JP2000200625A - Device for evaluating capacity of electrode active material - Google Patents

Device for evaluating capacity of electrode active material

Info

Publication number
JP2000200625A
JP2000200625A JP11002508A JP250899A JP2000200625A JP 2000200625 A JP2000200625 A JP 2000200625A JP 11002508 A JP11002508 A JP 11002508A JP 250899 A JP250899 A JP 250899A JP 2000200625 A JP2000200625 A JP 2000200625A
Authority
JP
Japan
Prior art keywords
current
voltage
electrode
active material
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11002508A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tasaka
佳之 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11002508A priority Critical patent/JP2000200625A/en
Publication of JP2000200625A publication Critical patent/JP2000200625A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for evaluating the capacity of an electrode active material, whereby the capacity of only an active material in an electrode can be accurately evaluated. SOLUTION: This device includes a charging means, a voltage detecting means 5 for detecting the voltage changes of a cell having an operating electrode, a counter electrode and a reference electrode connected in parallel to the charging means, a voltage waveform storing means 7 for storing the voltage changes detected by the voltage detecting means 5 in sequence to feedback the storage signal to the charging means 2, a current detecting means 10 for detecting the current changes of the cell having the operating electrode, the counter electrode and the reference electrode connected in parallel to the charging means 2 and a current waveform storing means 14 for storing the current changes detected by the current detecting means 10 in sequence.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電極活物質の容量
評価装置に関する。
The present invention relates to an apparatus for evaluating the capacity of an electrode active material.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池を初めと
する各種の二次電池が小型電子機器の電源として使用さ
れている。このような二次電池において、より一層の高
容量化を目的として電極に使用される活物質の開発がな
されている。
2. Description of the Related Art In recent years, various secondary batteries such as lithium ion secondary batteries have been used as power supplies for small electronic devices. In such a secondary battery, an active material used for an electrode has been developed for the purpose of further increasing the capacity.

【0003】ところで、二次電池に組込まれる正極、負
極は一般的に活物質、導電材およびバインダを含む電極
層を集電体に担持した構造を有する。このような二次電
池の電極容量の評価方法としては、従来より定電流での
充放電を行なって電圧変化を測定したり、定電圧での充
放電を行なって電流変化を測定することがなされてい
る。
A positive electrode and a negative electrode incorporated in a secondary battery generally have a structure in which an electrode layer containing an active material, a conductive material and a binder is supported on a current collector. As a method of evaluating the electrode capacity of such a secondary battery, a voltage change is measured by performing charging and discharging at a constant current, and a current change is measured by performing charging and discharging at a constant voltage. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述し
た従来の容量評価方法は活物質、導電材およびバインダ
の他に集電体をも包含した電極を対象とするものであ
り、活物質そのものの容量測定をすることが困難であっ
た。このため、活物質の性能を的確に評価する手法の開
発が望まれていた。
However, the above-described conventional capacity evaluation method is intended for an electrode including a current collector in addition to an active material, a conductive material and a binder, and the capacity of the active material itself is not considered. It was difficult to measure. Therefore, development of a method for accurately evaluating the performance of the active material has been desired.

【0005】本発明は、電極中の活物質のみの容量を的
確に評価することが可能な電極活物質の容量評価装置を
提供しようとするものである。
An object of the present invention is to provide an electrode active material capacity evaluation apparatus capable of accurately evaluating the capacity of only an active material in an electrode.

【0006】[0006]

【課題を解決するための手段】本発明に係わる電極活物
質の容量評価装置は、充電手段と、前記充電手段に並列
に接続される作用極、対極および参照極を有するセルの
電圧変化を検出する電圧検出手段と、前記電圧検出手段
で検出された電圧変化を逐次記憶し、かつこの記憶信号
を前記充電手段にフィードバックさせる電圧波形記憶手
段と、前記充電手段に並列に接続される作用極、対極お
よび参照極を有するセルの電流変化を検出する電流検出
手段と、前記電流検出手段で検出された電流変化を逐次
記憶する電流波形記憶手段とを具備し、活物質、バイン
ダを含む電極層を集電体に担持させた作用極を有する試
験セルを前記充電手段に並列に接続し、前記充電手段に
より前記試験セルを定電流充電させ、この時の電圧変化
を前記電圧検出手段を通して前記電圧波形記憶手段に逐
次記憶し、活物質を除いたバインダを含む電極層を集電
体に担持させた作用極を有するブランクセルを前記充電
手段に並列に接続し、前記電圧波形記憶回路から記憶信
号を前記充電手段に出力してこの充電手段により前記ブ
ランクセルを前記電圧波形記憶回路で記憶した電圧変化
に倣って充電させ、この時の電流変化を前記電流検出手
段を通して前記電流波形記憶手段に逐次記憶することを
特徴とするものである。
According to the present invention, there is provided an apparatus for evaluating the capacity of an electrode active material, which detects a voltage change of a charging means and a cell having a working electrode, a counter electrode and a reference electrode connected in parallel to the charging means. Voltage detecting means, a voltage waveform storing means for sequentially storing the voltage change detected by the voltage detecting means, and a feedback signal of the stored signal to the charging means, a working electrode connected in parallel to the charging means, Current detection means for detecting a current change in a cell having a counter electrode and a reference electrode, and a current waveform storage means for sequentially storing the current change detected by the current detection means, an active material, and an electrode layer including a binder. A test cell having a working electrode carried by a current collector is connected in parallel to the charging means, and the test cell is charged at a constant current by the charging means. Through the voltage waveform storage means, and a blank cell having a working electrode in which an electrode layer including a binder excluding an active material is carried on a current collector is connected in parallel to the charging means, and the voltage waveform storage circuit And outputs a storage signal to the charging means, and charges the blank cell according to the voltage change stored in the voltage waveform storage circuit by the charging means. The current change at this time is stored in the current waveform storage through the current detection means. It is characterized in that it is sequentially stored in the means.

