JP2000199774A - Zero-phase voltage detector - Google Patents

Zero-phase voltage detector

Info

Publication number
JP2000199774A
JP2000199774A JP11000273A JP27399A JP2000199774A JP 2000199774 A JP2000199774 A JP 2000199774A JP 11000273 A JP11000273 A JP 11000273A JP 27399 A JP27399 A JP 27399A JP 2000199774 A JP2000199774 A JP 2000199774A
Authority
JP
Japan
Prior art keywords
phase
zero
capacitance
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11000273A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kameshima
義明 亀嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP11000273A priority Critical patent/JP2000199774A/en
Publication of JP2000199774A publication Critical patent/JP2000199774A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a zero-phase voltage detector, preventing the lowering of detection accuracy due to electrostatic induction or temperature variation and using a single optical voltage sensor head. SOLUTION: Inner electrodes 3 and outer grounded electrodes 4 are arranged around the conductors 2 of each phase, and divided voltages of a capacitor 7 connected between the mutually connected inner electrodes 3 and outer grounded electrodes 4 are extracted as optical signals with an optical voltage sensor head 8. Shielding cables are used for the connection lines 6 mutually connecting these inner electrodes 3 to shield from electrostatic induction. Sensitivity variation due to temperature variation is cancelled by using a shield line, having reversed temperature characteristic of electrostatic capacity to that between the inner electrodes 3 and the outer grounded electrodes 4 and that of the capacitor 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、三相線路の零相電
圧を検出して光信号として取り出す零相電圧検出装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zero-phase voltage detecting device for detecting a zero-phase voltage of a three-phase line and extracting it as an optical signal.

【0002】[0002]

【従来の技術】三相の配電線路等では、線路事故の発見
や故障区間を切り離すための監視装置として、零相電圧
検出装置が使用されている。光電圧センサヘッドを利用
した従来の零相電圧検出装置は、例えば特開昭63−9
6568号公報に開示されているように、各相に分圧電
極と光電圧センサヘッドとを設けて各相の電圧を光信号
に変換し、これらを合成して零相電圧を検出する方式の
ものであった。
2. Description of the Related Art In a three-phase distribution line or the like, a zero-phase voltage detection device is used as a monitoring device for detecting a line fault and separating a faulty section. A conventional zero-phase voltage detecting device using an optical voltage sensor head is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-9 / 1988.
As disclosed in Japanese Patent No. 6568, a method of providing a voltage dividing electrode and an optical voltage sensor head for each phase, converting the voltage of each phase into an optical signal, synthesizing them, and detecting a zero-phase voltage. Was something.

【0003】しかしこのような従来の方式の零相電圧検
出装置は、各相毎に高価な光電圧センサヘッドを必要と
するうえ、各相の光電圧センサヘッドの出力特性のばら
つきを避けることができず、各相毎に補正回路を必要と
するため装置が複雑かつ高価なものとなるという問題が
あった。
However, such a conventional zero-phase voltage detecting apparatus requires an expensive optical voltage sensor head for each phase and also avoids variations in output characteristics of the optical voltage sensor head for each phase. However, there is a problem that the device becomes complicated and expensive because a correction circuit is required for each phase.

【0004】そこで本発明者等は、単一の光電圧センサ
ヘッドを用いた零相電圧検出装置を開発し、特許出願済
みである。この零相電圧検出装置は金属製のケース内に
三相線路の各相の導体を引き込み、各相の導体の周囲に
内側電極と外側接地電極とを配置し、相互に接続された
内側電極と外側接地電極間に接続したコンデンサの分圧
電圧を単一の光電圧センサヘッドにより光信号として取
り出す方式のものである。従って各相毎に高価な光電圧
センサヘッドを設ける必要はなく、各相毎に補正回路を
設ける必要もない利点がある。
Accordingly, the present inventors have developed a zero-phase voltage detecting device using a single optical voltage sensor head, and have already applied for a patent. This zero-phase voltage detection device draws conductors of each phase of a three-phase line into a metal case, arranges an inner electrode and an outer ground electrode around the conductors of each phase, and connects the inner electrode and the interconnected inner electrode. In this method, a divided voltage of a capacitor connected between outer ground electrodes is extracted as an optical signal by a single optical voltage sensor head. Therefore, there is an advantage that it is not necessary to provide an expensive optical voltage sensor head for each phase, and it is not necessary to provide a correction circuit for each phase.

