JP2000199797A - Steam separator for bwr - Google Patents

Steam separator for bwr

Info

Publication number
JP2000199797A
JP2000199797A JP11000101A JP10199A JP2000199797A JP 2000199797 A JP2000199797 A JP 2000199797A JP 11000101 A JP11000101 A JP 11000101A JP 10199 A JP10199 A JP 10199A JP 2000199797 A JP2000199797 A JP 2000199797A
Authority
JP
Japan
Prior art keywords
steam
reactor
liquid
stage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11000101A
Other languages
Japanese (ja)
Inventor
Kazuhide Takamori
和英 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11000101A priority Critical patent/JP2000199797A/en
Publication of JP2000199797A publication Critical patent/JP2000199797A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress lowering of reactor pressure during a transition by extending tubing from a drain opening to a reactor liquid surface in a second stage, and constituting a flow passage in which drain does not come directly into contact with a steam dome. SOLUTION: When a transition phenomenon in which a reactor closing a main steam tube and a condensate tube scrams occurs, the steam separator 8 introduces rising gas-liquid two-phase flow into a cylinder after heating, and a swirl flow is given by a wing or the like. Thereby centrifugal force is produced, the liquid phase of large density is collected on the outer peripheral part of a swirl drum 102, separated from steam flowing in the center part in a pick-off ring 103, and drained through the drain passage 104 of the liquid phase and a drain outlet 105. Then, tubing 201 is extended to a reactor liquid surface from the drain outlet 105 in the second stage 102, drainage of subcooled water flowing therein is not directly heat-exchanged with the steam of a steam dome, and a heat transfer area is also markedly reduced. Thus, the lowering width of reactor pressure is also lessened, and pressure lowering is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子炉等のように
液体を加熱し蒸気を発生させ、その蒸気を発電等に利用
するシステムの気水分離器に係り、特に、気液二相流よ
り分離された液体の排出流路を改良したBWR用気水分
離器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam-water separator for a system for heating a liquid to generate steam, such as a nuclear reactor, and utilizing the steam for power generation and the like. The present invention relates to a BWR steam / water separator having an improved discharge channel for separated liquid.

【0002】[0002]

【従来の技術】図5は従来技術による沸騰水型原子炉
(BWR)の縦断面図を示す。原子炉圧力容器1の給水
入口2から給水が流れダウンカマ3を通って、インター
ナルポンプ4を経て炉心5に流れる。炉心5で加熱され
た水はシュラウドヘッド6の上のスタンドパイプ7を経
て、気水分離器8と蒸気乾燥器9で蒸気と水に分離され
た後、蒸気は主蒸気管10を経た後タービンへ、水はダ
ウンカマ3へ流れる。
2. Description of the Related Art FIG. 5 is a longitudinal sectional view of a boiling water reactor (BWR) according to the prior art. Feed water flows from a feed water inlet 2 of the reactor pressure vessel 1, passes through a downcomer 3, and flows through an internal pump 4 to a reactor core 5. The water heated in the reactor core 5 passes through a standpipe 7 above the shroud head 6 and is separated into steam and water by a steam separator 8 and a steam dryer 9. And water flows to downcomer 3.

【0003】図6は従来技術による気水分離器の縦断面
図を示す。従来の気水分離器は特開平5−346483 号公報
に記載のように、加熱後、上昇する気液二相流を円筒内
に導き螺旋状の翼101等により旋回流を与える構造と
なっていた。こうして旋回流とすることで遠心力が発生
し、密度の大きい液相は円筒の旋回胴102外周部に集
まり、ピックオフリング103により中央部を流れる蒸
気より分離される。
FIG. 6 is a longitudinal sectional view of a conventional steam separator. As described in JP-A-5-346483, a conventional steam-water separator has a structure in which after heating, a rising gas-liquid two-phase flow is guided into a cylinder and a swirling flow is provided by a spiral blade 101 or the like. Was. In this way, a centrifugal force is generated by the swirling flow, and a liquid phase having a high density is collected on the outer peripheral portion of the cylindrical revolving drum 102, and is separated from the vapor flowing through the central portion by the pickoff ring 103.

【0004】旋回胴の外周部に集まった液相は、旋回胴
の外周部に設けた液相の排出流路104を下降して、排
出口105を経て、加熱部へ導かれる再循環液相中へ排
出される。図6に示すように気水分離器8は3個のステ
ージからなり、下側から第1ステージ,第2ステージ,
第3ステージと呼び、排出口105も3個設けられてい
る。第2ステージの排出口105は蒸気ドームの蒸気と
直接的に接触していた。
[0004] The liquid phase collected on the outer periphery of the revolving drum descends through a liquid discharge passage 104 provided on the outer periphery of the revolving drum, and is led to a recirculating liquid phase through an outlet 105 to a heating unit. It is discharged inside. As shown in FIG. 6, the steam separator 8 comprises three stages, a first stage, a second stage,
Called the third stage, three discharge ports 105 are also provided. The outlet 105 of the second stage was in direct contact with the steam in the steam dome.