【0007】本発明に係わる別の電極活物質の容量評価
装置は、放電手段と、前記放電手段に並列に接続される
作用極、対極および参照極を有するセルの電圧変化を検
出する電圧検出手段と、前記電圧検出手段で検出された
電圧変化を逐次記憶し、かつこの記憶信号を前記放電手
段にフィードバックさせる電圧波形記憶手段と、前記放
電手段に並列に接続される作用極、対極および参照極を
有するセルの電流変化を検出する電流検出手段と、前記
電流検出手段で検出された電流変化を逐次記憶する電流
波形記憶手段とを具備し、活物質、バインダを含む電極
層を集電体に担持させた作用極を有する試験セルを前記
放電手段に並列に接続し、前記放電手段により前記試験
セルを定電流放電させ、この時の電圧変化を前記電圧検
出手段を通して前記電圧波形記憶手段に逐次記憶し、活
物質を除いたバインダを含む電極層を集電体に担持させ
た作用極を有するブランクセルを前記放電手段に並列に
接続し、前記電圧波形記憶回路から記憶信号を前記放電
手段に出力してこの放電手段により前記ブランクセルを
前記電圧波形記憶回路で記憶した電圧変化に倣って放電
させ、この時の電流変化を前記電流検出手段を通して前
記電流波形記憶手段に逐次記憶することを特徴とするも
のである。
According to another aspect of the present invention, there is provided a device for evaluating the capacity of an electrode active material, comprising: a discharging means; and a voltage detecting means for detecting a voltage change of a cell having a working electrode, a counter electrode and a reference electrode connected in parallel to the discharging means. A voltage waveform storage means for sequentially storing the voltage change detected by the voltage detection means and feeding back the storage signal to the discharge means; a working electrode, a counter electrode and a reference electrode connected in parallel to the discharge means A current detecting means for detecting a current change in the cell having: and a current waveform storage means for sequentially storing the current change detected by the current detecting means, wherein an active material and an electrode layer containing a binder are used as a current collector. A test cell having a working electrode carried thereon is connected in parallel to the discharging means, and the test cell is discharged at a constant current by the discharging means. A blank cell having a working electrode in which an electrode layer containing a binder excluding an active material is carried on a current collector, which is sequentially stored in a voltage waveform storage unit, is connected in parallel to the discharge unit, and stored from the voltage waveform storage circuit. A signal is output to the discharge means, and the blank cell is discharged by the discharge means in accordance with the voltage change stored in the voltage waveform storage circuit, and the current change at this time is sent to the current waveform storage means through the current detection means. It is characterized by being stored sequentially.

【0008】[0008]

【発明の実施の形態】以下、本発明に係わる電極活物質
の容量評価装置を図1〜図5を参照して詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an apparatus for evaluating the capacity of an electrode active material according to the present invention will be described in detail with reference to FIGS.

【0009】図1において電流設定回路1は第1スイッ
チSW1を通して充電器2に接続されている。この充電
器2は、前記電流設定回路1からの信号入力により前記
充電器2に並列接続される試験セルを所定の定電流値で
充電を行なう。前記電流設定回路1は、第2スイッチS
W2を通して放電器3に接続されている。この放電器3
は、前記電流設定回路1からの信号入力により前記放電
器3に並列接続される試験セルを所定の定電流値で放電
を行なう。
In FIG. 1, a current setting circuit 1 is connected to a charger 2 through a first switch SW1. The charger 2 charges a test cell connected in parallel to the charger 2 with a predetermined constant current value in response to a signal input from the current setting circuit 1. The current setting circuit 1 includes a second switch S
It is connected to the discharger 3 through W2. This discharger 3
Discharges a test cell connected in parallel to the discharger 3 at a predetermined constant current value in response to a signal input from the current setting circuit 1.

【0010】例えば一対の抵抗器4a,4bからなる電
圧検出回路5は、前記充電器2,前記放電器3に対し並
列に接続されている。前記充電器2および前記放電器3
は、第3スイッチSW3を通して前記電圧検出器5に接
続されている。前記電圧検出器5は、A/D変換回路6
を通して電圧波形記憶手段である電圧波形RAM7に接
続されている。この電圧波形RAM7は、前記充電器お
よび放電器に並列接続される試験セルの充電時または放
電時における電圧変化を逐次記憶する機能を有する。
For example, a voltage detection circuit 5 comprising a pair of resistors 4a and 4b is connected in parallel to the charger 2 and the discharger 3. The charger 2 and the discharger 3
Are connected to the voltage detector 5 through a third switch SW3. The voltage detector 5 includes an A / D conversion circuit 6
Is connected to a voltage waveform RAM 7 as voltage waveform storage means. The voltage waveform RAM 7 has a function of sequentially storing a voltage change during charging or discharging of a test cell connected in parallel to the charger and the discharger.