【0005】ところが、この零相電圧検出装置は各相の
内側電極を金属製の接続線により接続しなければなら
ず、この接続線に各相の導体による静電誘導が生じて零
相電圧の検出精度を低下させるおそれがあることが判明
した。また、この零相電圧検出装置に用いられる内側電
極と外側接地電極間の静電容量や、コンデンサの静電容
量が周囲の温度によって変化するため、仮に光電圧セン
サヘッドが温度変化による影響を受けないとしても、零
相電圧の検出精度が低下するおそれがあることが判明し
た。
However, in this zero-phase voltage detecting device, the inner electrodes of each phase must be connected by metal connection lines, and the connection lines are subjected to electrostatic induction by conductors of each phase, and the zero-phase voltage is detected. It has been found that the detection accuracy may be reduced. Also, since the capacitance between the inner electrode and the outer ground electrode used in this zero-phase voltage detecting device and the capacitance of the capacitor change depending on the surrounding temperature, the optical voltage sensor head is temporarily affected by the temperature change. It has been found that even without this, the detection accuracy of the zero-sequence voltage may be reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明の第1の目的
は、上記した従来の単一の光電圧センサヘッドを用いた
零相電圧検出装置の持つ問題点を解決し、静電誘導によ
る検出精度の低下を防止した零相電圧検出装置を提供す
ることである。また本発明の第2の目的は、温度変化に
よる検出精度の低下を防止した零相電圧検出装置を提供
することである。
SUMMARY OF THE INVENTION A first object of the present invention is to solve the problems of the above-mentioned conventional zero-phase voltage detecting device using a single optical voltage sensor head, and to perform detection by electrostatic induction. An object of the present invention is to provide a zero-sequence voltage detecting device that prevents a decrease in accuracy. A second object of the present invention is to provide a zero-sequence voltage detection device that prevents a decrease in detection accuracy due to a temperature change.

【0007】[0007]

【課題を解決するための手段】上記の第1の目的を解決
するためになされた請求項1の発明は、三相線路の各相
の導体の周囲に内側電極と外側接地電極とを配置し、相
互に接続された内側電極と外側接地電極間に接続したコ
ンデンサの分圧電圧を光電圧センサヘッドにより光信号
として取り出す零相電圧検出装置において、各相の内側
電極を相互に接続する接続線としてシールド線を用い、
接続線を静電誘導からシールドしたことを特徴とするも
のである。また第2の目的を解決するためになされた請
求項2の発明は、上記の請求項1の発明において、内側
電極と外側接地電極間の静電容量の温度特性及びコンデ
ンサの静電容量の温度特性と逆向きの静電容量の温度特
性を持つシールド線を用い、温度変化による感度変化を
キャンセルしたことを特徴とするものである。
According to a first aspect of the present invention, there is provided a three-phase line in which an inner electrode and an outer ground electrode are arranged around conductors of each phase. In a zero-phase voltage detecting device that extracts a divided voltage of a capacitor connected between an interconnected inner electrode and an outer ground electrode as an optical signal by an optical voltage sensor head, a connection line interconnecting the internal electrodes of each phase. Use shielded wire as
The connection line is shielded from electrostatic induction. According to a second aspect of the present invention, a temperature characteristic of the capacitance between the inner electrode and the outer ground electrode and a temperature characteristic of the capacitance of the capacitor are provided. It is characterized by using a shielded wire having a capacitance temperature characteristic opposite to the characteristic and canceling a sensitivity change due to a temperature change.

【0008】請求項1の発明によれば、各相の内側電極
を相互に接続する接続線をシールド線とすることによ
り、静電誘導を防止して分圧精度を向上させ、検出精度
の低下を防止することができる。また請求項2の発明に
よれば、各相の内側電極を相互に接続するシールド線の
静電容量の温度特性を内側電極と外側接地電極間の静電
容量の温度特性及びコンデンサの静電容量の温度特性と
は逆向きとすることにより、温度変化による感度変化を
キャンセルし、検出精度の低下を防止することができ
る。なお、温度特性の異なる複数種類のシールド線を組
み合わせて用いることにより、零相電圧検出センサとし
ての感度調整を行うこともできる。
According to the first aspect of the present invention, the connection lines that connect the inner electrodes of each phase to each other are shielded lines, thereby preventing electrostatic induction, improving the accuracy of voltage division, and lowering the detection accuracy. Can be prevented. According to the second aspect of the present invention, the temperature characteristics of the capacitance of the shield wire connecting the inner electrodes of each phase to each other are determined by the temperature characteristics of the capacitance between the inner electrode and the outer ground electrode and the capacitance of the capacitor. By reversing the temperature characteristics, the change in sensitivity due to the temperature change can be canceled, and a decrease in detection accuracy can be prevented. By using a combination of a plurality of types of shielded wires having different temperature characteristics, the sensitivity of the zero-sequence voltage detection sensor can be adjusted.

【0009】[0009]

【発明の実施の形態】以下に本発明の好ましい実施形態
を示す。図1は本発明の零相電圧検出装置を示す概念的
な断面図であり、1は機器ケース内に設けられた樹脂製
の3個の分圧ケース、2はこれらの分圧ケース1の中心
にブッシングによって引き込まれた三相線路の各相の導
体である。また3は各分圧ケース1の内側に導体2を囲
むように配置された内側電極、4は各分圧ケース1の外
周部に配置された外側接地電極である。これらの内側電
極3と外側接地電極4は、分圧ケース1とともに樹脂モ
ールドされている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below. FIG. 1 is a conceptual cross-sectional view showing a zero-sequence voltage detecting device according to the present invention, wherein 1 is a three resin voltage dividing case provided in an equipment case, and 2 is the center of Are the conductors of each phase of the three-phase line drawn by the bushing. Reference numeral 3 denotes an inner electrode disposed inside the voltage dividing case 1 so as to surround the conductor 2, and reference numeral 4 denotes an outer ground electrode disposed on the outer peripheral portion of each voltage dividing case 1. The inner electrode 3 and the outer ground electrode 4 are resin-molded together with the voltage dividing case 1.

【0010】各相の外側接地電極4はリード線5によっ
てそれぞれ接地されている。また各相の内側電極3は接
続線6によって相互に接続されており、3相の内側電極
3の電圧が合成されている。そしてリード線5と接続線
6との間には分圧用のコンデンサ7が接続されており、
このコンデンサ7に発生する電圧をポッケルス素子等を
用いた光電圧センサヘッド8により光信号に変換し、光
ファイバ9を介して信号処理部10に送っている。本発
明では各相の内側電極3の接続線6としてシールド線を
使用し、各相の導体2による静電誘導から接続線6をシ
ールドして電圧を精度よく分圧させるようにしてある。
なお、この実施形態では図1に示すように2種類のシー
ルド線6a、6bが使用されているが、その理由は後述
する。
The outer ground electrode 4 of each phase is grounded by a lead wire 5. The inner electrodes 3 of each phase are connected to each other by a connection line 6, and the voltages of the inner electrodes 3 of three phases are combined. A capacitor 7 for voltage division is connected between the lead wire 5 and the connection wire 6.
The voltage generated in the capacitor 7 is converted into an optical signal by an optical voltage sensor head 8 using a Pockels element or the like, and is sent to a signal processing unit 10 via an optical fiber 9. In the present invention, a shield line is used as the connection line 6 of the inner electrode 3 of each phase, and the connection line 6 is shielded from the electrostatic induction by the conductor 2 of each phase so that the voltage is accurately divided.
In this embodiment, two types of shielded wires 6a and 6b are used as shown in FIG. 1, but the reason will be described later.

【0011】この零相電圧検出装置は、三相線路の各相
の電圧が平衡している正常時には接続線6による3相の
内側電極3の電圧合成値はゼロとなってコンデンサ7に
電圧は発生せず、地絡事故等によって三相線路の各相の
電圧が平衡を失った場合にはコンデンサ7に電圧が発生
し、単一の光電圧センサヘッド8がこれを検出すること
となる。しかし前記したように、実際には内側電極3と
外側接地電極4間の静電容量や、コンデンサ7の静電容
量が周囲の温度によって変化するため、温度変化によっ
てこの装置全体の検出感度が変動する。本発明ではこの
温度変化による要因を排除して検出感度を安定させるた
めの手段を講じており、以下にその点につき説明する。
In this zero-phase voltage detecting device, when the voltages of the respective phases of the three-phase line are in a normal condition, the voltage composite value of the three-phase inner electrode 3 by the connection line 6 becomes zero, and the voltage is applied to the capacitor 7. When the voltage of each phase of the three-phase line is not balanced due to a ground fault or the like, a voltage is generated in the capacitor 7 and the single optical voltage sensor head 8 detects this. However, as described above, the capacitance between the inner electrode 3 and the outer ground electrode 4 and the capacitance of the capacitor 7 actually change depending on the ambient temperature. I do. In the present invention, means for stabilizing the detection sensitivity by eliminating the factor due to the temperature change is taken, and that point will be described below.

【0012】先ず図2に図1の等価回路を示す。この図
2において、C01、C02、C03は導体2と内側電極3と
の間の静電容量、C1 は内側電極3と外側接地電極4と
の間の静電容量、C2 はコンデンサ7の静電容量、C3
は接続線6であるシールド線の静電容量である。これら
の各静電容量の合成値が光電圧センサヘッド8の印加電
圧に影響することとなる。
FIG. 2 shows an equivalent circuit of FIG. In FIG. 2, C 01 , C 02 , and C 03 are the capacitance between the conductor 2 and the inner electrode 3, C 1 is the capacitance between the inner electrode 3 and the outer ground electrode 4, and C 2 is Capacitance of capacitor 7, C 3
Is the capacitance of the shield line as the connection line 6. The combined value of these capacitances affects the voltage applied to the optical voltage sensor head 8.

【0013】まず導体2と内側電極3との間の静電容量
01、C02、C03の温度特性は、導体2と内側電極3と
の間が空間11となっているために変化率がほとんどゼ
ロであり、無視することができる。また静電容量C01
02、C03相互間のばらつきも無視することができる。
次に内側電極3と外側接地電極4との間の静電容量C1
は、20℃を基準としたとき−20℃では+8.7%、
60℃で−15.0%に変化するマイナスの温度特性を
持つ。またコンデンサ7の静電容量C2 も、例えば図3
に示すように温度上昇に伴って静電容量の変化率が低下
するマイナスの傾向を持つ。
First, the temperature characteristics of the capacitances C 01 , C 02 , and C 03 between the conductor 2 and the inner electrode 3 show a change rate due to the space 11 between the conductor 2 and the inner electrode 3. Is almost zero and can be ignored. Further, the capacitance C 01 ,
Variations between C 02 and C 03 can be neglected.
Next, the capacitance C 1 between the inner electrode 3 and the outer ground electrode 4
Is + 8.7% at -20 ° C based on 20 ° C,
It has a negative temperature characteristic that changes to -15.0% at 60 ° C. Also, the capacitance C 2 of the capacitor 7 is, for example, as shown in FIG.
As shown in (1), there is a negative tendency that the rate of change of the capacitance decreases as the temperature rises.

【0014】上記のようにC1 とC2 はマイナスの温度
特性を持つため、本発明ではこれらと逆向きの温度特性
を持つシールド線を用い、温度変化による感度変化をキ
ャンセルしている。前記したようにこの実施形態では2
種類のシールド線6a、6bが使用されている。シール
ド線6aは耐熱PVCを用いたシールド線であり、図4
に示すように温度上昇に伴って静電容量の変化率が増加
するプラスの温度特性を持っている。またシールド線6
bはジェフロン同軸ケーブルの名称で潤こう社から販売
されているシールド線であり、図5に示すようにその温
度特性はほぼゼロである。
As described above, since C 1 and C 2 have negative temperature characteristics, the present invention uses a shielded wire having a temperature characteristic opposite to these, and cancels a sensitivity change due to a temperature change. As described above, in this embodiment, 2
Different types of shielded wires 6a, 6b are used. The shield wire 6a is a shield wire using heat-resistant PVC, and FIG.
As shown in (1), it has a positive temperature characteristic in which the rate of change of the capacitance increases as the temperature rises. Also shielded wire 6
"b" is a shielded wire sold by Junkosha under the name of Jefflon coaxial cable, and its temperature characteristic is almost zero as shown in FIG.

【0015】このように本発明では内側電極3と外側接
地電極4との間の静電容量C1 の温度特性及びコンデン
サ7の静電容量C2 の温度特性と逆向きの温度特性を持
つシールド線6a、6bを用い、温度変化による感度変
化をキャンセルしている。このように温度変化による影
響をなくするためには、シールド線6a、6bの長さを
考慮する必要がある。即ち、シールド線6a、6bはそ
れぞれ図6と図7に示すように線長によって静電容量が
変化するため、プラスの温度特性を持つシールド線6a
の長さを変えることにより、図2に示した回路全体の温
度特性をほぼゼロとすることができる。
As described above, according to the present invention, the shield having the temperature characteristic of the capacitance C 1 between the inner electrode 3 and the outer ground electrode 4 and the temperature characteristic opposite to the temperature characteristic of the capacitance C 2 of the capacitor 7. Lines 6a and 6b are used to cancel a change in sensitivity due to a change in temperature. In order to eliminate the influence of the temperature change, it is necessary to consider the length of the shield wires 6a and 6b. That is, since the capacitance of the shield wires 6a and 6b changes depending on the wire length as shown in FIGS. 6 and 7, the shield wire 6a having a positive temperature characteristic is used.
By changing the length, the temperature characteristic of the entire circuit shown in FIG. 2 can be made substantially zero.

【0016】なお図8に示すように、光電圧センサヘッ
ド8自体も温度特性を持っており、しかも物によりやや
ばらつきがある。そこで回路全体の温度特性をゼロとせ
ず、図8に示すように光電圧センサヘッドの温度特性も
考えて設定すれば零相電圧検出装置としての温度特性を
向上させることができる。
As shown in FIG. 8, the optical voltage sensor head 8 itself has a temperature characteristic, and there is a slight variation depending on the object. Therefore, if the temperature characteristics of the entire circuit are not set to zero and the temperature characteristics of the optical voltage sensor head are set in consideration as shown in FIG. 8, the temperature characteristics of the zero-phase voltage detecting device can be improved.

【0017】また、光電圧センサヘッドの感度のバラツ
キが数%あるため、シールド線6bの長さを変えること
によって接続線6全体の静電容量C3 を変え、個々の光
電圧センサヘッド8の感度のばらつきを調整することが
できる。
Since the sensitivity of the optical voltage sensor head varies by several percent, the capacitance C 3 of the entire connection line 6 is changed by changing the length of the shield line 6 b, and the individual optical voltage sensor head 8 Variation in sensitivity can be adjusted.

【0018】[0018]

【発明の効果】以上に説明したように、請求項1の発明
によれば各相の内側電極の接続線としてシールド線を使
用し、静電誘導から接続線をシールドして電圧を精度よ
く分圧させるようにしたので、静電誘導による検出精度
の低下を防止することができる。また請求項2の発明に
よれば、内側電極と外側接地電極間の静電容量の温度特
性及びコンデンサの静電容量の温度特性と逆向きの静電
容量の温度特性を持つシールド線を用い、温度変化によ
る感度変化をキャンセルしたので、温度変化に伴う検出
精度の低下を防止することができる利点がある。
As described above, according to the first aspect of the present invention, the shield wire is used as the connection wire for the inner electrode of each phase, and the connection wire is shielded from the electrostatic induction to accurately separate the voltage. Since the pressure is increased, it is possible to prevent a decrease in detection accuracy due to electrostatic induction. According to the invention of claim 2, a shield wire having a temperature characteristic of capacitance between the inner electrode and the outer ground electrode and a temperature characteristic of capacitance opposite to the temperature characteristic of capacitance of the capacitor is used. Since the sensitivity change due to the temperature change is canceled, there is an advantage that the detection accuracy can be prevented from being lowered due to the temperature change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の零相電圧検出装置を示す概念的な断面
図である。
FIG. 1 is a conceptual cross-sectional view showing a zero-sequence voltage detection device according to the present invention.

【図2】図1の等価回路図である。FIG. 2 is an equivalent circuit diagram of FIG.

【図3】コンデンサの静電容量C2 の温度特性図であ
る。
3 is a temperature characteristic diagram of the electrostatic capacitance C 2 of the capacitor.

【図4】シールド線6aの静電容量の温度特性図であ
る。
FIG. 4 is a temperature characteristic diagram of capacitance of a shield wire 6a.

【図5】シールド線6bの静電容量の温度特性図であ
る。
FIG. 5 is a temperature characteristic diagram of capacitance of a shield line 6b.

【図6】シールド線6aの線長と静電容量との関係図で
ある。
FIG. 6 is a diagram illustrating a relationship between a wire length of a shield wire 6a and a capacitance.

【図7】シールド線6bの線長と静電容量との関係図で
ある。
FIG. 7 is a diagram illustrating a relationship between a line length of a shield line 6b and a capacitance.

【図8】光電圧センサヘッドの温度特性図である。FIG. 8 is a temperature characteristic diagram of the optical voltage sensor head.

【符号の説明】[Explanation of symbols]

1 分圧ケース、2 各相の導体、3 内側電極、4
外側接地電極、5 リード線、6 接続線、6a シー
ルド線、6b シールド線、7 コンデンサ:8 光電
圧センサヘッド、9 光ファイバ 10 信号処理部、
11 空間、C01、C02、C03 導体と内側電極との間
の静電容量、C1 内側電極と外側接地電極との間の静
電容量、C2 コンデンサの静電容量、C3 シールド
線の静電容量
1 partial pressure case, 2 phase conductors, 3 inner electrodes, 4
Outer ground electrode, 5 lead wire, 6 connection wire, 6a shield wire, 6b shield wire, 7 capacitor: 8 optical voltage sensor head, 9 optical fiber, 10 signal processing unit,
11 space, C 01 , C 02 , C 03 Capacitance between conductor and inner electrode, C 1 Capacitance between inner electrode and outer ground electrode, C 2 capacitor capacitance, C 3 shield Wire capacitance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 三相線路の各相の導体の周囲に内側電極
と外側接地電極とを配置し、相互に接続された内側電極
と外側接地電極間に接続したコンデンサの分圧電圧を光
電圧センサヘッドにより光信号として取り出す零相電圧
検出装置において、各相の内側電極を相互に接続する接
続線としてシールド線を用い、接続線を静電誘導からシ
ールドしたことを特徴とする零相電圧検出装置。
An inner electrode and an outer ground electrode are arranged around conductors of each phase of a three-phase line, and a divided voltage of a capacitor connected between the mutually connected inner electrode and outer ground electrode is converted to an optical voltage. In a zero-phase voltage detection device for extracting an optical signal by a sensor head, a shield line is used as a connection line for connecting inner electrodes of each phase to each other, and the connection line is shielded from electrostatic induction. apparatus.
【請求項2】 内側電極と外側接地電極間の静電容量の
温度特性及びコンデンサの静電容量の温度特性と逆向き
の静電容量の温度特性を持つシールド線を用い、温度変
化による感度変化をキャンセルした請求項1に記載の零
相電圧検出装置。
2. A sensitivity change due to a temperature change using a shield wire having a temperature characteristic of capacitance between an inner electrode and an outer ground electrode and a temperature characteristic of capacitance opposite to that of a capacitor. 2. The zero-sequence voltage detection device according to claim 1, wherein:
【請求項3】 温度特性の異なる複数種類のシールド線
を組み合わせて用いた請求項2に記載の零相電圧検出装
置。
3. The zero-phase voltage detecting device according to claim 2, wherein a plurality of types of shielded wires having different temperature characteristics are used in combination.
JP11000273A 1999-01-05 1999-01-05 Zero-phase voltage detector Withdrawn JP2000199774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11000273A JP2000199774A (en) 1999-01-05 1999-01-05 Zero-phase voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11000273A JP2000199774A (en) 1999-01-05 1999-01-05 Zero-phase voltage detector

Publications (1)

Publication Number Publication Date
JP2000199774A true JP2000199774A (en) 2000-07-18

Family

ID=11469310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11000273A Withdrawn JP2000199774A (en) 1999-01-05 1999-01-05 Zero-phase voltage detector

Country Status (1)

Country Link
JP (1) JP2000199774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615463B1 (en) * 2013-11-15 2014-10-29 三菱電機株式会社 Voltage detection apparatus and voltage detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615463B1 (en) * 2013-11-15 2014-10-29 三菱電機株式会社 Voltage detection apparatus and voltage detection method
WO2015072017A1 (en) * 2013-11-15 2015-05-21 三菱電機株式会社 Voltage detection device and voltage detection method

Similar Documents

Publication Publication Date Title
US5493070A (en) Measuring cable and measuring system
US20020190705A1 (en) Current transformer based high voltage measurement method
US6529013B2 (en) Three-phase voltage sensor with active crosstalk cancellation
EP0851442B1 (en) Lead-in insulator
JP2000199774A (en) Zero-phase voltage detector
JPH0153428B2 (en)
JP3107361B2 (en) Partial discharge detection method
JP2004271256A (en) Apparatus for measuring neutron for nuclear power generation facility
JP3421168B2 (en) Bushing
JP2655886B2 (en) Laser processing machine nozzle distance detection device
JP2628738B2 (en) Power cable test equipment
JPH0126510B2 (en)
JP2903195B2 (en) Partial discharge measurement method
JP2970375B2 (en) Optical voltage measuring device
WO2020026618A1 (en) Electric current detecting device
JP3138420B2 (en) Partial discharge measurement method
JP2568092B2 (en) Power cable accident section detection method
JPH02156173A (en) Insulation measuring apparatus
JPH067146B2 (en) Partial discharge measurement method
JPH02156171A (en) Insulation measuring apparatus
JPH06109801A (en) Detection of partial discharge
JPH07191081A (en) Partial discharge detecting method
JPH02154171A (en) Measuring method for partial discharge
CN116593836A (en) Submarine cable seamless joint partial discharge detection device and detection method
JPH0926447A (en) Method for measuring dielectric loss tangent of power cable

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307