JP2000200623A - Lithium battery having fluorine-containing polymer electrolyte - Google Patents

Lithium battery having fluorine-containing polymer electrolyte

Info

Publication number
JP2000200623A
JP2000200623A JP11037653A JP3765399A JP2000200623A JP 2000200623 A JP2000200623 A JP 2000200623A JP 11037653 A JP11037653 A JP 11037653A JP 3765399 A JP3765399 A JP 3765399A JP 2000200623 A JP2000200623 A JP 2000200623A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte
lithium
lithium salt
lithium battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11037653A
Other languages
Japanese (ja)
Inventor
Reiko Udagawa
礼子 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11037653A priority Critical patent/JP2000200623A/en
Publication of JP2000200623A publication Critical patent/JP2000200623A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the cycle durability of a battery by setting copolymer containing monomer unit composed of vinylidene fluoride and α-fluoroacrylate to a matrix of electrolyte and providing polymer electrolyte containing solution composed of solute of lithium salt and solvent solving the lithium salt. SOLUTION: α-fluoroacrylate of monomer unit is expressed by the formula. In the formula, R is CH2(CF2)nH, CH2(CF2)nF, (CH2)nH, (CF2)nF; n=1-6. The weight ratio of vinylidene fluoride to α-fluoroacrylate is preferably 1/99-99/1 and the molecular weight is desirably to be 10,000-200,000. Carbonate is optimal for the solvent of the lithium salt solution and propylene carbonate and ethylene carbonate are adaptable. This lithium battery using fluorine-containing electrolyte is superior in stability of polymer electrolyte, has superior electric conductivity, and superior in the cycle durability because of its superior bond between the electrolyte and electrode material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、含フッ素高分子電
解質を用いたリチウム電池に関する。特にサイクル耐久
性に優れたリチウム二次電池に関する。
The present invention relates to a lithium battery using a fluorine-containing polymer electrolyte. In particular, it relates to a lithium secondary battery having excellent cycle durability.

【0002】[0002]

【従来の技術】デバイスとして代表的なリチウム二次電
池は、高エネルギー密度なので、最近急速に携帯電話、
パソコン等に使用されるようになり、大きな伸展を示し
ている。たとえば、LiMnO、LiCoO、Li
NiO等の金属酸化物を陽極に用い、リチウム、リチ
ウムイオンを吸蔵・放出できる炭素材料を陰極に用い、
有機溶媒とリチウム塩からなる非水電解液を用いたリチ
ウム二次電池が多く研究されている。
2. Description of the Related Art Lithium secondary batteries, which are typical devices, have a high energy density, and have recently been rapidly used in mobile phones,
It has been used for personal computers, etc., showing a great extension. For example, LiMnO 2 , LiCoO 2 , Li
A metal oxide such as NiO 2 is used for the anode, and a carbon material capable of inserting and extracting lithium and lithium ions is used for the cathode.
Many studies have been made on lithium secondary batteries using a non-aqueous electrolyte composed of an organic solvent and a lithium salt.

【0003】特開平4−506726号公報、特開平8
−507407号公報に高分子電解質が 提案され
ているが、ポリエチレンオキシド系高分子電解質は、有
機電解液の保持安定性が悪く網目構造のポリアクリレー
ト系高分子電解質は、電気化学的に不安定であり4V級
の電池には適していない。
[0003] JP-A-4-506726, JP-A-8-1996
Japanese Patent Application Laid-Open No. 507407 proposes a polymer electrolyte. However, polyethylene oxide-based polymer electrolytes have poor retention stability of organic electrolytes, and network-structured polyacrylate-based polymer electrolytes are electrochemically unstable. Yes, not suitable for 4V class batteries.