【0011】前記電圧波形RAM7は、第4スイッチS
W4を通して充電電圧制御回路8および放電電圧制御回
路9にそれぞれ接続されている。前記充電電圧制御回路
8は、第5スイッチSW5を通して前記充電器2に接続
され、前記RAM7からの記憶信号に基づいて前記充電
器2による充電電圧を制御する。前記放電電圧制御回路
9は、第6スイッチSW6を通して前記放電器3に接続
され、前記RAM7からの記憶信号に基づいて前記放電
器3による放電電圧を制御する。
The voltage waveform RAM 7 includes a fourth switch S
It is connected to the charge voltage control circuit 8 and the discharge voltage control circuit 9 through W4. The charging voltage control circuit 8 is connected to the charger 2 through a fifth switch SW5, and controls a charging voltage of the charger 2 based on a stored signal from the RAM 7. The discharge voltage control circuit 9 is connected to the discharger 3 through a sixth switch SW6, and controls a discharge voltage of the discharger 3 based on a storage signal from the RAM 7.

【0012】電流検出器10は、例えば前記充電器2お
よび放電器3に直列接続された抵抗器11と、この抵抗
器11前後に接続されたコンパレータ12とから構成さ
れている。前記電流検出器10は、A/D変換回路13
を通して電流波形記憶手段である電流波形RAM14に
接続されている。
The current detector 10 comprises, for example, a resistor 11 connected in series to the charger 2 and the discharger 3, and a comparator 12 connected before and after the resistor 11. The current detector 10 includes an A / D conversion circuit 13
Is connected to a current waveform RAM 14 as current waveform storage means.

【0013】次に、前述した評価装置による充電時にお
ける活物質容量の評価を図1〜図3を参照して説明す
る。
Next, the evaluation of the active material capacity during charging by the above-described evaluation device will be described with reference to FIGS.

【0014】図1に示すように活物質、バインダ、導電
材を含む作用極15aと、対極15bと、参照極15c
を有する試験セル15を用意し、前記作用極15aおよ
び前記対極15bを前記充電器3に対して並列接続し、
前記作用極15aおよび前記参照極15cを前記電圧検
出器5に対して並列接続する。第2、第5、および第6
のスイッチSW2,SW5,SW6をオープン、SW1
を前記充電器2に接続、第3スイッチSW3を充電器2
側に接続、SW4を仮に充電電圧制御回路8に接続す
る。
As shown in FIG. 1, a working electrode 15a containing an active material, a binder, and a conductive material, a counter electrode 15b, and a reference electrode 15c.
Is prepared, the working electrode 15a and the counter electrode 15b are connected in parallel to the charger 3,
The working electrode 15a and the reference electrode 15c are connected in parallel to the voltage detector 5. Second, fifth, and sixth
Switches SW2, SW5, and SW6 are open, SW1
Is connected to the charger 2, and the third switch SW3 is connected to the charger 2.
And the switch SW4 is temporarily connected to the charging voltage control circuit 8.

【0015】この状態で電流設定回路1から充電器2に
信号を出力して、前記充電器2により前記試験セル15
を所定値の定電流充電を行なうと、時間と充電電圧およ
び電流との関係を示す図2のように時間経過にともなっ
て前記試験セル15の電圧(充電電圧)が逐次変化す
る。この電圧変化は、電圧検出器5で検出され、A/D
変換回路6を通して電圧波形RAM7にデジタル信号と
して記憶される。
In this state, a signal is output from the current setting circuit 1 to the charger 2 and the charger 2 outputs the test cell 15.
When a constant current charge is performed at a predetermined value, the voltage (charge voltage) of the test cell 15 sequentially changes with time as shown in FIG. 2 showing the relationship between time, charge voltage, and current. This voltage change is detected by the voltage detector 5 and the A / D
The data is stored as a digital signal in the voltage waveform RAM 7 through the conversion circuit 6.

【0016】図3に示すように前記試験セルを評価装置
から取り外し、活物質を除いたバインダ、導電材を含む
作用極16aと対極16bと参照極16cを有するブラ
ンクセル16を試験セルと同様に接続する。前記第1ス
イッチSW1をオープン、前記第5スイッチSW5を前
記充電器2側に接続する。
As shown in FIG. 3, the test cell is removed from the evaluation apparatus, and a blank cell 16 having a working electrode 16a containing a conductive material, a counter electrode 16b, and a reference electrode 16c is removed in the same manner as the test cell. Connecting. The first switch SW1 is opened, and the fifth switch SW5 is connected to the charger 2 side.

【0017】この状態で、前記電圧波形RAM7から記
憶された電圧波形信号を前記充電電圧制御回路8に出力
し、この充電電圧制御回路8から制御信号を前記充電器
2に出力すると、この充電器2により前記ブランクセル
16を前記RAM7で記憶した電圧変化、つまり前述し
た試験セル15の充電時の電圧変化(図2の充電曲
線)、に倣って充電させる。この時の電流変化(図2の
破線で示す電流曲線)を電流検出器10で検出し、A/
D変換回路13を通して電流波形RAM14にデジタル
信号として記憶する。
In this state, when the voltage waveform signal stored from the voltage waveform RAM 7 is output to the charging voltage control circuit 8 and a control signal is output from the charging voltage control circuit 8 to the charger 2, 2, the blank cell 16 is charged according to the voltage change stored in the RAM 7, that is, the voltage change at the time of charging the test cell 15 (charging curve in FIG. 2). The current change (current curve shown by the broken line in FIG. 2) at this time is detected by the current detector 10 and the A / A
It is stored as a digital signal in the current waveform RAM 14 through the D conversion circuit 13.