【0005】本発明では主蒸気管と給水管が閉じた原子
炉がスクラムした過渡現象が起きた場合の気水分離器を
対象にしている。図4は従来技術の現象モデルを示す。
従来技術の気水分離器では、定格運転時の飽和状態の気
液二相流と違い過渡時にサブクール水単相流が流入す
る。また、原子炉水位も過渡時は定格運転時に比べ通常
水位から約1m低下する。気水分離器に流入したサブク
ール水は旋回し、第2ステージの排出口105からスプ
レー状に排水される。
[0005] The present invention is directed to a steam-water separator in the event of a transient event in which the reactor with its main steam pipe and water supply pipe closed is scrammed. FIG. 4 shows a phenomenon model according to the prior art.
In the prior art steam-water separator, unlike the saturated gas-liquid two-phase flow at the time of rated operation, the subcooled water single-phase flow flows in the transient state. The reactor water level also drops by about 1 m from the normal water level during the transient operation during the transient operation. The subcooled water that has flowed into the steam separator turns and is discharged in a spray form from the outlet 105 of the second stage.

【0006】気水分離器8を内包する蒸気ドームの蒸気
はこのスプレー状のスブクール水と、点線で囲んだ領域
Aで熱交換し、凝縮する現象がある。その結果、蒸気ド
ーム(原子炉)圧力は低下する。また、圧力低下の別の
原因として、第1ステージの排出口105からの排水に
よりサブクール水液面下の点線で囲んだ領域Bに蒸気を
巻き込んで(キャリーアンダ)、蒸気を凝縮させる現象
がある。この2つの凝縮熱交換の現象により原子炉圧力
が定格運転時圧力70気圧から約10気圧ほど低下し、
この結果、原子炉の再起動に長時間要するという不都合
があり、従来の気水分離器では過渡時の原子炉圧力低下
の抑制については、考慮が不十分であった。
[0006] The steam of the steam dome containing the steam separator 8 exchanges heat with the spray-shaped subcooled water in a region A surrounded by a dotted line, and condenses. As a result, the steam dome (reactor) pressure decreases. Another cause of the pressure drop is a phenomenon in which steam is drawn into a region B surrounded by a dotted line below the surface of the subcooled water due to drainage from the outlet 105 of the first stage (carry under), and the steam is condensed. . Due to the two phenomena of condensation heat exchange, the reactor pressure drops from the rated operating pressure of 70 atm to about 10 atm,
As a result, there is a disadvantage that it takes a long time to restart the reactor, and the conventional steam-water separator has not sufficiently considered the suppression of the reactor pressure drop during the transient.

【0007】[0007]

【発明が解決しようとする課題】上記公知技術には以下
の課題が存在する。従来技術の気水分離器では、過渡時
に原子炉圧力が70気圧から約10気圧ほど低下し、そ
の結果、原子炉の再起動に長時間要するという不都合が
あり、従来の気水分離器では過渡時の原子炉圧力低下の
抑制については、考慮が不十分であった。
The above-mentioned known techniques have the following problems. In the prior art steam separator, the reactor pressure drops from 70 atm to about 10 atm during the transient, and as a result, it takes a long time to restart the reactor. Consideration on the suppression of reactor pressure drop at the time was insufficient.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、前記第2ステージの排出口から
原子炉水位面まで管を伸ばし、蒸気ドームに排水が直接
的に接触しない流路を構成することを特徴とする。ま
た、第2の本発明によれば、第1ステージの排出口の下
方に、スタンドパイプから突出板を構成することを特徴
とする。
According to the present invention, a pipe is extended from the discharge port of the second stage to the reactor water level, and the drain directly contacts the steam dome. It is characterized by forming a non-flow channel. According to a second aspect of the present invention, a protruding plate is formed from a stand pipe below the outlet of the first stage.

【0009】即ち、上記の手段によれば、第2ステージ
排水口105から原子炉液面まで配管を伸ばし、その中
をサブクール水が流れるので、サブクールの排水が直接
蒸気ドームの蒸気と熱交換することなく、また従来のス
プレー伝熱とは異なり伝熱面積も大幅に小さくなる。し
たがって、原子炉圧力の低下幅も小さくなり、原子炉圧
力の低下は抑制される。
In other words, according to the above-described means, the pipe extends from the second stage drain port 105 to the reactor liquid level, and the subcool water flows through the pipe, so that the subcool drain water directly exchanges heat with the steam dome steam. In addition, unlike the conventional spray heat transfer, the heat transfer area is significantly reduced. Therefore, the decrease width of the reactor pressure also becomes small, and the decrease in the reactor pressure is suppressed.