【0004】特開平10−294131号公報、特開平
10−284128号公報では、フッ化ビニリデン・ヘ
キサフルオロプロピレン共重合体、フッ化ビニリデン・
パーフルオロアルキルビニールエーテル共重合体が提案
されており、従来の問題が改善され、リチウム二次電池
に用いると充放電サイクル耐久性が向上することが報告
されている。リチウム二次電池は用途が広く、よりサイ
クル耐久性に優れたものを求めて研究が進められてい
る。
[0004] JP-A-10-294131 and JP-A-10-284128 disclose vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride
It has been reported that a perfluoroalkyl vinyl ether copolymer has been proposed, which solves the conventional problems and improves the charge / discharge cycle durability when used in a lithium secondary battery. Lithium secondary batteries have a wide range of uses and are being studied in search of batteries having better cycle durability.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、含フ
ッ素電解質を用いることにより、電解質の保持安定性を
高め、サイクル耐久性に優れたリチウム二次電池を提供
することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lithium secondary battery which uses a fluorinated electrolyte to improve the retention stability of the electrolyte and has excellent cycle durability.

【0006】[0006]

【課題を解決するための手段】リチウム電池(陽極、陰
極および電解質からなる)において、電解質がフッ化ビ
ニリデンからなるモノマー単位と、式(1)で示される
α−フルオロアクリレートからなるモノマー単位(但
し、フッ素原子の一部が塩素原子または臭素原子で置換
されていてもよい)を含む共重合体を母体とし、リチウ
ム塩の溶質とリチウム塩を溶解できる溶媒からなる溶液
を含有する高分子電解質である事を特徴とするリチウム
電池を提供する。
In a lithium battery (comprising an anode, a cathode, and an electrolyte), the electrolyte is composed of a monomer unit composed of vinylidene fluoride and a monomer unit composed of α-fluoroacrylate represented by the formula (1) (provided that the monomer unit is composed of α-fluoroacrylate). And a polymer electrolyte containing a solution comprising a solute of a lithium salt and a solvent capable of dissolving the lithium salt, based on a copolymer containing a fluorine atom (a part of which may be replaced by a chlorine atom or a bromine atom). There is provided a lithium battery characterized by a certain feature.

【化2】 [式中、RはCH(CF)nH、CH(CF
nF、(CH)nHまたは(CF)nF(nは1〜
6の整数)] 本発明のリチウム電池は、特に二次電池として使用する
場合は、安全性の面から、陰極にリチウムの層間化合物
を用いたリチウム二次電池が好ましい。
Embedded image [Wherein R is CH 2 (CF 2 ) nH, CH 2 (CF 2 )
nF, (CH 2) nH or (CF 2) nF (n is 1 to
Integer of 6)] When the lithium battery of the present invention is used particularly as a secondary battery, a lithium secondary battery using a lithium intercalation compound for the cathode is preferable from the viewpoint of safety.

【0007】本発明における高分子電解質の母体は、フ
ッ化ビニリデンからなるモノマー単位(但し、フッ素原
子の一部が塩素原子または臭素原子で置換されていても
よい)を含む共重合体である。この共重合体は、これら
と共重合できる他のモノマー単位を20重量%以下の範
囲で共重合することができる。他のモノマー単位として
は、例えばテトラフルオロエチレン、クロロトリフルオ
ロエチレン、トリフルオロエチレン、フッ化ビニール、
ヘキサフルオロプロピレン、パーフルオロアルキルビニ
ールエーテル、エチレン、エチルビニールエーテル、シ
クロヘキシルビニールエーテル、アクリル酸、アクリル
酸エステル、メタクリル酸、メタクリル酸エステル等が
挙げられる。
[0007] The matrix of the polymer electrolyte in the present invention is a copolymer containing a monomer unit composed of vinylidene fluoride (provided that a part of fluorine atoms may be substituted with chlorine atoms or bromine atoms). This copolymer can be copolymerized with other monomer units which can be copolymerized with these in an amount of 20% by weight or less. As other monomer units, for example, tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinyl fluoride,
Hexafluoropropylene, perfluoroalkyl vinyl ether, ethylene, ethyl vinyl ether, cyclohexyl vinyl ether, acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester and the like can be mentioned.

