを含むROIの指定が可能とな
っている。ROIは、オペレータによりトラックボー
ル、マウス等のROI入力部10を介して操作される。
At the time of such a blood flow measurement, a blood flow image including the blood flow path BL at the measurement site is displayed on a monitor of the display system 8 in a normal two-dimensional display, a multi-section simultaneous display, or a 3D display by volume rendering. And the like, and the ROI including the marker can be specified on the image. The ROI is operated by an operator via an ROI input unit 10 such as a trackball or a mouse.

【0025】ここで、血流画像及びROIの設定例を図
5〜図10に基づいて説明する。
Here, an example of setting the blood flow image and the ROI will be described with reference to FIGS.

【0026】図5は、血流路の基準面A1における血流
像(以下「血管長軸像」)IM1及びその血管長軸像I
M1上の血流量を求めたい任意の測定部位に指定可能な
矩形状のROI30を示す。このROI30は、計測部
位断面として超音波ビームの走査線方向に垂直又は略垂
直な短軸断面を指定するようにその走査線方向に垂直に
設定すると共に、このROI30内のみの血流情報を計
測時に得るようにドプラ用のスキャン領域をROI位置
に一致させることで、それ以外の箇所でのスキャンを省
略し、時間分解能の向上した血流画像を得ることができ
る。
FIG. 5 shows a blood flow image (hereinafter referred to as "blood vessel long-axis image") IM1 and its blood vessel long-axis image I on the reference plane A1 of the blood flow path.
A rectangular ROI 30 that can be specified at an arbitrary measurement site where the blood flow on M1 is to be obtained is shown. The ROI 30 is set perpendicular to the scanning line direction so as to designate a short-axis cross section perpendicular or substantially perpendicular to the scanning line direction of the ultrasonic beam as a measurement site cross section, and measures blood flow information only in the ROI 30. By matching the Doppler scan area to the ROI position as sometimes obtained, scanning at other locations can be omitted, and a blood flow image with improved time resolution can be obtained.

【0027】また、このROI30は深さ方向に厚みを
もつため、複数枚の短軸断面を含み、これにより、複数
の血流情報を取得できる。この複数の血流情報を利用す
ることで、計測値の平均効果による精度安定化を図るこ
とができ、ROI30の相対的な位置ズレによる誤差を
低減できる。このROI30の厚みや含まれる断面の枚
数は任意に設定及び変更可能とする。また、このROI
30を複数設定することも可能である。この場合には、
複数の血流路で求められる血流量に基づいて他の特徴量
を算出できる。
Further, since the ROI 30 has a thickness in the depth direction, it includes a plurality of short-axis cross-sections, whereby a plurality of pieces of blood flow information can be obtained. By using the plurality of pieces of blood flow information, accuracy can be stabilized by the average effect of the measured values, and errors due to relative displacement of the ROI 30 can be reduced. The thickness of the ROI 30 and the number of included cross sections can be arbitrarily set and changed. Also, this ROI
It is also possible to set a plurality of 30s. In this case,
Another characteristic amount can be calculated based on the blood flow rates obtained in the plurality of blood channels.

【0028】上記の血流路の基準面A1においては、図
示のように血流の方向を指定する角度マーカMA1を表
示させ、このマーカMA1で指定された方向の情報を利
用して血流速度の絶対値を流量演算部9にて求めるよう
に設定することもできる。
On the reference plane A1 of the blood flow path, an angle marker MA1 for specifying the direction of the blood flow is displayed as shown in the figure, and the blood flow velocity is determined by using the information on the direction specified by the marker MA1. Can be set so as to be obtained by the flow rate calculation unit 9.

【0029】図6は、同様の血管長軸像IM1を3次元
CFM像で表示した例を示す。この場合には、ドプラ用
のスキャン領域を絞るように任意に設定・変更可能なR
OI(ACMのROI等)31が表示される。
FIG. 6 shows an example in which a similar blood vessel long-axis image IM1 is displayed as a three-dimensional CFM image. In this case, R which can be arbitrarily set / changed so as to narrow the Doppler scan area
OI (ROI of ACM etc.) 31 is displayed.

【0030】図7は、走査線方向と直交する血流路の短
軸断面における血管短軸像IM2及びその血管短軸像I
M2上に設定されるROI40を示す。このように短軸
断面における血管短軸像IM2を表示させ、この短軸像
IM2上でROI40の指定を行うことにより、複数の
短軸断面を表示画面上で確認しながら計測部位の選定や
その血流量の計測を行うことができ、直感的な操作性も
大幅によくなる。
FIG. 7 shows a blood vessel short-axis image IM2 and a blood vessel short-axis image I in a short-axis cross section of a blood flow channel orthogonal to the scanning line direction.
The ROI 40 set on M2 is shown. By displaying the blood vessel short-axis image IM2 in the short-axis cross-section in this way and specifying the ROI 40 on this short-axis image IM2, it is possible to select a measurement site while confirming a plurality of short-axis cross-sections on the display screen. Blood flow can be measured, and intuitive operability is greatly improved.