【0010】上記の第2の手段によれば、第1ステージ
の排出口の下方に、スタンドパイプから突出板を構成す
るが、突出板の上方は飽和水の状態であり、突出板の下
方はサブクール水の状態である。したがって、この突出
板により排水の慣性力は低減され、巻き込まれた蒸気は
突出板下方のサブクール水領域(図4B領域)まで侵入
せず、凝縮伝熱は低減される。原子炉圧力の低下幅も小
さくなり、原子炉圧力の低下は抑制される。
According to the second means, a protruding plate is formed from the stand pipe below the discharge port of the first stage. The upper portion of the protruding plate is in a state of saturated water, and the lower portion of the protruding plate is formed of saturated water. It is in the state of subcool water. Therefore, the inertia force of the drainage is reduced by this protruding plate, and the entrained steam does not enter the subcooled water region (region B in FIG. 4) below the protruding plate, and condensing heat transfer is reduced. The decrease width of the reactor pressure is also reduced, and the decrease in the reactor pressure is suppressed.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施例を図1〜
図3により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will now be described with reference to FIGS.
This will be described with reference to FIG.

【0012】図1は本発明の一実施例による気水分離器
の縦断面図を示す。本発明では主蒸気管と給水管が閉じ
た原子炉がスクラムした過渡現象が起きた場合の気水分
離器を対象にしている。
FIG. 1 is a longitudinal sectional view of a steam separator according to an embodiment of the present invention. The present invention is directed to a steam-water separator when a transient phenomenon occurs in which a reactor in which a main steam pipe and a water supply pipe are closed has a scram.

【0013】図1に示すように、加熱後、上昇する気液
二相流もしくは水単相流を円筒内に導き螺旋状の翼10
1等により旋回流を与える構造となっている。こうして
旋回流とすることで、遠心力が発生し、密度の大きい液
相は円筒の旋回胴102外周部に集まり、ピックオフリ
ング103により中央部を流れる蒸気より分離される。
旋回胴の外周部に集まった液相は、旋回胴の外周部に設
けた液相の排出流路104を下降して、排出口105を
経て、加熱部へ導かれる再循環液相中へ排出される。
As shown in FIG. 1, after heating, an ascending gas-liquid two-phase flow or a water single-phase flow is introduced into a cylinder to form a spiral blade 10.
The structure is such that a swirling flow is given by 1 or the like. By forming a swirling flow in this manner, a centrifugal force is generated, and a liquid phase having a high density is collected on the outer peripheral portion of the cylindrical swirling drum 102, and separated from the steam flowing through the central portion by the pickoff ring 103.
The liquid phase collected on the outer periphery of the revolving drum descends through the liquid phase discharge flow path 104 provided on the outer periphery of the revolving drum, and is discharged into the recirculating liquid phase guided to the heating unit via the discharge port 105. Is done.

【0014】図1に示すように気水分離器8は3個のス
テージからなり、下側から第1ステージ,第2ステー
ジ,第3ステージと呼び、排出口105も3個設けられ
ている。第2ステージ排水口105から原子炉液面まで
配管201を伸ばし、その中をサブクール水が流れるの
で、サブクールの排水が直接蒸気ドームの蒸気と熱交換
することなく、また従来のスプレー伝熱とは異なり伝熱
面積も大幅に小さくなる。したがって、原子炉圧力の低
下幅も小さくなり、原子炉圧力の低下は抑制される。そ
の結果、原子炉がスクラムしてから再起動するまでに要
する時間が従来より短くなる効果がある。
As shown in FIG. 1, the steam separator 8 comprises three stages, which are referred to as a first stage, a second stage, and a third stage from the lower side, and three discharge ports 105 are also provided. The pipe 201 extends from the second stage discharge port 105 to the reactor liquid level, and the subcooled water flows through the pipe 201. Therefore, the subcooled drainage does not directly exchange heat with steam in the steam dome. In contrast, the heat transfer area is significantly reduced. Therefore, the decrease width of the reactor pressure also becomes small, and the decrease in the reactor pressure is suppressed. As a result, there is an effect that the time required from the scram of the reactor to the restart thereof is shorter than in the conventional case.

【0015】第2の本発明の実施例による気水分離器の
縦断面図を図2に示す。第1ステージの排出口の下方
に、スタンドパイプから突出板202を構成するが、突
出板202の上方は飽和水の状態であり、突出板の下方
はサブクール水の状態である。したがって、この突出板
により排水の慣性力は低減され、巻き込まれた蒸気は突
出板下方のサブクール水領域(図4B領域)まで侵入せ
ず、凝縮伝熱は低減される。原子炉圧力の低下幅も小さ
くなり、原子炉圧力の低下は抑制される。その結果、原
子炉がスクラムしてから再起動するまでに要する時間が
従来より短くなる効果がある。
FIG. 2 is a vertical sectional view of a steam separator according to a second embodiment of the present invention. A protruding plate 202 is formed from a stand pipe below the discharge port of the first stage. Above the protruding plate 202 is a state of saturated water, and below the protruding plate is a state of subcooled water. Therefore, the inertia force of the drainage is reduced by this protruding plate, and the entrained steam does not enter the subcooled water region (region B in FIG. 4) below the protruding plate, and condensing heat transfer is reduced. The decrease width of the reactor pressure is also reduced, and the decrease in the reactor pressure is suppressed. As a result, there is an effect that the time required from the scram of the reactor to the restart thereof is shorter than in the conventional case.

【0016】本発明の原子炉圧力の減圧効果を過渡解析
コードTRACGで計算した結果を図3に示す。図1に
示すように本発明によれば、過渡時でも原子炉圧力は約
65気圧に抑制されることが保証される効果がある。
FIG. 3 shows the result of calculating the pressure reduction effect of the reactor pressure of the present invention using the transient analysis code TRACG. As shown in FIG. 1, according to the present invention, there is an effect that it is ensured that the reactor pressure is suppressed to about 65 atm even during a transition.

【0017】[0017]

【発明の効果】本発明の実施例によれば、第2ステージ
排水口105から原子炉液面まで配管201を設けるの
で、過渡時でも原子炉圧力は約65気圧に抑制されるこ
とが保証される効果がある。
According to the embodiment of the present invention, since the pipe 201 is provided from the second stage discharge port 105 to the reactor liquid level, it is ensured that the reactor pressure is suppressed to about 65 atm even during the transition. Has the effect.

【0018】本発明の第2の実施例によれば、第1ステ
ージの排出口の下方に、スタンドパイプから突出板20
2を設けるので、過渡時でも原子炉圧力は約65気圧に
抑制されることが保証される効果がある。
According to the second embodiment of the present invention, the projecting plate 20 is provided below the outlet of the first stage from the stand pipe.
2, the effect of ensuring that the reactor pressure is suppressed to about 65 atm even during a transition.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による気水分離器の縦断面
図。
FIG. 1 is a longitudinal sectional view of a steam separator according to one embodiment of the present invention.

【図2】本発明の一実施例による気水分離器の縦断面
図。
FIG. 2 is a longitudinal sectional view of a steam separator according to one embodiment of the present invention.

【図3】本発明の原子炉圧力の減圧効果特性図。FIG. 3 is a graph showing a pressure reducing effect characteristic of a reactor pressure according to the present invention.

【図4】従来技術の現象モデルを示す気水分離器の縦断
面図。
FIG. 4 is a longitudinal sectional view of a steam-water separator showing a phenomenon model according to the related art.

【図5】従来技術による沸騰水型原子炉の縦断面図。FIG. 5 is a longitudinal sectional view of a boiling water reactor according to the prior art.

【図6】従来技術による気水分離器の縦断面図。FIG. 6 is a longitudinal sectional view of a steam separator according to the related art.

【符号の説明】[Explanation of symbols]

1…原子炉圧力容器、2…給水入口、3…ダウンカマ、
4…インターナルポンプ、5…炉心、6…シュラウドヘ
ッド、7…スタンドパイプ、8…気水分離器、9…蒸気
乾燥器、10…主蒸気管、101…螺旋状の翼、102
…旋回胴、103…ピックオフリング、104…排出流
路、105…排出口、201…配管、202…突出板。
1 ... reactor pressure vessel, 2 ... feed water inlet, 3 ... downcomer,
4 internal pump, 5 core, 6 shroud head, 7 stand pipe, 8 steam separator, 9 steam dryer, 10 main steam pipe, 101 spiral wing, 102
... revolving drum, 103 ... pick-off ring, 104 ... discharge channel, 105 ... discharge port, 201 ... pipe, 202 ... projecting plate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】気液二相流に旋回力を与える構造物と、旋
回力を与えられた気液二相流が上昇する旋回胴と、前記
旋回胴で分離された分離液を前記旋回胴外に排出する3
個のステージからなる排出流路を持ち、前記排出流路の
第2,第3ステージの排出口が蒸気ドームに直接的に接
している気水分離器において、前記第2ステージの排出
口から原子炉水位面まで配管を伸ばし、蒸気ドームに排
水が直接的に接触しない流路を構成することを特徴とす
るBWR用気水分離器。
1. A structure for applying a swirling force to a gas-liquid two-phase flow, a swirling body in which a swirling force is applied to the gas-liquid two-phase flow, and a separated liquid separated by the swirling body to the swirling body. 3 to discharge outside
A steam-water separator having a discharge channel composed of a plurality of stages, wherein the discharge ports of the second and third stages of the discharge channel are in direct contact with the steam dome. A steam-water separator for a BWR, wherein a pipe extends to a furnace water level to form a flow path in which drainage does not directly contact a steam dome.
【請求項2】気液二相流に旋回力を与える構造物と、旋
回力を与えられた気液二相流が上昇する旋回胴と、前記
旋回胴で分離された分離液を前記旋回胴外に排出する3
個のステージからなる排出流路を持ち、前記排出流路の
第1ステージの排出流路の排出口が原子炉水位面の下方
に位置する気水分離器において、第1ステージの排出口
の下方に、スタンドパイプから突出板を構成することを
特徴とするBWR用気水分離器。
2. A structure for applying a swirling force to a gas-liquid two-phase flow, a swirling body in which a swirling force is applied to the gas-liquid two-phase flow, and a separated liquid separated by the swirling body. 3 to discharge outside
A steam-water separator having a discharge flow path composed of a plurality of stages, wherein the discharge port of the discharge flow path of the first stage of the discharge flow path is located below the reactor water level. A steam-water separator for a BWR, wherein a protruding plate is formed from a stand pipe.
JP11000101A 1999-01-04 1999-01-04 Steam separator for bwr Pending JP2000199797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000101A JP2000199797A (en) 1999-01-04 1999-01-04 Steam separator for bwr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11000101A JP2000199797A (en) 1999-01-04 1999-01-04 Steam separator for bwr

Publications (1)

Publication Number Publication Date
JP2000199797A true JP2000199797A (en) 2000-07-18

Family

ID=11464715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000101A Pending JP2000199797A (en) 1999-01-04 1999-01-04 Steam separator for bwr

Country Status (1)

Country Link
JP (1) JP2000199797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084108A (en) * 2014-07-17 2014-10-08 广西新天德能源有限公司 Esterification reaction tower
CN106871098A (en) * 2017-03-31 2017-06-20 中国核动力研究设计院 A kind of Gravity Separation hydrophobic structure for being exclusively used in nuclear power station steam generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104084108A (en) * 2014-07-17 2014-10-08 广西新天德能源有限公司 Esterification reaction tower
CN104084108B (en) * 2014-07-17 2016-06-15 广西新天德能源有限公司 A kind of esterification reaction tower
CN106871098A (en) * 2017-03-31 2017-06-20 中国核动力研究设计院 A kind of Gravity Separation hydrophobic structure for being exclusively used in nuclear power station steam generator

Similar Documents

Publication Publication Date Title
JPH04301796A (en) Gas/liquid separator
RU2217655C2 (en) Separator for device for separation of water and steam
JP2000199797A (en) Steam separator for bwr
JPH06201890A (en) Module type drier-unified steam separator
JPH09206506A (en) Gas and liquid separator
JP3971146B2 (en) Steam separator and boiling water reactor
JPH06174206A (en) Steam separator
CN209490643U (en) A kind of Novel spiral coil pipe air-washer
JP2645304B2 (en) Swivel separator
RU2151341C1 (en) Deaerator
JP2012058113A (en) Steam separation facility for nuclear reactor
JP3556703B2 (en) Sludge collector of vertical steam generator
JPH02251796A (en) Boiling water nuclear reactor
JP3964587B2 (en) Reactor steam separator
JPH11294706A (en) Shell-tube heat exchanger type horizontal steam generator
JP2002139202A (en) Steam/liquid separation structure in steam boiler
CN209641367U (en) A kind of main steam system and its starting separator of the small-sized heap secondary circuit of nuclear power
JP2002119815A (en) Centrifugal steam separator having double-tube
JP5562908B2 (en) Steam separator and boiling water reactor equipped with the same
JPH06142424A (en) Vapor/liquid separator
USRE26526E (en) Fluid operated steam generator having st
JPH05312994A (en) Humidity separation heating device
JP2010210450A (en) Gas-water separator
JPS62288403A (en) Heat exchanger
JPH05164877A (en) Boiling water nuclear reactor