【0008】本発明の共重合体中のフッ化ビニリデンと
α−フルオロアクリレートの重量比は1/99〜99/
1が好ましい。重量比が99/1を超えると共重合体の
結晶性が高くなり、柔軟性が低下し、成形加工性が悪く
なるので、リチウム塩溶液が母体となる高分子電解質の
中に入りにくくなり、電解質の電気伝導度が低くなるの
でよくない。重量比が1/99未満であると電解質の柔
軟性が高くなり、強度が低下するので、99/5〜5/
95が好ましい。電解質の強度を高くするためには、フ
ッ化ビニリデンとα−フルオロアクリレートの重量比が
40/60〜99/5である共重合体が好ましい。本発
明で使用する共重合体の分子量は1万〜20万が好まし
い。20万を超えると、粘度が高くなりリチウム塩の保
持量が少なくなって高分子電解質の電気伝導度が低下す
るのでよくない。また、1万未満であると、高分子電解
質の機械的強度が非常に低下するので、3万〜10万で
あるのがより好ましい。
The weight ratio of vinylidene fluoride to α-fluoroacrylate in the copolymer of the present invention is from 1/99 to 99 /
1 is preferred. When the weight ratio exceeds 99/1, the crystallinity of the copolymer increases, the flexibility decreases, and the molding processability deteriorates, so that it becomes difficult for the lithium salt solution to enter the parent polymer electrolyte, It is not good because the electric conductivity of the electrolyte becomes low. When the weight ratio is less than 1/99, the flexibility of the electrolyte increases and the strength decreases, so that 99/5 to 5 /
95 is preferred. In order to increase the strength of the electrolyte, a copolymer in which the weight ratio of vinylidene fluoride to α-fluoroacrylate is 40/60 to 99/5 is preferable. The molecular weight of the copolymer used in the present invention is preferably 10,000 to 200,000. If it exceeds 200,000, the viscosity increases, the amount of lithium salt retained decreases, and the electric conductivity of the polymer electrolyte decreases, which is not good. When the molecular weight is less than 10,000, the mechanical strength of the polymer electrolyte is extremely reduced. Therefore, the molecular weight is more preferably 30,000 to 100,000.

【0009】本発明のリチウム塩溶液の溶媒としては炭
酸エステルが好ましい。例えば、プロピレンカーボネー
ト、エチレンカーボネート、ジメチルカーボネート、ジ
エチルカーボネート等が挙げられる。本発明では上記炭
酸エステルを単独または2種以上を混合して使用でき、
他の溶媒と混合して使用してもよい。
[0009] As a solvent for the lithium salt solution of the present invention, a carbonate ester is preferable. For example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and the like can be mentioned. In the present invention, the above carbonates can be used alone or in combination of two or more,
It may be used by mixing with other solvents.

【0010】 塩の少なくとも1種以上を使用するのが好ましい。リチ
ウム塩溶液は、リチウム塩を前記溶媒に0.2〜2.0
モル/lの濃度で溶解するのが好ましく、0.5〜1.
5モル/lがより好ましい。この範囲から外れると、イ
オン伝導度が低下し、高分子電解質の電気伝導度が低下
してしまう。本発明では、母体となる高分子電解質中に
前記リチウム塩溶液が均一に分布した高分子電解質を使
用するが、リチウム塩溶液の含有量は30〜80重量%
が好ましく、40〜65重量%がより好ましい。
[0010] It is preferred to use at least one of the salts. The lithium salt solution is prepared by adding a lithium salt to the solvent in an amount of 0.2 to 2.0.
It is preferably dissolved in a concentration of mol / l, preferably 0.5 to 1.
5 mol / l is more preferred. Outside this range, the ionic conductivity decreases and the electrical conductivity of the polymer electrolyte decreases. In the present invention, the polymer electrolyte in which the lithium salt solution is uniformly distributed in the matrix polymer electrolyte is used, but the content of the lithium salt solution is 30 to 80% by weight.
, And more preferably 40 to 65% by weight.