【0031】図8は、血管長軸像IM1と血管短軸像I
M2とを同一画面に表示した場合を示す。このように計
測部位の基準面における血管長軸像IM1と短軸断面に
おける血管短軸像IM2とを同一画面に表示すれば、計
測部位の視認性もより一層よくなって、ROI指定等の
操作性もより一層向上する。また、画面表示の選択肢も
増やす例として、例えば図9に示すように単位時間当た
りの流速変化等の流量時間波形DS1や1心拍拍出量
(ストロークボリューム)等の種々の血流計測値DS2
を表示させたり、あるいは図10に示すように計測部位
の基準面A1に直交する面A2での血管長軸像IM1を
表示させたりすることも可能である。
FIG. 8 shows a blood vessel long axis image IM1 and a blood vessel short axis image I.
A case where M2 is displayed on the same screen is shown. By displaying the blood vessel long-axis image IM1 on the reference plane of the measurement site and the blood vessel short-axis image IM2 on the short-axis cross section on the same screen, the visibility of the measurement site is further improved, and operations such as ROI designation and the like are performed. The properties are further improved. As an example of increasing the number of screen display options, for example, as shown in FIG. 9, various blood flow measurement values DS2 such as a flow time waveform DS1 such as a change in flow velocity per unit time and a cardiac output (stroke volume).
May be displayed, or as shown in FIG. 10, a blood vessel long-axis image IM1 on a plane A2 orthogonal to the reference plane A1 of the measurement site may be displayed.

【0032】上記の図5〜図10に示す血流画像を見な
がら、オペレータが計測部位の血流路をROIで指定す
ると、流量演算部9にて上述の計測原理に基づく処理
(例えば、CPUによる流量演算用アルゴリズムの実
行)が行われる。その結果、血流画像の各フレーム毎の
瞬時流量がドプラ処理系5にて得られたドプラ速度を含
む血流速度情報に基づいて短軸断面から演算され、この
瞬時流量をフレーム毎に時間軸上で積分(この時間積分
の幅すなわち関心時間は任意に設定及び変更可能)する
ことにより、計測部位の血流量が計測可能となる。
When the operator designates the blood flow path of the measurement site with the ROI while looking at the blood flow images shown in FIGS. 5 to 10, the flow rate calculation unit 9 performs processing based on the above measurement principle (for example, CPU (Execution of an algorithm for flow rate calculation). As a result, the instantaneous flow rate of each frame of the blood flow image is calculated from the short-axis cross section based on the blood flow velocity information including the Doppler velocity obtained by the Doppler processing system 5, and this instantaneous flow rate is calculated for each frame on the time axis. By performing the above integration (the width of the time integration, that is, the time of interest can be arbitrarily set and changed), the blood flow at the measurement site can be measured.

【0033】従って、この実施の形態によれば、血流量
の計測時に軸対象の仮定を必要としないために従来より
も大幅に測定精度を高めることができると共に、測定対
象の短軸断面が超音波ビームと直交しているため、角度
依存性もなく、互いに直交する2断面での計測も必要と
しないために従来よりも簡便な計測を実現できる。
Therefore, according to this embodiment, it is not necessary to assume an axial object when measuring the blood flow, so that the measurement accuracy can be greatly improved as compared with the prior art, and the short-axis cross section of the object to be measured is extremely small. Since it is orthogonal to the sound wave beam, there is no angle dependence, and it is not necessary to perform measurement in two cross sections orthogonal to each other, so that simpler measurement than in the past can be realized.

【0034】なお、この実施の形態では、2次元アレイ
プローブを用いたリアルタイム式の3次元スキャン法を
採用してあるが、この発明はこれに限定されるものでは
なく、例えば図11(a)及び(b)に示すように超音
波プローブ1をその軸方向AXを中心に機械的に回転及
び移動させて超音波ビーム2DBを3次元領域でスキャ
ンする方式を適用することも可能である。
Although the present embodiment employs a real-time three-dimensional scanning method using a two-dimensional array probe, the present invention is not limited to this. For example, FIG. As shown in (b), it is also possible to apply a method in which the ultrasonic probe 1 is mechanically rotated and moved about the axial direction AX thereof to scan the ultrasonic beam 2DB in a three-dimensional area.