【0018】前述したように電流波形RAM14に記憶
されたブランクセル16の充電時間に対する電流変化
は、前記試験セル15の充電電圧変化に倣って充電した
時に得られたものであるため、前記試験セル15の作動
極における活物質を除いたブランク部分(集電体も含
む)における電流変化としてみなすこことができる。
As described above, the change in current with respect to the charging time of the blank cell 16 stored in the current waveform RAM 14 is obtained when the test cell 15 is charged according to the change in charging voltage. It can be regarded as a current change in a blank portion (including a current collector) excluding the active material in the 15 working electrodes.

【0019】したがって、前記電流波形RAM14に記
憶されたブランクセル16の充電時の電流変化に基づい
て前記ブランクセル16の所定の充電時間までの電流積
算値をもとめ、これをBCA、前記試験セル15の充電
時の電流(定電流)に基づいて前記充電時間までの電流
積算値を求め、これをSCAとすると、前記試験セルの
作動極中の活物質のみの容量CA(Ah)は、次式から
計算することができる。
Therefore, based on the current change during the charging of the blank cell 16 stored in the current waveform RAM 14, the integrated current value of the blank cell 16 up to a predetermined charging time is obtained, and this is calculated as BC A , A current integrated value up to the charging time is obtained based on the current (constant current) at the time of charging of No. 15 and the obtained value is defined as SC A. The capacity C A (Ah) of only the active material in the working electrode of the test cell is , Can be calculated from the following equation.

【0020】ACA=SCA−BCA また、前記電流波形RAM14に記憶されたブランクセ
ル16の充電時の電流変化および前記電圧波形RAM7
で記憶された電圧変化に基づいて前記ブランクセル16
の所定の充電時間までの電力積算値(A・V・h=W
h)を求め、これをBCW、前記試験セル15の充電時
の電流(定電流)および前記電圧波形RAM7で記憶さ
れた電圧変化に基づいて前記充電時間までの電力積算値
(A・V・h=Wh)を求め、これをSCWとすると、
前記試験セルの作動極中の活物質のみの電力量CW(W
h)は、次式から計算することができる。
AC A = SC A -BC A Also, the current change during charging of the blank cell 16 stored in the current waveform RAM 14 and the voltage waveform RAM 7
The blank cell 16 based on the voltage change stored in
(A · V · h = W)
h) is obtained, and based on BC W , the current (constant current) when charging the test cell 15 and the voltage change stored in the voltage waveform RAM 7, the integrated power value (A · V · h = Wh), and this is SC W ,
The electric energy C W (W) of only the active material in the working electrode of the test cell
h) can be calculated from the following equation.

【0021】CW=SCW−BCW 次に、前述した評価装置による放電時における活物質容
量の評価を図4〜図5を参照して説明する。
C W = SC W −BC W Next, the evaluation of the active material capacity at the time of discharge by the above-described evaluation device will be described with reference to FIGS.

【0022】充電器2により予めに所定の充電を行なっ
た活物質、バインダ、導電材を含む作用極15aと、対
極15bと、参照極15cを有する試験セル15を用意
し、図4に示すように前記作用極15aおよび前記対極
15bを放電器3に対して並列接続し、前記作用極15
aおよび前記参照極15cを電圧検出器5に対して並列
接続する。第1、第5、および第6のスイッチSW1,
SW5,SW6をオープン、SW2を前記放電器3に接
続、第3スイッチSW3を放電器3側に接続、SW4を
仮に放電電圧制御回路9に接続する。
A test cell 15 having a working electrode 15a, a counter electrode 15b, and a reference electrode 15c containing an active material, a binder, and a conductive material which has been charged in advance by the charger 2 is prepared, as shown in FIG. The working electrode 15a and the counter electrode 15b are connected in parallel to the discharger 3;
a and the reference electrode 15 c are connected in parallel to the voltage detector 5. First, fifth, and sixth switches SW1,
SW5 and SW6 are opened, SW2 is connected to the discharger 3, the third switch SW3 is connected to the discharger 3, and SW4 is temporarily connected to the discharge voltage control circuit 9.

【0023】この状態で電流設定回路1から放電器3に
信号を出力して、前記放電器3により前記試験セル15
を所定値の定電流放電(図4に示すように充電時と反対
方向に電流を流す)を行なうと、時間経過にともなって
前記試験セル15の電圧(充電電圧)が逐次低下する。
この電圧変化は、電圧検出器5で検出され、A/D変換
回路6を通して電圧波形RAM7にデジタル信号として
記憶される。
In this state, a signal is outputted from the current setting circuit 1 to the discharger 3 and the discharger 3 outputs the signal to the test cell 15.
Is subjected to a constant current discharge of a predetermined value (a current flows in a direction opposite to that during charging as shown in FIG. 4), the voltage (charging voltage) of the test cell 15 gradually decreases with time.
This voltage change is detected by the voltage detector 5 and stored as a digital signal in the voltage waveform RAM 7 through the A / D conversion circuit 6.

【0024】前記試験セルを評価装置から取り外し、図
5に示すように充電器2により予め充電された活物質を
除いたバインダ、導電材を含む作用極16aと対極16
bと参照極16cを有するブランクセル16を試験セル
と同様に接続する。前記第2スイッチSW2をオープ
ン、前記第6スイッチSW6を前記放電器3側に接続す
る。
The test cell is detached from the evaluation device, and as shown in FIG. 5, a working electrode 16a containing a binder, a conductive material, and a counter electrode 16 excluding an active material previously charged by the charger 2.
The blank cell 16 having b and the reference electrode 16c is connected in the same manner as the test cell. The second switch SW2 is opened, and the sixth switch SW6 is connected to the discharger 3 side.

【0025】この状態で、前記電圧波形RAM7から記
憶された電圧波形信号を前記放電電圧制御回路9に出力
し、この放電電圧制御回路9から制御信号を前記放電器
3に出力すると、この放電器3により前記ブランクセル
16を前記RAM7で記憶した電圧変化、つまり前述し
た試験セル15の放電時の電圧変化、に倣って放電させ
る。この時の電流変化を電流検出器10で検出し、A/
D変換回路13を通して電流波形RAM14にデジタル
信号として記憶する。
In this state, when the voltage waveform signal stored from the voltage waveform RAM 7 is output to the discharge voltage control circuit 9, and a control signal is output from the discharge voltage control circuit 9 to the discharge device 3, In step 3, the blank cell 16 is discharged according to the voltage change stored in the RAM 7, that is, the voltage change when the test cell 15 is discharged. The current change at this time is detected by the current detector 10, and A / A
It is stored as a digital signal in the current waveform RAM 14 through the D conversion circuit 13.

【0026】前述したように電流波形RAM14に記憶
されたブランクセル16の放電時間に対する電流変化
は、前記試験セル15の放電電圧変化に倣って放電した
時に得られたものであるため、前記試験セル15の作動
極における活物質を除いたブランク部分(集電体も含
む)における電流変化としてみなすこことができる。
As described above, the current change with respect to the discharge time of the blank cell 16 stored in the current waveform RAM 14 is obtained when the test cell 15 is discharged in accordance with the discharge voltage change. It can be regarded as a current change in a blank portion (including a current collector) excluding the active material in the 15 working electrodes.

【0027】したがって、前記電流波形RAM14に記
憶されたブランクセル16の放電時の電流変化に基づい
て前記ブランクセル16の所定の放電時間までの電流積
算値を求め、これをBDA、前記試験セル15の放電時
の電流(定電流)に基づいて前記放電時間までの電流積
算値を求め、これをSDAとすると、前記試験セルの作
動極中の活物質のみの容量DA(Ah)は、次式から計
算することができる。
[0027] Thus, the current based on the current change during discharge of the stored blank cell 16 in the waveform RAM14 seek current integrated value up to a predetermined discharge time of the blank cell 16, which BD A, the test cell obtains a current integrated value up to the discharge time on the basis of the 15 discharge when the current (constant current), when this and SD a, the volume of only the active material during operation pole test cells D a (Ah) are , Can be calculated from the following equation.

【0028】DA=SDA−BDA また、前記電流波形RAM14に記憶されたブランクセ
ル16の放電時の電流変化および前記電圧波形RAM7
で記憶された電圧変化に基づいて前記ブランクセル16
の所定の放電時間までの電力積算値(A・V・h=W
h)を求め、これをBDW、前記試験セル15の放電時
の電流(定電流)および前記電圧波形RAM7で記憶さ
れた電圧変化に基づいて前記放電時間までの電力積算値
(A・V・h=Wh)を求め、これをSDWとすると、
前記試験セルの作動極中の活物質のみの電力量DW(W
h)は、次式から計算することができる。
D A = SD A -BD A Further , the current change when the blank cell 16 stored in the current waveform RAM 14 is discharged and the voltage waveform RAM 7
The blank cell 16 based on the voltage change stored in
Power integrated value up to a predetermined discharge time (A · V · h = W
h) is obtained, and is calculated based on BD W , the current (constant current) at the time of discharge of the test cell 15 and the voltage change stored in the voltage waveform RAM 7 until the discharge time (A · V · h = Wh), and this is defined as SD W.
The electric energy D W (W) of only the active material in the working electrode of the test cell
h) can be calculated from the following equation.

【0029】DW=SDW−BDW 以上のように本発明に係わる電極活物質の容量評価装置
によれば、今まで評価することが困難であった電極中の
活物質のみの容量を的確に評価できるため、電極、ひい
ては二次電池の性能向上に関与する活物質の開発促進に
多大に寄与することができる。
[0029] D W = According to the capacity evaluation device of the electrode active material according to the present invention as described above SD W -BD W, precisely the volume of only the active material in the electrode has been difficult to evaluate ever Therefore, it can greatly contribute to the promotion of the development of the active material involved in the performance improvement of the electrode and the secondary battery.

【0030】なお、前記実施例では充電手段および放電
手段をそれぞれ1つ設けた構成にしたが、これに限定さ
れず、次に説明する構成にしてもよい。例えば、前記充
電手段および放電手段は、それぞれ2つの充電器、2つ
の放電器からなる。一方の充電器(第1充電器)に電圧
検出手段および他方の充電器(第2充電器)に記憶信号
をフィードバックさせる電圧波形記憶手段を接続し、か
つ第2充電器に前記電流検出手段および電流波形記憶手
段を接続している。一方の放電器(第1放電器)に前記
電圧検出手段および他方の放電器(第2放電器)に記憶
信号をフィードバックさせる前記電圧波形記憶手段を接
続し、かつ第2放電器に前記電流検出手段および電流波
形記憶手段を接続している。
In the above-described embodiment, one charging means and one discharging means are provided. However, the present invention is not limited to this. For example, the charging means and the discharging means comprise two chargers and two dischargers, respectively. One charger (first charger) is connected to voltage detection means and the other charger (second charger) is connected to voltage waveform storage means for feeding back a storage signal, and the second charger is connected to the current detection means and The current waveform storage means is connected. One of the dischargers (first discharger) is connected to the voltage detection means and the other discharger (second discharger) is connected to the voltage waveform storage means for feeding back a storage signal, and the second discharger is connected to the current detection means. Means and current waveform storage means.

【0031】このような構成によれば、試験セルを前記
第1充電器(または第1放電器)に並列接続し、ブラン
クセルを前記第2充電器(または第2放電器)に並列接
続する。この状態で前記試験セルについて前述したのと
同様な手順で充電(または放電)し、その時の電圧変化
を検出し、電圧波形記憶手段に記憶する。この電圧波形
記憶手段の記憶信号を充電電圧制御回路(または放電電
圧制御回路)を通して前記第2充電器(または第2放電
器)の電圧制御を行なって前記ブランクセルを前記試験
セルの充電電圧(または放電電圧)に倣って充電(また
は放電)して電流変化を検出し、電流波形記憶手段に記
憶する。したがって、第1充電器(または第1放電器)
を用いた試験セルの充電時(または放電時)における電
圧変化の検出・記憶、この記憶データの第2充電器(ま
たは第2放電器)へのフィードバック、電流波形記憶手
段でのブランクセルの充電時(または放電時)の電流変
化の測定を連続的に行なうことが可能になる。
According to such a configuration, a test cell is connected in parallel to the first charger (or the first discharger), and a blank cell is connected in parallel to the second charger (or the second discharger). . In this state, the test cell is charged (or discharged) in the same procedure as described above, and the voltage change at that time is detected and stored in the voltage waveform storage means. The voltage of the second charger (or the second discharger) is controlled through the charge voltage control circuit (or the discharge voltage control circuit) using the storage signal of the voltage waveform storage means, and the blank cell is charged with the charge voltage of the test cell (or the charge voltage of the test cell). Alternatively, charge (or discharge) is performed in accordance with the discharge voltage) to detect a change in current, and stored in the current waveform storage means. Therefore, the first charger (or first discharger)
Detecting and storing a voltage change at the time of charging (or discharging) the test cell, feeding back the stored data to the second charger (or the second discharger), and charging the blank cell by the current waveform storage means. It is possible to continuously measure the current change at the time (or at the time of discharging).

【0032】[0032]

【発明の効果】以上詳述したように本発明に係わる電極
活物質の容量評価装置よれば、電極中の活物質のみの容
量を的確に評価でき、電極、ひいては二次電池の性能向
上に関与する活物質の開発促進に多大に寄与する等顕著
な効果を奏する。
As described above in detail, according to the electrode active material capacity evaluation apparatus according to the present invention, the capacity of only the active material in the electrode can be accurately evaluated, which contributes to the performance improvement of the electrode, and eventually the secondary battery. It has remarkable effects such as greatly contributing to the promotion of development of active materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる電極活物質の容量評価装置(充
電時の状態)を示す回路図。
FIG. 1 is a circuit diagram showing an electrode active material capacity evaluation device (state during charging) according to the present invention.

【図2】本発明に係わる容量評価装置で試験セルを定電
流充電した時の電圧変化およびブランクセルを電圧制御
して充電した時の電流変化を示す特性図。
FIG. 2 is a characteristic diagram showing a voltage change when a test cell is charged at a constant current by the capacity evaluation apparatus according to the present invention and a current change when a blank cell is charged by voltage control.

【図3】図1の容量評価装置によるブランクセルの充電
時の状態を示す回路図。
FIG. 3 is a circuit diagram showing a state when a blank cell is charged by the capacity evaluation device of FIG. 1;

【図4】図1の容量評価装置による試験セルの放電時の
状態を示す回路図。
FIG. 4 is a circuit diagram showing a state when a test cell is discharged by the capacity evaluation device of FIG. 1;

【図5】図1の容量評価装置によるブランクセルの放電
時の状態を示す回路図。
FIG. 5 is a circuit diagram showing a state when a blank cell is discharged by the capacity evaluation device of FIG. 1;

【符号の説明】[Explanation of symbols]

2…充電器、 3…放電器、 5…電圧検出器、 7…電圧波形RAM、 8…充電電圧制御回路、 9…放電電圧制御回路、 10…電流検出器酸、 14…電流波形RAM、 15…試験セル、 16…ブランクセル。 2 ... charger, 3 ... discharger, 5 ... voltage detector, 7 ... voltage waveform RAM, 8 ... charge voltage control circuit, 9 ... discharge voltage control circuit, 10 ... current detector acid, 14 ... current waveform RAM, 15 ... test cell, 16 ... blank cell.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 充電手段と、 前記充電手段に並列に接続される作用極、対極および参
照極を有するセルの電圧変化を検出する電圧検出手段
と、 前記電圧検出手段で検出された電圧変化を逐次記憶し、
かつこの記憶信号を前記充電手段にフィードバックさせ
る電圧波形記憶手段と、 前記充電手段に並列に接続される作用極、対極および参
照極を有するセルの電流変化を検出する電流検出手段
と、 前記電流検出手段で検出された電流変化を逐次記憶する
電流波形記憶手段とを具備し、 活物質、バインダを含む電極層を集電体に担持させた作
用極を有する試験セルを前記充電手段に並列に接続し、
前記充電手段により前記試験セルを定電流充電させ、こ
の時の電圧変化を前記電圧検出手段を通して前記電圧波
形記憶手段に逐次記憶し、 活物質を除いたバインダを含む電極層を集電体に担持さ
せた作用極を有するブランクセルを前記充電手段に並列
に接続し、前記電圧波形記憶回路から記憶信号を前記充
電手段に出力してこの充電手段により前記ブランクセル
を前記電圧波形記憶回路で記憶した電圧変化に倣って充
電させ、この時の電流変化を前記電流検出手段を通して
前記電流波形記憶手段に逐次記憶することを特徴とする
電極活物質の容量評価装置。
A voltage detecting means for detecting a voltage change of a cell having a working electrode, a counter electrode, and a reference electrode connected in parallel to the charging means; and detecting a voltage change detected by the voltage detecting means. Memorize sequentially,
A voltage waveform storage unit for feeding the storage signal back to the charging unit; a current detection unit for detecting a current change in a cell having a working electrode, a counter electrode, and a reference electrode connected in parallel to the charging unit; Current waveform storage means for sequentially storing current changes detected by the means, and a test cell having a working electrode in which an electrode layer containing an active material and a binder is carried on a current collector is connected in parallel to the charging means. And
The test cell is charged at a constant current by the charging means, and the voltage change at this time is sequentially stored in the voltage waveform storage means through the voltage detection means, and the current collector carries an electrode layer containing a binder excluding an active material. The blank cell having the working electrode was connected in parallel to the charging means, a storage signal was output from the voltage waveform storage circuit to the charging means, and the charging means stored the blank cell in the voltage waveform storage circuit. An apparatus for evaluating the capacity of an electrode active material, wherein the battery is charged according to a voltage change, and the current change at this time is sequentially stored in the current waveform storage means through the current detection means.
【請求項2】 前記充電手段は、1つの充電器からな
り、前記試験セルおよび前記ブランクセルは前記充電器
に対して順次並列的に着脱されて電圧検出、電流検出が
なされることを特徴とする請求項1記載の電極活物質の
容量評価装置。
2. The battery charger according to claim 1, wherein the test cell and the blank cell are sequentially attached to and detached from the charger in parallel to perform voltage detection and current detection. The capacity evaluation device for an electrode active material according to claim 1.
【請求項3】 前記充電手段は、2つの充電器からな
り、一方の充電器に前記電圧検出手段および他方の充電
器に記憶信号をフィードバックさせる前記電圧波形記憶
手段を接続し、かつ他方の充電器に前記電流検出手段お
よび電流波形記憶手段を接続することを特徴とする請求
項1記載の電極活物質の容量評価装置。
3. The charging means comprises two chargers, one of which is connected to the voltage detection means and the other of the voltage waveform storage means for feeding back a storage signal to the other charger, and the other charging means. 2. An apparatus for evaluating the capacity of an electrode active material according to claim 1, wherein said current detecting means and said current waveform storing means are connected to a detector.
【請求項4】 さらに放電手段は、切替え手段により前
記充電手段に対して切替え可能に設けられることを特徴
とする請求項1ないし3いずれか記載の電極活物質の容
量評価装置。
4. The capacity evaluation apparatus for an electrode active material according to claim 1, wherein the discharging means is provided so as to be switchable with respect to the charging means by a switching means.
【請求項5】 放電手段と、 前記放電手段に並列に接続される作用極、対極および参
照極を有するセルの電圧変化を検出する電圧検出手段
と、 前記電圧検出手段で検出された電圧変化を逐次記憶し、
かつこの記憶信号を前記放電手段にフィードバックさせ
る電圧波形記憶手段と、 前記放電手段に並列に接続される作用極、対極および参
照極を有するセルの電流変化を検出する電流検出手段
と、 前記電流検出手段で検出された電流変化を逐次記憶する
電流波形記憶手段とを具備し、 活物質、バインダを含む電極層を集電体に担持させた作
用極を有する試験セルを前記放電手段に並列に接続し、
前記放電手段により前記試験セルを定電流放電させ、こ
の時の電圧変化を前記電圧検出手段を通して前記電圧波
形記憶手段に逐次記憶し、 活物質を除いたバインダを含む電極層を集電体に担持さ
せた作用極を有するブランクセルを前記放電手段に並列
に接続し、前記電圧波形記憶回路から記憶信号を前記放
電手段に出力してこの放電手段により前記ブランクセル
を前記電圧波形記憶回路で記憶した電圧変化に倣って放
電させ、この時の電流変化を前記電流検出手段を通して
前記電流波形記憶手段に逐次記憶することを特徴とする
電極活物質の容量評価装置。
5. A discharging unit, a voltage detecting unit for detecting a voltage change of a cell having a working electrode, a counter electrode and a reference electrode connected in parallel to the discharging unit, and a voltage change detected by the voltage detecting unit. Memorize sequentially,
A voltage waveform storage unit for feeding the storage signal back to the discharge unit; a current detection unit for detecting a change in the current of a cell having a working electrode, a counter electrode, and a reference electrode connected in parallel to the discharge unit; A current waveform storage means for sequentially storing current changes detected by the means, and a test cell having a working electrode in which an electrode layer containing an active material and a binder is carried on a current collector is connected in parallel to the discharge means. And
The test cell is discharged at a constant current by the discharging means, and the voltage change at this time is sequentially stored in the voltage waveform storing means through the voltage detecting means, and the current collector carries an electrode layer including a binder excluding an active material. The blank cell having the working electrode was connected in parallel to the discharge means, a storage signal was output from the voltage waveform storage circuit to the discharge means, and the discharge means stored the blank cell in the voltage waveform storage circuit. A capacity evaluation device for an electrode active material, characterized in that discharge is performed in accordance with a voltage change, and the current change at this time is sequentially stored in the current waveform storage means through the current detection means.
【請求項6】 前記放電手段は、1つの放電器からな
り、前記試験セルおよび前記ブランクセルは前記放電器
に対して順次並列的に着脱されて電圧検出、電流検出が
なされることを特徴とする請求項4記載の電極活物質の
容量評価装置。
6. The discharge means comprises a single discharger, wherein the test cell and the blank cell are sequentially attached to and detached from the discharger in parallel to perform voltage detection and current detection. The capacity evaluation device for an electrode active material according to claim 4.
【請求項7】 前記放電手段は、2つの放電器からな
り、一方の放電器に前記電圧検出手段および他方の放電
器に記憶信号をフィードバックさせる前記電圧波形記憶
手段を接続し、かつ他方の放電器に前記電流検出手段お
よび電流波形記憶手段を接続することを特徴とする請求
項4記載の電極活物質の容量評価装置。
7. The discharge means comprises two dischargers. One discharger is connected to the voltage detection means and the other discharger is connected to the voltage waveform storage means for feeding back a storage signal, and the other discharger is connected to the other discharger. 5. An apparatus according to claim 4, wherein said current detection means and said current waveform storage means are connected to an electric appliance.
JP11002508A 1999-01-08 1999-01-08 Device for evaluating capacity of electrode active material Withdrawn JP2000200625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11002508A JP2000200625A (en) 1999-01-08 1999-01-08 Device for evaluating capacity of electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11002508A JP2000200625A (en) 1999-01-08 1999-01-08 Device for evaluating capacity of electrode active material

Publications (1)

Publication Number Publication Date
JP2000200625A true JP2000200625A (en) 2000-07-18

Family

ID=11531322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11002508A Withdrawn JP2000200625A (en) 1999-01-08 1999-01-08 Device for evaluating capacity of electrode active material

Country Status (1)

Country Link
JP (1) JP2000200625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116850A1 (en) * 2018-12-03 2020-06-11 주식회사 엘지화학 Nondestructive method for measuring active area of active material
US11081736B2 (en) 2016-08-23 2021-08-03 Lg Chem, Ltd. Test cell with high reliability in electrode characteristic test

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11081736B2 (en) 2016-08-23 2021-08-03 Lg Chem, Ltd. Test cell with high reliability in electrode characteristic test
WO2020116850A1 (en) * 2018-12-03 2020-06-11 주식회사 엘지화학 Nondestructive method for measuring active area of active material
US11313822B2 (en) 2018-12-03 2022-04-26 Lg Energy Solution, Ltd. Nondestructive method for measuring active area of active material

Similar Documents

Publication Publication Date Title
JP4388094B2 (en) Battery pack protection device and battery pack device
US6081097A (en) Method for charging lithium secondary battery
JP3454657B2 (en) Remaining battery capacity detection method
JP3823503B2 (en) Secondary battery charging control method and charging device therefor
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
US10845418B2 (en) Method and device for operating an energy storage cell, battery module, and vehicle
EP3828567B1 (en) Battery management device, battery management method, and battery pack
JP3395601B2 (en) Battery charging / discharging device
WO1998056059A1 (en) Method for detecting capacity of battery, battery package, and electronic equipment system
JPH11289685A (en) Device for detecting charged state of secondary battery
KR101460248B1 (en) Apparatus and method for measuring degradation of battery and equipment for reproducing battery
JP3558523B2 (en) Charging method for non-aqueous secondary batteries
JP3249788B2 (en) Battery pack power supply
CN111799517A (en) Method for charging secondary battery
JP2003068369A (en) Detecting method of total capacity of secondary battery and detector of total capacity
EP3805768A1 (en) Battery management apparatus, battery management method, and battery pack
JP2003254998A (en) Cell voltage measuring method of battery pack and its device
JPH0787673A (en) Charging controlling system
JP2000200625A (en) Device for evaluating capacity of electrode active material
JP4000240B2 (en) Secondary battery unit and secondary battery remaining amount measuring method
JP3558515B2 (en) Charging method for non-aqueous secondary batteries
JP3392693B2 (en) Rechargeable battery capacity detection method
JP2000171532A (en) Battery-voltage detection means, battery pack, battery control device and battery-voltage detecting method used for it
KR101145993B1 (en) Prediction method of soc for battery
JP5413029B2 (en) Battery deterioration determination device and battery deterioration determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070604