【0011】本発明における高分子電解質は色々な方法
で作製出来る。例えば、母体となる共重合体を有機溶媒
に溶解させ、リチウム塩を溶媒に溶解させた溶液と混合
する。この混合液をガラス基板上にバーコーターまたは
ドクターブレードにより塗布し、乾燥して有機溶媒を除
去し、高分子電解質フィルムを作製する。有機溶媒とし
ては、テトラヒドロフラン、メチルエチルケトン、メチ
ルイソブチルケトン、アセトン、アセトニトリル、ジメ
チルカーボネート、酢酸エチル、酢酸ブチル等が使用出
来るが、テトラヒドロフラン、アセトン等の沸点が80
℃以下の有機溶媒が好ましい。
The polymer electrolyte of the present invention can be prepared by various methods. For example, a copolymer serving as a base is dissolved in an organic solvent, and mixed with a solution in which a lithium salt is dissolved in the solvent. This mixed solution is applied on a glass substrate by a bar coater or a doctor blade, and dried to remove an organic solvent, thereby producing a polymer electrolyte film. As the organic solvent, tetrahydrofuran, methyl ethyl ketone, methyl isobutyl ketone, acetone, acetonitrile, dimethyl carbonate, ethyl acetate, butyl acetate and the like can be used.
Organic solvents at a temperature of less than or equal to C are preferred.

【0012】陰極活物質としては、二次電池の場合はリ
チウムイオンを吸蔵・放出可能な材料であり、例えばリ
チウム金属、リチウム合金、炭素材料等が挙げられる。
炭素材料としては、種々の熱分解条件で有機物を熱分解
したものや黒鉛等が使用できる。
In the case of a secondary battery, the cathode active material is a material capable of occluding and releasing lithium ions, and examples thereof include a lithium metal, a lithium alloy, and a carbon material.
As the carbon material, a material obtained by thermally decomposing an organic substance under various thermal decomposition conditions, graphite, or the like can be used.

【0013】陽極活物質としては、二次電池の場合はリ
チウムイオンを吸蔵・放出可能な物質であり、例えば、
Ti、Zr、Nb、Cr、Mn、Fe、Co、Ni、Z
n、In、Sn、Sb等の金属を主成分とする酸化物お
よび複合酸化物、または前記金属とリチウムとの複合酸
化物等が使用できる。本発明の陽極および陰極は、活物
質を有機溶剤と混練して泥しようとし、それを金属箔集
電体に塗布、乾燥して作製するのが望ましい。また、本
発明では、前記共重合体を有機溶媒に溶解させずに多孔
性フィルム状に形成し、陽極および陰極の間に入れ、リ
チウム塩溶液を吸収させて電池素子を形成することもで
きる。
In the case of a secondary battery, the anode active material is a material capable of inserting and extracting lithium ions.
Ti, Zr, Nb, Cr, Mn, Fe, Co, Ni, Z
Oxides and composite oxides containing a metal such as n, In, Sn, and Sb as a main component, or a composite oxide of the metal and lithium can be used. The anode and the cathode of the present invention are desirably prepared by kneading the active material with an organic solvent so as to make the mud, apply it to a metal foil current collector, and dry it. In the present invention, the battery element can also be formed by forming the copolymer into a porous film without dissolving it in an organic solvent, placing the copolymer between an anode and a cathode, and absorbing a lithium salt solution.

【0014】[0014]

【実施例】本発明を実施例により具体的に説明するが、
本発明はこれらの実施例によって限定されるものではな
い。
EXAMPLES The present invention will be described specifically with reference to Examples.
The present invention is not limited by these examples.

【0015】実施例1 内容積11のオートクレーブ(攪拌機付き)に、蒸留水
を500g、t−ブタノールを60g、sec−ブタノ
ールを0.6g、C17COONHを6g、Na
HPO・12HOを12g、過硫酸アンモニウム
を6g、FeSO・7HOを0.009g、EDT
A・2HOを11g、CH=CF−COOCH
CFCFを65g添加し、窒素ガスで置換した
後、フッ化ビニリデンを100g仕込み、25℃でホル
ムアルデヒドナトリウムスルホキシラート二水塩の1重
量%水溶液を20ml/hrの速度で添加し、25気圧
の圧力を保持しながらフッ化ビニリデンを仕込み重合を
行った。5時間後反応を停止して濃度30%のディスパ
ージョンを得た。凝集、洗浄、乾燥後共重合体を回収し
た。この共重合体の組成は、フッ化ビニリデン/α−フ
ルオロアクリレートが重量比で80/20であり、テト
ラヒドロフランを溶媒とした極限粘度は1.3dl/g
であった。
Example 1 In an autoclave (with a stirrer) having an internal volume of 11, 500 g of distilled water, 60 g of t-butanol, 0.6 g of sec-butanol, 6 g of C 8 F 17 COONH 4 and 6 g of Na
2 HPO 4 · 12H 2 O and 12 g, 6 g of ammonium persulfate, FeSO 4 · 7H 2 O and 0.009 g, EDT
A · 2H 2 O, 11 g, CH 2 CFCF—COOCH 2 C
After adding 65 g of F 2 CF 2 CF 3 and purging with nitrogen gas, 100 g of vinylidene fluoride was charged, and a 1% by weight aqueous solution of formaldehyde sodium sulfoxylate dihydrate was added at 25 ° C. at a rate of 20 ml / hr. While keeping the pressure at 25 atm, vinylidene fluoride was charged and polymerization was carried out. After 5 hours, the reaction was stopped to obtain a dispersion having a concentration of 30%. After coagulation, washing and drying, the copolymer was recovered. The composition of this copolymer is such that the weight ratio of vinylidene fluoride / α-fluoroacrylate is 80/20, and the intrinsic viscosity using tetrahydrofuran as a solvent is 1.3 dl / g.
Met.

【0016】アルゴンガス雰囲気中で、この共重合体1
0重量部をテトラヒドロフラン32重量部に攪拌しなが
ら加熱し溶解させた。(溶液1)次にエチレンカーボネ
ート/プロピレンカーボネート(1/1体積比)の混合
溶媒にLiPFを1モル/lの濃度でアルゴンガス雰
囲気中で溶解した。(溶液2)21重量部の溶液1に5
重量部の溶液2を加え、60℃に加熱して攪拌した。こ
の混合溶液をガラス基板上にドクターブレードを用いて
塗布し、40℃で1時間乾燥させてテトラヒドロフラン
を除去し、厚さ100μmの透明な高分子電解質フィル
ムを作製した。このフィルムの組成は、共重合体、エチ
レンカーボネート/プロピレンカーボネート混合溶媒、
LiPFが重量比で50/44/6であった。このフ
ィルムをガラス基板から剥離し、交流インピーダンス法
により、25℃のアルゴンガス雰囲気中で電気伝導度を
測定した。電気伝導度は7×10−4s/cmであっ
た。
The copolymer 1 was placed in an argon gas atmosphere.
0 parts by weight was heated and dissolved in 32 parts by weight of tetrahydrofuran with stirring. (Solution 1) Next, LiPF 6 was dissolved in a mixed solvent of ethylene carbonate / propylene carbonate (1/1 volume ratio) at a concentration of 1 mol / l in an argon gas atmosphere. (Solution 2) 5 per 21 parts by weight of solution 1
A part by weight of solution 2 was added, and the mixture was heated to 60 ° C. and stirred. This mixed solution was applied on a glass substrate using a doctor blade, and dried at 40 ° C. for 1 hour to remove tetrahydrofuran, thereby producing a 100 μm-thick transparent polymer electrolyte film. The composition of this film is a copolymer, a mixed solvent of ethylene carbonate / propylene carbonate,
LiPF 6 was 50/44/6 by weight. The film was peeled from the glass substrate, and the electrical conductivity was measured by an AC impedance method in an argon gas atmosphere at 25 ° C. The electric conductivity was 7 × 10 −4 s / cm.

【0017】陽極活物質としてLiCoO粉末を11
重量部、導電材としてアセチレンブラックを1.5重量
部、上記共重合体を6重量部、溶液2を11重量部およ
びアセトン70重量部をアルゴンガス雰囲気中で混合
し、攪拌しながら加温して泥しょうを調製した。この泥
しょうをアルミニウム箔にドクターブレードを用いて塗
布し、乾燥して陽極を作製した。陰極活物質としてメソ
フェズカーボンファイバ(平均直径8μm、平均長さ5
0μm)12重量部、上記共重合体を6重量部、溶液2
を11重量部およびアセトンを70重量部をアルゴンガ
ス雰囲気中で混合し、攪拌しながら加温して泥しょうを
調製した。この泥しょうを銅箔にドクターブレードを用
いて塗布し、乾燥させて厚さ20μmの陰極を作製し
た。
LiCoO 2 powder as an anode active material is 11
Parts by weight, 1.5 parts by weight of acetylene black as a conductive material, 6 parts by weight of the above copolymer, 11 parts by weight of solution 2 and 70 parts by weight of acetone were mixed in an argon gas atmosphere, and heated while stirring. To prepare the slurry. The slurry was applied to an aluminum foil using a doctor blade and dried to produce an anode. Meso-fez carbon fiber (average diameter 8 μm, average length 5
0 μm) 12 parts by weight, 6 parts by weight of the above copolymer, solution 2
Was mixed with 70 parts by weight of acetone in an argon gas atmosphere, and heated while stirring to prepare a slurry. The slurry was applied to a copper foil using a doctor blade and dried to produce a cathode having a thickness of 20 μm.

【0018】上記高分子電解質フィルムを1.5cm角
に成形し、これを挟んで陽極と陰極を向かい合わせ、厚
さ1.5mm、長さ3cm角の2枚のポリテトラフルオ
ロエチレン板の間に入れ強く締めて、その外側を外装フ
イルムで被覆する事によりリチウムイオン二次電池素子
を組み立てた。これらの操作はすべてアルゴンガス雰囲
気中で行った。充放電条件は、0.5クーロンの定電流
で充電電圧は4.2Vまで、放電電圧は2.5Vまでの
充放電サイクル試験を行った。その結果、1000サイ
クル後の容量保持率は95%であった。
The above-mentioned polymer electrolyte film is formed into a 1.5 cm square, and the anode and the cathode are opposed to each other with the film sandwiched therebetween, and placed between two polytetrafluoroethylene plates each having a thickness of 1.5 mm and a length of 3 cm square. By tightening, the outside was covered with an exterior film to assemble a lithium ion secondary battery element. All of these operations were performed in an argon gas atmosphere. The charge and discharge conditions were a charge and discharge cycle test at a constant current of 0.5 coulomb with a charge voltage up to 4.2 V and a discharge voltage up to 2.5 V. As a result, the capacity retention after 1000 cycles was 95%.

【0019】実施例2 CH=CF−COOCHCFCFCFの代わ
りにCH=CF−COOCHCFCFCF
を仕込む以外は実施例1と同様にフッ化ビニリデン
とα−フルオロアクリレートの共重合体(重量比で88
/12)を合成した。極限粘度は1.5dl/gであっ
た。この共重合体を用いた以外は実施例1と同様に厚さ
100μmの高分子フイルムを作製した。このフイルム
の電気伝導度は5×10−4s/cmであった。この高
分子電解質を用いて電池素子を作製し充放電サイクル試
験を行った。1000サイクル後の容量保持率は90%
であった。
[0019] Instead of Example 2 CH 2 = CF-COOCH 2 CF 2 CF 2 CF 3 CH 2 = CF-COOCH 2 CF 2 CF 2 CF 2 C
Copolymers of Example 1 and similarly vinylidene fluoride and α- fluoroacrylate except that charged the F 3 (88 in weight ratio
/ 12) were synthesized. The intrinsic viscosity was 1.5 dl / g. A polymer film having a thickness of 100 μm was prepared in the same manner as in Example 1 except that this copolymer was used. The electrical conductivity of this film was 5 × 10 −4 s / cm. A battery element was manufactured using this polymer electrolyte, and a charge / discharge cycle test was performed. 90% capacity retention after 1000 cycles
Met.

【0020】実施例3 陰極として厚さ100μmのリチウム・アルミニウム合
金箔を用いた以外は実施例1と同様にしてリチウム二次
電池素子を作製し、充放電サイクル試験を行ったとこ
ろ、1000サイクル後の容量保持率は88%であっ
た。
Example 3 A lithium secondary battery element was prepared in the same manner as in Example 1 except that a lithium-aluminum alloy foil having a thickness of 100 μm was used as a cathode, and a charge / discharge cycle test was performed. Was 88%.

【0021】[0021]

【発明の効果】本発明のリチウム電池は、高分子電解質
の安定性に優れ、良好な電気伝導度を保ち、さらに高分
子電解質と電極活物質との密着がよいので、充放電サイ
クル耐久性に優れている。
The lithium battery of the present invention has excellent stability of the polymer electrolyte, maintains good electric conductivity, and has good adhesion between the polymer electrolyte and the electrode active material. Are better.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウム電池(陽極、陰極および電解質か
らなる)において、電解質が、フッ化ビニリデンからな
るモノマー単位と、式(1)で示されるα−フルオロア
クリレートからなるモノマー単位(但し、フッ素原子の
一部が塩素原子または臭素原子で置換されていてもよ
い)を含む共重合体を母体とし、リチウム塩の溶質とリ
チウム塩を溶解できる溶媒からなる溶液を含有する含フ
ッ素高分子電解質であることを特徴とするリチウム電
池。 【化1】 〔式中、RはCH(CFH、CH(CF
F、(CHHまたは(CFF(nは1〜
6の整数)〕
In a lithium battery (comprising an anode, a cathode and an electrolyte), the electrolyte is composed of a monomer unit composed of vinylidene fluoride and a monomer unit composed of α-fluoroacrylate represented by the formula (1) (provided that a fluorine atom (A part of which may be substituted with a chlorine atom or a bromine atom) is a fluorine-containing polymer electrolyte containing a solution comprising a solute of a lithium salt and a solvent capable of dissolving the lithium salt as a base. A lithium battery, characterized in that: Embedded image [Wherein, R is CH 2 (CF 2 ) n H, CH 2 (CF 2 )
n F, (CH 2) n H or (CF 2) n F (n is 1 to
6)
【請求項2】前記共重合体のフッ化ビニリデンからなる
モノマー単位とα−フルオロアクリレートからなるモノ
マー単位の重量比が95/5〜5/95である請求項1
記載のリチウム電池。
2. The copolymer according to claim 1, wherein the weight ratio of the monomer unit composed of vinylidene fluoride and the monomer unit composed of α-fluoroacrylate is 95/5 to 5/95.
The lithium battery as described.
【請求項3】高分子電解質に含有される溶媒が、炭酸エ
ステルである請求項1または請求項2に記載のリチウム
電池。
3. The lithium battery according to claim 1, wherein the solvent contained in the polymer electrolyte is a carbonate ester.
【請求項4】高分子電解質が、リチウム塩を溶解した溶
液を30〜80重量%含有する請求項1、2または3に
記載のリチウム電池。
4. The lithium battery according to claim 1, wherein the polymer electrolyte contains 30 to 80% by weight of a solution in which a lithium salt is dissolved.
JP11037653A 1999-01-06 1999-01-06 Lithium battery having fluorine-containing polymer electrolyte Pending JP2000200623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11037653A JP2000200623A (en) 1999-01-06 1999-01-06 Lithium battery having fluorine-containing polymer electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11037653A JP2000200623A (en) 1999-01-06 1999-01-06 Lithium battery having fluorine-containing polymer electrolyte

Publications (1)

Publication Number Publication Date
JP2000200623A true JP2000200623A (en) 2000-07-18

Family

ID=12503616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11037653A Pending JP2000200623A (en) 1999-01-06 1999-01-06 Lithium battery having fluorine-containing polymer electrolyte

Country Status (1)

Country Link
JP (1) JP2000200623A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150895A1 (en) * 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019199752A1 (en) 2018-04-10 2019-10-17 Arkema Inc. Functional fluoropolymers
WO2019207983A1 (en) * 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module
US11945776B2 (en) 2018-01-30 2024-04-02 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019150895A1 (en) * 2018-01-30 2019-08-08 ダイキン工業株式会社 Electrolyte, electrochemical device, lithium ion secondary battery, and module
CN111557061A (en) * 2018-01-30 2020-08-18 大金工业株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and assembly
EP3731329A4 (en) * 2018-01-30 2021-09-08 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module
CN111557061B (en) * 2018-01-30 2024-01-05 大金工业株式会社 Electrolyte, electrochemical device, lithium ion secondary battery and assembly
US11945776B2 (en) 2018-01-30 2024-04-02 Daikin Industries, Ltd. Electrolyte, electrochemical device, lithium ion secondary battery, and module
WO2019199752A1 (en) 2018-04-10 2019-10-17 Arkema Inc. Functional fluoropolymers
CN111954657A (en) * 2018-04-10 2020-11-17 阿科玛股份有限公司 Functional fluoropolymers
JP2021521296A (en) * 2018-04-10 2021-08-26 アーケマ・インコーポレイテッド Functional fluoropolymer
WO2019207983A1 (en) * 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module

Similar Documents

Publication Publication Date Title
JP4092669B2 (en) Solid electrolyte secondary battery
JPH10294131A (en) Lithium battery having polymer electrolyte
JP5867550B2 (en) Method for producing fluorine-containing copolymer, polymer electrolyte, electrode for lithium battery, and lithium battery
JP3675460B2 (en) Organic electrolyte and lithium battery using the same
JP4050251B2 (en) Organic electrolyte and lithium battery using the same
WO1999010946A1 (en) Lithium secondary battery, polymer gel electrolyte, and binder for lithium secondary batteries
JP2003268053A (en) Binder resin for battery and electrode and battery comprising the same
KR102224023B1 (en) Binder for rechargable battery, binder resin composition for rechargable battery, electrode for rechargable battery, and rechargable battery
JP2000067852A (en) Lithium secondary battery
JPH11195419A (en) Depolarizing mix for nonaqueous battery and nonaqueous battery
JPH09115506A (en) Anode for rechargeable lithium electrochemical battery and manufacture thereof
JPH11312535A (en) Solid electrolyte secondary battery
JPH07320782A (en) Solid electrolytic secondary battery
JP4889067B2 (en) Non-aqueous battery and electrode paste and electrode used in the battery
JP4170418B2 (en) Nonaqueous secondary battery electrode and nonaqueous secondary battery
JPH1186875A (en) Positive electrode for nonaqueous secondary battery
JP2004327422A (en) Composite polymer electrolyte having different morphology for lithium secondary battery and method of manufacturing the same
JPH10284128A (en) Lithium battery
JP2000200623A (en) Lithium battery having fluorine-containing polymer electrolyte
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP2000228218A (en) Lithium battery having high polymer electrolyte
JPH11329448A (en) Nonaqueous secondary battery positive electrode current collector and nonaqueous secondary battery having this current collector
JP4438141B2 (en) Polymer lithium secondary battery
JPH09289038A (en) Polymer solid electrolyte and battery using it
JP3757489B2 (en) Lithium battery