【0035】[0035]

【発明の効果】以上説明したように、この発明によれ
ば、流路の短軸断面の流速分布に基づいて血流量を測定
するため、軸対称の仮定や角度依存性もなく測定精度を
大幅に高めることができる。
As described above, according to the present invention, the blood flow rate is measured based on the flow velocity distribution in the short-axis cross section of the flow channel, so that the measurement accuracy is greatly improved without the assumption of axial symmetry or angle dependence. Can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る3次元超音波診断装置の実施の
形態を示す概略ブロック図。
FIG. 1 is a schematic block diagram showing an embodiment of a three-dimensional ultrasonic diagnostic apparatus according to the present invention.

【図2】3次元データの収集法を説明する概念図。FIG. 2 is a conceptual diagram illustrating a method for collecting three-dimensional data.

【図3】3D−DSC内の各部を示す概略ブロック図。FIG. 3 is a schematic block diagram showing each unit in a 3D-DSC.

【図4】血流計測の原理を説明する概念図。FIG. 4 is a conceptual diagram illustrating the principle of blood flow measurement.

【図5】血流路の基準面における血管長軸像及びROI
の表示例を示す概要図。
FIG. 5 is a longitudinal axis image and ROI of a blood vessel on a reference plane of a blood flow channel.
The schematic diagram which shows the example of a display of.

【図6】血管短軸像及びROIの他の表示例を示す概要
図。
FIG. 6 is a schematic diagram showing another display example of a short-axis image of a blood vessel and an ROI.

【図7】血流路の長手方向に交差する断面の血管短軸像
及びROIの表示例を示す概要図。
FIG. 7 is a schematic diagram showing a display example of a short-axis image of a blood vessel and a ROI of a cross section intersecting with the longitudinal direction of a blood flow channel.

【図8】血管長軸像と血管短軸像の同一画面上の表示例
を示す概要図。
FIG. 8 is a schematic diagram showing a display example of a blood vessel long axis image and a blood vessel short axis image on the same screen.

【図9】図8の表示例中に他の血流計測表示を加えた場
合を示す概要図。
9 is a schematic diagram showing a case where another blood flow measurement display is added to the display example of FIG. 8;

【図10】図8の表示例に基準面に直交する断面の血管
長軸像及びROI表示を加えた場合を示す概要図。
FIG. 10 is a schematic diagram showing a case where a blood vessel long axis image and a ROI display of a cross section orthogonal to a reference plane are added to the display example of FIG. 8;

【図11】(a)及び(b)は、プローブを機械的に回
転させる方式の3次元データ収集法を説明する概念図。
FIGS. 11A and 11B are conceptual diagrams illustrating a three-dimensional data collection method in which a probe is mechanically rotated.

【符号の説明】[Explanation of symbols]

1 2次元アレイプローブ 2 送信系 3 受信系 4 Bモード処理系 5 ドプラ処理系 6 ディジタル・スキャン・コンバータ(DSC) 7 3次元ディジタル・スキャン・コンバータ(3D−
DSC) 8 表示系 9 流量演算部 10 ROI入力部 11 コントローラ 20 3D座標演算部 21 3Dメモリ 22 再構成画像演算部 23 メモリ
1 2D array probe 2 Transmitting system 3 Receiving system 4 B mode processing system 5 Doppler processing system 6 Digital scan converter (DSC) 7 3D digital scan converter (3D-
DSC) 8 display system 9 flow rate calculation unit 10 ROI input unit 11 controller 20 3D coordinate calculation unit 21 3D memory 22 reconstructed image calculation unit 23 memory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被検体内の計測対象の血流路を含む3次
元領域を超音波ビームで走査することにより超音波エコ
ーの受信信号を収集する信号収集手段と、この信号収集
手段により収集された受信信号から前記3次元領域の血
流情報を得る血流情報取得手段と、この血流情報取得手
段により得られた血流情報に基づいて前記血流路の長手
方向に交差する断面の血流像を再構成する血流像再構成
手段と、この血流像再構成手段により再構成された血流
像上に関心領域を設定する関心領域設定手段と、この関
心領域設定手段により設定された関心領域を通過する血
流量を演算する血流量演算手段とを備えたことを特徴と
する3次元超音波診断装置。
1. A signal collecting means for collecting a reception signal of an ultrasonic echo by scanning a three-dimensional region including a blood flow path of a measurement target in a subject with an ultrasonic beam, and a signal collected by the signal collecting means. Blood flow information obtaining means for obtaining the blood flow information of the three-dimensional region from the received signal, and a blood flow having a cross section intersecting in the longitudinal direction of the blood flow path based on the blood flow information obtained by the blood flow information obtaining means. Blood flow image reconstruction means for reconstructing a flow image, a region of interest setting means for setting a region of interest on a blood flow image reconstructed by the blood flow image reconstruction means, and a region of interest set by the region of interest setting means And a blood flow calculating means for calculating a blood flow passing through the region of interest.
【請求項2】 被検体の計測対象の血流路を含む3次元
領域を超音波ビームで走査することにより超音波エコー
の受信信号を収集する信号収集手段と、この信号収集手
段により収集された受信信号から前記3次元領域の3次
元断層像を得る断層像取得手段と、この断層像取得手段
により得られた3次元断層像上に関心領域を設定する関
心領域設定手段と、この関心領域設定手段により設定さ
れた関心領域に対して超音波ビームを走査することによ
り前記関心領域のみの血流情報を得る血流情報取得手段
と、この血流情報取得手段により得られた血流情報に基
づいて前記関心領域を通過する血流量を演算する血流量
演算手段とを備えたことを特徴とする3次元超音波診断
装置。
2. A signal collecting means for collecting a reception signal of an ultrasonic echo by scanning a three-dimensional area including a blood flow path of a measurement target of an object with an ultrasonic beam, and a signal collected by the signal collecting means. Tomographic image obtaining means for obtaining a three-dimensional tomographic image of the three-dimensional area from a received signal, a region of interest setting means for setting a region of interest on the three-dimensional tomographic image obtained by the tomographic image obtaining means, and a region of interest setting A blood flow information obtaining unit that obtains blood flow information only for the region of interest by scanning the ultrasonic beam on the region of interest set by the unit; and a blood flow information obtained by the blood flow information obtaining unit. And a blood flow calculating means for calculating a blood flow passing through the region of interest.
【請求項3】 請求項1又は2記載の発明において、前
記関心領域は、前記血流路の長手方向に交差する断面と
平行な複数の断面を含み、前記血流量を演算する手段
は、前記複数の断面の血流情報から前記関心領域を通過
する血流量を演算する手段であることを特徴とする3次
元超音波診断装置。
3. The invention according to claim 1, wherein the region of interest includes a plurality of cross-sections parallel to a cross-section intersecting the longitudinal direction of the blood flow path, and the means for calculating the blood flow rate includes: A three-dimensional ultrasonic diagnostic apparatus, which is means for calculating a blood flow passing through the region of interest from blood flow information of a plurality of cross sections.
【請求項4】 請求項1から3までのいずれか1項記載
の発明において、前記血流路を交差する断面は、前記超
音波ビームの走査線に直交する断面であることを特徴と
する3次元超音波診断装置。
4. The invention according to claim 1, wherein the cross section intersecting the blood flow path is a cross section orthogonal to a scanning line of the ultrasonic beam. Dimensional ultrasonic diagnostic equipment.
【請求項5】 請求項1から4までのいずれか1項記載
の発明において、前記血流路を交差する断面の血流像
と、前記血流路の基準面の血流像とを同一画面上に表示
する手段をさらに備えたことを特徴とする3次元超音波
診断装置。
5. The apparatus according to claim 1, wherein a blood flow image of a cross section intersecting the blood flow channel and a blood flow image of a reference surface of the blood flow channel are displayed on the same screen. A three-dimensional ultrasonic diagnostic apparatus, further comprising: means for displaying on the top.
【請求項6】 請求項5記載の発明において、前記血流
路の基準面上に血流方向に関する情報を指定する手段
と、この手段により指定された血流方向に関する情報を
利用して血流速度の絶対値を求める手段とを備えたこと
を特徴とする3次元超音波診断装置。
6. The invention according to claim 5, wherein means for designating information on a blood flow direction on a reference plane of said blood flow path, and blood flow using information on the blood flow direction designated by said means. Means for determining an absolute value of the velocity.
【請求項7】 請求項1から6までのいずれか1項記載
の発明において、前記関心領域を複数指定する手段と、
この手段により指定された複数の関心領域をそれぞれ通
過する血流量を演算する手段と、この手段により演算さ
れる複数の関心領域の血流量から別の特徴量を算出する
手段とをさらに備えたことを特徴とする3次元超音波診
断装置。
7. The apparatus according to claim 1, wherein a plurality of the regions of interest are specified,
A means for calculating a blood flow amount passing through each of the plurality of regions of interest designated by the means; and a means for calculating another characteristic amount from the blood flow amounts of the plurality of regions of interest calculated by the means. A three-dimensional ultrasonic diagnostic apparatus characterized by the above-mentioned.
JP01117999A 1999-01-19 1999-01-19 3D ultrasonic diagnostic equipment Expired - Fee Related JP4282130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01117999A JP4282130B2 (en) 1999-01-19 1999-01-19 3D ultrasonic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01117999A JP4282130B2 (en) 1999-01-19 1999-01-19 3D ultrasonic diagnostic equipment

Publications (2)

Publication Number Publication Date
JP2000201930A true JP2000201930A (en) 2000-07-25
JP4282130B2 JP4282130B2 (en) 2009-06-17

Family

ID=11770847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01117999A Expired - Fee Related JP4282130B2 (en) 1999-01-19 1999-01-19 3D ultrasonic diagnostic equipment

Country Status (1)

Country Link
JP (1) JP4282130B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212164A (en) * 2005-02-03 2006-08-17 Toshiba Corp Ultrasonic diagnostic apparatus
JP2007296329A (en) * 2006-04-27 2007-11-15 General Electric Co <Ge> Method and system for measuring flow through heart valve
JP2008055101A (en) * 2006-09-04 2008-03-13 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic system
JP2008080106A (en) * 2006-08-28 2008-04-10 Toshiba Corp Ultrasonic diagnostic device, and data processing program for ultrasonic diagnostic device
JP2008259850A (en) * 2007-03-30 2008-10-30 General Electric Co <Ge> Method and apparatus for measuring flow in multi-dimensional ultrasound
JP2012250083A (en) * 2006-08-28 2012-12-20 Toshiba Corp Ultrasonic diagnostic device, and data processing program for ultrasonic diagnostic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212164A (en) * 2005-02-03 2006-08-17 Toshiba Corp Ultrasonic diagnostic apparatus
JP4634814B2 (en) * 2005-02-03 2011-02-16 株式会社東芝 Ultrasonic diagnostic equipment
JP2007296329A (en) * 2006-04-27 2007-11-15 General Electric Co <Ge> Method and system for measuring flow through heart valve
US9612142B2 (en) 2006-04-27 2017-04-04 General Electric Company Method and system for measuring flow through a heart valve
JP2008080106A (en) * 2006-08-28 2008-04-10 Toshiba Corp Ultrasonic diagnostic device, and data processing program for ultrasonic diagnostic device
JP2012250083A (en) * 2006-08-28 2012-12-20 Toshiba Corp Ultrasonic diagnostic device, and data processing program for ultrasonic diagnostic device
JP2008055101A (en) * 2006-09-04 2008-03-13 Ge Medical Systems Global Technology Co Llc Ultrasonic diagnostic system
JP2008259850A (en) * 2007-03-30 2008-10-30 General Electric Co <Ge> Method and apparatus for measuring flow in multi-dimensional ultrasound

Also Published As

Publication number Publication date
JP4282130B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP4745133B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing program
JP5681623B2 (en) Ultrasound imaging of extended field of view with 2D array probe
US6413219B1 (en) Three-dimensional ultrasound data display using multiple cut planes
JP5508401B2 (en) Ultrasound imaging of extended field of view by guided EFOV scanning
US5608849A (en) Method of visual guidance for positioning images or data in three-dimensional space
US6464642B1 (en) Ultrasonic diagnosis apparatus
WO2013161277A1 (en) Ultrasonic diagnosis device and method for controlling same
US20100041992A1 (en) Ultrasonic diagnostic apparatus, ultrasonic image display apparatus, and medical image diagnostic apparatus
JP2003220060A (en) Method and system for ultrasonic blood flow photographing and volumetric flow rate calculation
KR100355718B1 (en) System and method for 3-d ultrasound imaging using an steerable probe
US11138723B2 (en) Analyzing apparatus and analyzing method
WO2007114375A1 (en) Ultrasound diagnostic device and control method for ultrasound diagnostic device
JP5417048B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic program
EP2253275A1 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus and ultrasonic image processing method
EP3463098B1 (en) Medical ultrasound image processing device
JP2009089736A (en) Ultrasonograph
JP2001128975A (en) Ultrasonographic apparatus
US20150289837A1 (en) Ultrasonic apparatus and control method for the same
US20210022711A1 (en) Ultrasound elastography method and system
JP4282130B2 (en) 3D ultrasonic diagnostic equipment
JP5191183B2 (en) Ultrasonic diagnostic equipment
JP3685737B2 (en) Ultrasonic diagnostic equipment
JP2001037756A (en) Ultrasonic diagnostic device
JP5606025B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
JP7053910B1 (en) Analytical device and its control program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees