JP2000199657A - Precise temperature regulating method and device therefor - Google Patents

Precise temperature regulating method and device therefor

Info

Publication number
JP2000199657A
JP2000199657A JP11201992A JP20199299A JP2000199657A JP 2000199657 A JP2000199657 A JP 2000199657A JP 11201992 A JP11201992 A JP 11201992A JP 20199299 A JP20199299 A JP 20199299A JP 2000199657 A JP2000199657 A JP 2000199657A
Authority
JP
Japan
Prior art keywords
temperature
reheater
control valve
condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11201992A
Other languages
Japanese (ja)
Other versions
JP3283245B2 (en
Inventor
Mutsuo Shoda
睦生 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kogyosha Co Ltd
Original Assignee
Asahi Kogyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha Co Ltd filed Critical Asahi Kogyosha Co Ltd
Priority to JP20199299A priority Critical patent/JP3283245B2/en
Publication of JP2000199657A publication Critical patent/JP2000199657A/en
Application granted granted Critical
Publication of JP3283245B2 publication Critical patent/JP3283245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precise temperature regulating method and a device therefor which are capable of regulating a temperature in a chamber precisely by distributing hot gas into a condenser and a reheater mechanically without depending on a pressure balance to introduce the same into the reheater surely. SOLUTION: In a precise temperature regulating method wherein an evaporator 17 for a refrigerating cycle is installed in a chamber 10 while air- conditioning air, cooled by the evaporator 17, is reheated to regulate the temperature of the same precisely, a reheater 18 is provided at the air outlet port side of the evaporator 17 while hot gas, introduced from a compressor 12 into a condenser 14, is bypassed into the reheater 18 by a three-way proportional control valve 13 to reheat the air-conditioning air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、流体の温度、例え
ばクリーンルーム内等に設けられたチャンバ内の温度
を、消費電力を削減しながら精密に温度制御するための
精密温度制御方法及びその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precision temperature control method and apparatus for precisely controlling the temperature of a fluid, for example, the temperature in a chamber provided in a clean room or the like while reducing power consumption. Things.

【0002】[0002]

【従来の技術】半導体プロセスをはじめとした精密加工
を行うプロセスにおいて、プロセス装置は年間を通じて
安定した運転状態を維持し、また停止状態においても装
置自身の精度を維持するために安定した環境下におかれ
る必要がある。この為、半導体プロセス装置を取り扱う
場合、温湿度制御がされたクリーンルーム内にプロセス
装置を設置すると共に、特に加工精度の高いプロセス装
置は隔壁で仕切ったチャンバと呼ばれる容器内に収容し
て稼働している。
2. Description of the Related Art In a process for performing a precision processing such as a semiconductor process, a process apparatus maintains a stable operating state throughout the year, and is operated under a stable environment to maintain the precision of the apparatus itself even in a stopped state. I need to put it. For this reason, when handling semiconductor process equipment, while installing the process equipment in a clean room where the temperature and humidity are controlled, the processing equipment with particularly high processing accuracy is accommodated and operated in a container called a chamber partitioned by partition walls. I have.

【0003】そのチャンバ内はプロセス装置の環境を維
持するため、±0.1℃またはこれ以上の安定度に精密
温度制御された空間となっており、プロセス装置はこの
環境下で加工精度を確保している。
[0003] In order to maintain the environment of the process equipment, the chamber is a space whose temperature is precisely controlled to ± 0.1 ° C or more, and the processing equipment secures the processing accuracy under this environment. are doing.

【0004】チャンバの温度制御は、冷凍サイクルを用
いて行われ、チャンバ内の空気を空調機内に設置した蒸
発器に導入し、半導体プロセス装置から発生する熱を処
理(吸熱)した空気を、チャンバの設定温度以下になる
まで一旦冷却した後、一般的には、その空気を電気ヒー
タを用いて設定温度になるまで再加熱して温度制御を行
っている。
The temperature of the chamber is controlled using a refrigeration cycle. Air in the chamber is introduced into an evaporator installed in an air conditioner, and air generated by processing (absorbing heat) generated by a semiconductor processing device is supplied to the chamber. After cooling once until the temperature becomes equal to or lower than the set temperature, the air is generally heated again using an electric heater until the temperature reaches the set temperature to perform temperature control.

【0005】一方、半導体製造プロセス装置は半導体の
世代が進むにつれ、大型化すると同時に消費する電力の
量も増加し、半導体工場での消費電力は膨大な量を必要
としてきている。特に上記の高度な温度制御を必要する
プロセス装置のための再加熱用電気ヒータは、消費電力
のうちのかなりの割合を占めている。
[0005] On the other hand, as the semiconductor production process device advances in the generation of semiconductors, the amount of electric power consumed increases as the size of the semiconductor device increases, and an enormous amount of electric power is consumed in a semiconductor factory. Electric heaters for reheating, especially for process equipment requiring the above-mentioned advanced temperature control, account for a significant proportion of the power consumption.

【0006】従来、冷凍サイクルの廃熱を利用して温度
制御を行うよう提案された装置もあったが、廃熱の回収
が十分でなかったり、廃熱の回収に使用される部材の応
答が遅く、上記のような高精度な温度制度を要求される
装置においては十分な機能が果たされていないのが現実
であった。
[0006] Conventionally, there has been proposed an apparatus for performing temperature control using waste heat of a refrigeration cycle. However, recovery of waste heat is not sufficient, and the response of members used for recovery of waste heat is poor. Slowly, it has been a reality that a device that requires a high-precision temperature system as described above does not perform a sufficient function.

【0007】例えば、図5は、特公平3−50945号
公報で提案された、冷凍サイクルの廃熱を利用して温度
制御しようとする装置を示している。
For example, FIG. 5 shows an apparatus proposed in Japanese Patent Publication No. 3-50945 for controlling temperature using waste heat of a refrigeration cycle.

【0008】先ず、冷凍サイクル50は、圧縮機51の
吐出側から吸い込み側にかけて冷媒配管61にて凝縮器
52、膨張弁57、蒸発器53が順次接続されて構成さ
れ、その蒸発器53の空気出口側に再加熱器54が配置
され、圧縮機51から凝縮器52に至る冷媒配管61
に、平行に廃熱回収のための加熱器54が、制御弁56
と分岐管55にて接続されて冷凍サイクルの廃熱を利用
した温度制御装置が構成される。
First, the refrigeration cycle 50 is configured by connecting a condenser 52, an expansion valve 57, and an evaporator 53 in this order through a refrigerant pipe 61 from the discharge side to the suction side of the compressor 51. A reheater 54 is disposed on the outlet side, and a refrigerant pipe 61 extending from the compressor 51 to the condenser 52.
In parallel, a heater 54 for recovering waste heat is provided with a control valve 56.
And a branch pipe 55 to form a temperature controller utilizing waste heat of the refrigeration cycle.

【0009】この装置においては、凝縮器52で放熱
し、蒸発器53で、被温度制御媒体である空気を冷却す
るが、必要に応じて制御弁56を開くことにより、圧縮
機1を出たホットガスと呼ばれる高温・高圧のガスが、
加熱器54内に導入され、蒸発器53で冷却された空気
を加熱することになる。
In this apparatus, the heat is radiated by the condenser 52 and the air, which is the temperature-controlled medium, is cooled by the evaporator 53. The control valve 56 is opened as required to leave the compressor 1. High-temperature, high-pressure gas called hot gas,
The air introduced into the heater 54 and cooled by the evaporator 53 is heated.

【0010】この場合、加熱器54の空気吹き出し側
に、温度センサ58が設けられ、その温度センサ58で
加熱器54からの空気の温度を測定して温度調節計59
に入力し、温度調節器59で制御弁56の開度を制御し
て加熱器54に流すホットガス流量をフィードバック制
御するようにしている。
In this case, a temperature sensor 58 is provided on the air blow-out side of the heater 54, and the temperature sensor 58 measures the temperature of the air from the heater 54 to obtain a temperature controller 59.
, And the temperature controller 59 controls the opening of the control valve 56 to feedback-control the flow rate of the hot gas flowing through the heater 54.

【0011】なお、60は凝縮器52の放熱用の冷却水
配管である。
Reference numeral 60 denotes a cooling water pipe for radiating heat of the condenser 52.

【0012】[0012]

【発明が解決しようとする課題】このような構成の従来
技術上の問題点は、分岐管側の制御弁56が開いても圧
力バランスによっては分岐管側に冷媒ガスが流れず、十
分な廃熱の回収ができない問題があった。
A problem with the prior art having such a structure is that even if the control valve 56 on the branch pipe side is opened, the refrigerant gas does not flow to the branch pipe side depending on the pressure balance, so that sufficient waste is generated. There was a problem that heat could not be recovered.

【0013】また、制御弁56に使用される弁はモータ
等により弁の開度を決定するタイプであるため温度調節
計59からの制御指令に対し応答が数十秒と遅く、±
0.1℃程度の温度精度までが限界で、それ以上の温度
精度を制御するには応答性のよい電気ヒータを使用し、
サイリスタによる通電制御を行うことを必要としてい
た。
Further, since the valve used for the control valve 56 is of a type in which the opening of the valve is determined by a motor or the like, the response to a control command from the temperature controller 59 is as slow as several tens of seconds and ±
To the temperature accuracy of about 0.1 ℃ is the limit, and to control the temperature accuracy beyond that, use a responsive electric heater,
It was necessary to control the energization by a thyristor.

【0014】そこで、本発明の目的は、ホットガスを凝
縮器と再加熱器の圧力バランスに依存せずに機械的に分
流し、確実に再加熱器に導入してチャンバ内等を精密温
調できる精密温調方法及びその装置を提供することにあ
る。
Therefore, an object of the present invention is to mechanically divide hot gas mechanically without depending on the pressure balance between the condenser and the reheater, reliably introduce the hot gas into the reheater, and precisely control the temperature in the chamber and the like. It is an object of the present invention to provide a precise temperature control method and a device therefor.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1の発明は、冷凍サイクルを用いて熱交換
すべき流体の精密温調を行う方法において、冷凍サイク
ルの蒸発器の流体の出口側に再加熱器を設け、圧縮機か
ら凝縮器に至る冷媒配管を分岐させて再加熱器を接続
し、その分岐点に三方比例制御弁を設け、圧縮機からで
たホットガスを凝縮器に至る前にバイパスして再加熱器
に導入し、蒸発器で冷却された流体を再加熱器で加熱し
て温度制御するようにした精密温調方法である。
To achieve the above object, a first aspect of the present invention is a method for precisely controlling the temperature of a fluid to be heat-exchanged by using a refrigeration cycle. A reheater is provided on the outlet side of the fluid, a refrigerant pipe from the compressor to the condenser is branched, a reheater is connected, and a three-way proportional control valve is provided at the branch point, and hot gas from the compressor is discharged. This is a precision temperature control method in which the fluid is bypassed before reaching the condenser and introduced into the reheater, and the fluid cooled by the evaporator is heated by the reheater to control the temperature.

【0016】請求項2の発明は、チャンバ内に冷凍サイ
クルの蒸発器を設置し、その蒸発器で冷却された空調空
気を再加熱して精密温調する精密温調方法において、蒸
発器の空気吹き出し側に再加熱器を設け、圧縮機から凝
縮器に至るホットガスを、冷媒配管を分岐して再加熱器
に接続し、その分岐点に三方比例制御弁を設け、圧縮機
から出たホットガスを凝縮器に至る前にバイパスして再
加熱器に導入し、蒸発器で冷却された空気を加熱して温
度制御するようにした精密温調方法である。
According to a second aspect of the present invention, there is provided a precision temperature control method in which an evaporator of a refrigeration cycle is installed in a chamber, and the conditioned air cooled by the evaporator is reheated to precisely control the temperature. A reheater is provided on the blow-out side, hot gas from the compressor to the condenser is connected to the reheater by branching the refrigerant pipe, and a three-way proportional control valve is provided at the branch point, and the hot gas discharged from the compressor is provided. This is a precise temperature control method in which gas is bypassed before reaching a condenser and introduced into a reheater, and air cooled by an evaporator is heated to control the temperature.

【0017】請求項3の発明は、冷凍サイクルを用いて
熱交換すべき流体の精密温調を行う装置において、冷凍
サイクルの蒸発器の流体の出口側に設けられた再加熱器
と、圧縮機から凝縮器に至るホットガスを上記再加熱器
にバイパスさせる三方比例制御弁と、再加熱器で加熱さ
れた流体の温度を検出する温度センサと、その温度セン
サの検出値が入力され、その温度に応じて上記三方比例
制御弁を制御する温度調節計とを備えた精密温調装置で
ある。
According to a third aspect of the present invention, there is provided an apparatus for precisely controlling the temperature of a fluid to be heat-exchanged by using a refrigeration cycle, comprising: a reheater provided on a fluid outlet side of an evaporator of the refrigeration cycle; A three-way proportional control valve for bypassing the hot gas from the condenser to the reheater, a temperature sensor for detecting the temperature of the fluid heated by the reheater, and a detection value of the temperature sensor being inputted, and And a temperature controller for controlling the three-way proportional control valve according to the temperature control.

【0018】請求項4の発明は、チャンバ内に冷凍サイ
クルの蒸発器を設置し、その蒸発器で冷却された空調空
気を再加熱して精密温調するチャンバの精密温調装置に
おいて、蒸発器の空気吹き出し側に設置された再加熱器
と、圧縮機から凝縮器に至るホットガスを上記再加熱器
にバイパスさせる三方比例制御弁と、チャンバ内に吹き
込まれる温度を検出する温度センサと、その温度センサ
の検出値が入力され、その温度に応じて上記三方比例制
御弁を制御する温度調節計とを備えた精密温調装置であ
る。
According to a fourth aspect of the present invention, there is provided a precision temperature control apparatus for a chamber, in which an evaporator of a refrigeration cycle is installed in a chamber, and the conditioned air cooled by the evaporator is reheated to precisely control the temperature. A reheater installed on the air blowing side of the air, a three-way proportional control valve for bypassing the hot gas from the compressor to the condenser to the reheater, a temperature sensor for detecting a temperature blown into the chamber, A precision temperature control device comprising: a temperature controller to which a detection value of a temperature sensor is input and which controls the three-way proportional control valve according to the temperature.

【0019】請求項5の発明は、三方比例制御弁は、そ
の三方比例制御弁の開度を調整するための空気圧源に接
続された電−空変換器を有し、温度調節計は、温度セン
サからの信号を設定温度と比較してその差に応じて電気
的な出力信号として電−空変換器に出力し、電−空変換
器は、入力された電気信号を空気圧信号に変換し、その
空気圧で三方比例制御弁を制御する請求項4記載の精密
温調装置である。
According to a fifth aspect of the present invention, the three-way proportional control valve has an electro-pneumatic converter connected to an air pressure source for adjusting the opening of the three-way proportional control valve. The signal from the sensor is compared with the set temperature and output to the electro-pneumatic converter as an electric output signal according to the difference, the electro-pneumatic converter converts the input electric signal into a pneumatic signal, The precision temperature control device according to claim 4, wherein the three-way proportional control valve is controlled by the air pressure.

【0020】請求項6の発明は、圧縮機の吐出側に三方
比例制御弁が接続され、その三方比例制御弁の一方の出
口ポートに凝縮器が接続され、他方の出口ポートに再加
熱器が接続され、その再加熱器の出口側が凝縮器の入口
側に接続されて合流される請求項4又は5記載の精密温
調装置である。
According to a sixth aspect of the present invention, a three-way proportional control valve is connected to the discharge side of the compressor, a condenser is connected to one outlet port of the three-way proportional control valve, and a reheater is connected to the other outlet port. The precision temperature controller according to claim 4 or 5, wherein an outlet side of the reheater is connected to and joined to an inlet side of the condenser.

【0021】請求項7の発明は、再加熱器の出口と凝縮
器の入口側を結ぶラインに逆止弁が接続され、三方比例
制御弁の入口ポートと再加熱器側の出口ポートとがキャ
ピラリー管等の圧力バランスラインで接続された請求項
6記載の精密温調装置である。
According to a seventh aspect of the present invention, a check valve is connected to a line connecting the outlet of the reheater and the inlet side of the condenser, and the inlet port of the three-way proportional control valve and the outlet port of the reheater are connected by a capillary. 7. The precision temperature control device according to claim 6, wherein the device is connected by a pressure balance line such as a pipe.

【0022】以上より、本発明は、三方比例制御弁を用
いて、ホットガスを凝縮器と再加熱器の圧力バランスに
依存せずに機械的に分流し、確実に再加熱器に導入する
ことにより、冷凍サイクルの廃熱を確実に回収し従来技
術の欠点を克服することが可能となる。
As described above, the present invention uses a three-way proportional control valve to mechanically divide hot gas without depending on the pressure balance between the condenser and the reheater, and to reliably introduce the hot gas into the reheater. Thereby, it is possible to reliably recover the waste heat of the refrigeration cycle and overcome the drawbacks of the related art.

【0023】また、本発明においては、従来使用されて
いた電動モータ型の制御弁の応答性の遅さを解消し、応
答速度の速い三方比例制御弁を採用することにより、高
度な温度安定度を必要とする精密温度制御において、温
度制御に用いる再加熱用の電気ヒータの採用をやめ、大
幅に消費電力の削減を図ることが可能となる。
Further, in the present invention, the slow response of the conventionally used electric motor type control valve is eliminated, and a three-way proportional control valve having a fast response speed is employed to achieve high temperature stability. In precision temperature control that requires the above, the use of an electric heater for reheating used for temperature control can be stopped, and power consumption can be greatly reduced.

【0024】また、温度の安定度については、従来廃熱
利用のシステムでは不可能に近かった±0.1℃以下の
精度を確保することができる。
[0024] In addition, as for the temperature stability, it is possible to secure an accuracy of ± 0.1 ° C or less, which is almost impossible in a conventional system using waste heat.

【0025】[0025]

【発明の実施の形態】以下、本発明の好適実施の形態を
添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0026】図1において、半導体製造プロセス装置
(図示せず)を収容するチャンバ10は、クリーンルー
ム等に設けた隔壁室11内に形成される。
In FIG. 1, a chamber 10 accommodating a semiconductor manufacturing process apparatus (not shown) is formed in a partition chamber 11 provided in a clean room or the like.

【0027】この隔壁室11は、チャンバ10と機械室
16とがフィルタ21で区画形成され、その機械室16
内に空調通路20が形成され、チャンバ10の排気板2
2と機械室16の空調通路20とがリターンダクト23
で接続されて構成される。
In the partition chamber 11, the chamber 10 and the machine room 16 are defined by a filter 21 and the machine room 16 is formed.
An air conditioning passage 20 is formed inside the exhaust plate 2 of the chamber 10.
2 and the air conditioning passage 20 of the machine room 16
It is connected and configured.

【0028】機械室16内には、圧縮機12、三方比例
制御弁13、凝縮器14、膨張弁15が収容され、空調
通路20内には、蒸発器17、再加熱器18及び送風機
19が収容される。また空調通路20とフィルタ21間
には流入室24が形成される。フィルタ21が収容され
る空調通路20を含む機械室16を形成している。
A compressor 12, a three-way proportional control valve 13, a condenser 14, and an expansion valve 15 are accommodated in a machine room 16, and an evaporator 17, a reheater 18, and a blower 19 are accommodated in an air conditioning passage 20. Will be accommodated. An inflow chamber 24 is formed between the air conditioning passage 20 and the filter 21. The machine room 16 including the air conditioning passage 20 in which the filter 21 is accommodated is formed.

【0029】リターンダクト23には、矢印OAで示す
ように外気導入ラインが接続され、外気導入により、チ
ャンバ10内が、クリーンルームより若干圧力が高い陽
圧に保たれるようにされている。
An outside air introduction line is connected to the return duct 23 as indicated by an arrow OA, and the inside of the chamber 10 is maintained at a positive pressure slightly higher than that in the clean room by introducing the outside air.

【0030】フィルタ21の吹き出し側には温度センサ
25が設けられ、その検出値が信号ライン33を介して
温度調節計26に入力され、温度調節計26が検出温度
に応じて、制御ライン34を介して三方比例制御弁13
を制御し、三方比例制御弁13の開度を決定することに
より分流比を制御するようになっている。
A temperature sensor 25 is provided on the outlet side of the filter 21, and the detected value is input to a temperature controller 26 via a signal line 33, and the temperature controller 26 controls a control line 34 according to the detected temperature. Via the three-way proportional control valve 13
And the split ratio is controlled by determining the opening of the three-way proportional control valve 13.

【0031】これにより従来技術(図5)では、凝縮器
52と再加熱器54の圧力バランスに影響されながら分
流比が決定されていたものが、三方比例制御弁13の開
度により機械的に決定され、確実に分流比が確定するこ
とが出来る。
As a result, in the prior art (FIG. 5), the split ratio is determined while being affected by the pressure balance between the condenser 52 and the reheater 54. Once determined, the shunt ratio can be reliably determined.

【0032】三方比例制御弁13は、詳細は後述する
が、電−空変換器35を有し、その電−空変換器35に
圧力空気源36が接続されて構成され、制御ライン34
からの電気信号(電流或いは電圧)が電−空変換器35
に入力されると、圧力空気源36から電気信号の値に比
例した空気圧力に変換され、その空気圧に基づいて凝縮
器14と再加熱器18に流れるホットガスの分流比を調
整するようになっている。
Although the details will be described later, the three-way proportional control valve 13 has an electro-pneumatic converter 35, and a pressure air source 36 is connected to the electro-pneumatic converter 35.
Signal (current or voltage) from the electro-pneumatic converter 35
, The pressure is converted from the pressure air source 36 into an air pressure proportional to the value of the electric signal, and the split ratio of the hot gas flowing through the condenser 14 and the reheater 18 is adjusted based on the air pressure. ing.

【0033】三方比例制御弁13の圧縮機12側のポー
トと、再加熱器18に至るポートを結んでキャピラリ管
37が接続され、その再加熱器18と凝縮器14に至る
ライン38に圧縮機12側からのホットガスの逆流を阻
止するための逆止弁39が接続される。
A capillary tube 37 is connected by connecting a port on the compressor 12 side of the three-way proportional control valve 13 and a port leading to the reheater 18, and a compressor 38 is connected to a line 38 leading to the reheater 18 and the condenser 14. A check valve 39 for preventing backflow of the hot gas from the side 12 is connected.

【0034】また凝縮器14には、冷却水の供給管27
と排出管28が接続され、その排出管28に制御弁29
が接続され、凝縮器14で熱交換された廃熱を冷却水に
て装置外に排出する。
The condenser 14 has a cooling water supply pipe 27.
Is connected to the discharge pipe 28, and the control valve 29 is connected to the discharge pipe 28.
Is connected, and the waste heat exchanged by the condenser 14 is discharged to the outside of the apparatus by the cooling water.

【0035】図2は、図1に示した再加熱器18を組み
込んだ冷凍サイクル30を示したものである。
FIG. 2 shows a refrigeration cycle 30 incorporating the reheater 18 shown in FIG.

【0036】図2において、圧縮機12の吐出側より冷
媒配管31を介して凝縮器14、膨張弁15及び蒸発器
17が順次接続されて冷凍サイクル30が構成され、そ
の冷凍サイクル30の蒸発器17の空気吹き出し側に再
加熱器18が設けられる。
In FIG. 2, a condenser 14, an expansion valve 15 and an evaporator 17 are sequentially connected from a discharge side of the compressor 12 via a refrigerant pipe 31 to form a refrigeration cycle 30. A reheater 18 is provided on the air blowing side of 17.

【0037】この再加熱器18は、圧縮機12から凝縮
器14に至る吐出側配管31aに三方比例制御弁13が
接続され、その三方比例制御弁13の分岐ポートと再加
熱器18の入口側とが分岐ライン32で接続され、再加
熱器18の出口側が逆止弁39が接続されたライン38
を介して凝縮器14の入口側に接続されて、ホットガス
による空調空気の再加熱を行えるようになっている。
In the reheater 18, a three-way proportional control valve 13 is connected to a discharge pipe 31a from the compressor 12 to the condenser 14, and a branch port of the three-way proportional control valve 13 and an inlet side of the reheater 18 are connected. Is connected to a branch line 32, and the outlet side of the reheater 18 is connected to a check valve 39 on a line 38.
Is connected to the inlet side of the condenser 14 through the heater to reheat the conditioned air with hot gas.

【0038】また、圧縮機12から三方比例制御弁13
の間と分岐ライン32とを結んで圧力バランスラインと
してのキャピラリ管37が接続される。
The three-way proportional control valve 13
And a branch line 32, a capillary pipe 37 as a pressure balance line is connected.

【0039】三方比例制御弁13は、上述したように圧
力空気源36に接続された電−空変換器35を有し、そ
の弁本体40に、入口ポート41と2つの出口ポート4
2,43が形成され、その入口ポート41から各出口ポ
ート42,43に至る流路に、調節弁44,45が設け
られて構成される。
The three-way proportional control valve 13 has the electro-pneumatic converter 35 connected to the pressure air source 36 as described above, and has an inlet port 41 and two outlet ports 4
2 and 43 are formed, and control valves 44 and 45 are provided in a flow path from the inlet port 41 to each of the outlet ports 42 and 43.

【0040】三方比例制御弁13の分流比の制御は、制
御ライン34からの電気信号に比例した空気圧に電−空
変換器35が変換し、その変換された空気圧に基づいて
両調節弁44,45の弁開度を制御するものある。この
場合、両調節弁44,45は、一方が開放されると他方
が閉じるよう連動するように構成され、一方の調節弁4
4が、出口ポート42を介して凝縮器14側に、他方が
出口ポート43を介して再加熱器18側に接続され、空
気圧が高くなるに伴って調節弁44の弁開度が小さく、
同時に調節弁45の弁開度が大きくなるように両弁4
4,45が連動して開度が変化して分流比を制御するよ
うになっている。
The split ratio of the three-way proportional control valve 13 is controlled by the electro-pneumatic converter 35 converting the air pressure to air pressure proportional to the electric signal from the control line 34, based on the converted air pressure. 45 controls the valve opening. In this case, the two control valves 44 and 45 are configured such that when one is opened, the other is closed so that the other is closed.
4 is connected to the condenser 14 side via the outlet port 42, and the other is connected to the reheater 18 side via the outlet port 43. As the air pressure increases, the valve opening of the control valve 44 decreases,
At the same time, both valves 4 are adjusted so that the valve opening of the control valve 45 increases.
The opening degree changes in conjunction with 4, 45 to control the shunt ratio.

【0041】また、図中、39は、凝縮器14側から再
加熱器18に高温の冷媒が逆流するのを防止するための
逆止弁である。
In the figure, reference numeral 39 denotes a check valve for preventing a high-temperature refrigerant from flowing backward from the condenser 14 to the reheater 18.

【0042】尚、図2において、凝縮器14には、冷却
水の供給管27と制御弁29が接続され冷却水の排出管
28が接続され、また送風機19は、チャンバ10内の
空気を蒸発器17、再加熱器18を通して吸引するよう
に設けられる。
In FIG. 2, a cooling water supply pipe 27 and a control valve 29 are connected to the condenser 14 and a cooling water discharge pipe 28 is connected to the condenser 14, and a blower 19 evaporates the air in the chamber 10. It is provided to suck through the heater 17 and the reheater 18.

【0043】次に本発明の作用を述べる。Next, the operation of the present invention will be described.

【0044】先ず、図2の冷凍サイクル30における冷
媒は、圧縮機12で高温高圧冷媒ガス(ホットガス)と
されて凝縮器14に流れ、そこで冷却水と熱交換されて
凝縮され、膨張弁15で減圧されて、気液混合冷媒とな
って蒸発器17に流れ、そこで送風機19で循環される
チャンバ10内空気と熱交換して蒸発して圧縮機12に
戻り再度圧縮されて循環する。
First, the refrigerant in the refrigeration cycle 30 shown in FIG. 2 is converted into a high-temperature and high-pressure refrigerant gas (hot gas) by the compressor 12 and flows to the condenser 14, where it exchanges heat with the cooling water and is condensed. , And flows into the evaporator 17 as a gas-liquid mixed refrigerant, where it exchanges heat with the air in the chamber 10 circulated by the blower 19, evaporates, returns to the compressor 12, is compressed again and circulates.

【0045】この冷凍サイクル30の運転中、三方比例
制御弁13の分流比が調整されて圧縮機12からのホッ
トガスが再加熱器18に流され、蒸発器17で冷却され
た空気をホットガスで設定温度まで再加熱し、チャンバ
10内を精密温度制御する。
During the operation of the refrigeration cycle 30, the flow ratio of the three-way proportional control valve 13 is adjusted, the hot gas from the compressor 12 flows to the reheater 18, and the air cooled by the evaporator 17 is removed from the hot gas. To re-heat to the set temperature, and precisely control the temperature in the chamber 10.

【0046】すなわち、図1に示すように、チャンバ1
0内の空気は、空調通路20内の蒸発器17で、設定温
度に対して、例えば約5℃低い温度まで一旦冷却され、
その空気が、再加熱器18内を流れるホットガスで熱交
換されて設定温度まで再加熱され、送風機19よりフィ
ルタ21を通してチャンバ10内に吹き出されてチャン
バ10内温度が制御される。
That is, as shown in FIG.
The air in 0 is temporarily cooled in the evaporator 17 in the air conditioning passage 20 to a temperature lower than the set temperature by, for example, about 5 ° C.
The air is heat-exchanged by a hot gas flowing in the reheater 18 and reheated to a set temperature, and is blown out from the blower 19 into the chamber 10 through the filter 21 to control the temperature in the chamber 10.

【0047】この精密温度制御の際、温度センサ25
は、フィルタ21から吹き出される温度を検出し、その
温度に応じて温度調節計26が、制御ライン34を介し
て三方比例制御弁13の分流比を調整して再加熱器18
に流入するホットガス量を制御して再加熱の熱量制御を
行う。
In this precise temperature control, the temperature sensor 25
Detects the temperature blown out of the filter 21, and in accordance with the detected temperature, the temperature controller 26 adjusts the shunt ratio of the three-way proportional control valve 13 through the control line 34 to
The amount of hot gas flowing into the heater is controlled to control the amount of heat for reheating.

【0048】この精密温調制御を行う際、三方比例制御
弁13は電−空変換器35の空気圧で、その開度比が調
整され、出口ポート42,43から分流されたホットガ
スが凝縮器14と再加熱器18に流れるが、圧縮機12
の立上運転時に、調整弁43が設定温度の関係で全閉
で、調節弁44側が全開で運転されるとすると、ホット
ガスの全量が凝縮器14側に流れて凝縮器14は高圧と
なるが、再加熱器18は、調整弁43が全閉で、しかも
凝縮器14と再加熱器18間は逆止弁39でカットされ
ているため、調整弁43の出口ポート43は、停止時の
再加熱器18の圧力ままで低圧となり、調節弁44の出
口ポート42の圧力は圧縮機12の吐出圧となり高圧と
なるため、調整弁44,45の出入口での圧力差が大き
く、その後、再加熱器18の調整弁45を電−空変換器
35の空気圧で開こうとしても、出口ポート42の圧力
が高いため、その圧力に抗して調整弁45を開して開度
を調整することが困難となる。
When performing the precise temperature control, the three-way proportional control valve 13 is adjusted in its opening ratio by the air pressure of the electro-pneumatic converter 35, and the hot gas diverted from the outlet ports 42 and 43 is supplied to the condenser. 14 and the reheater 18, while the compressor 12
If the control valve 43 is fully closed and the control valve 44 side is fully open during the start-up operation, the entire amount of hot gas flows to the condenser 14 side, and the condenser 14 becomes high pressure. However, in the reheater 18, since the regulating valve 43 is fully closed and the space between the condenser 14 and the reheater 18 is cut by the check valve 39, the outlet port 43 of the regulating valve 43 is in the stop state. Since the pressure of the reheater 18 becomes low pressure and the pressure of the outlet port 42 of the control valve 44 becomes the discharge pressure of the compressor 12 and becomes high, the pressure difference between the inlets and outlets of the control valves 44 and 45 becomes large. Even if an attempt is made to open the regulating valve 45 of the heater 18 by the air pressure of the electro-pneumatic converter 35, since the pressure of the outlet port 42 is high, the regulating valve 45 is opened against the pressure to adjust the opening. Becomes difficult.

【0049】そこで圧縮機12の吐出側と分岐ライン3
2間に、圧力バランスラインとしてのキャピラリ管37
を接続し、立上運転時に調整弁44が全閉でも、キャピ
ラリ管37を通してホットガスを再加熱器18に流すこ
とで、調整弁45の出口ポート43の圧力を吐出圧近く
まで上げることが可能となり、出口ポート42,43の
圧力差をなくすことで、電−空変換器35の空気圧によ
る三方比例制御弁13の開度制御を良好に行うことが可
能となる。
Therefore, the discharge side of the compressor 12 and the branch line 3
Between the two, a capillary tube 37 as a pressure balance line
Even if the adjustment valve 44 is fully closed during the start-up operation, the pressure at the outlet port 43 of the adjustment valve 45 can be increased to near the discharge pressure by flowing hot gas to the reheater 18 through the capillary tube 37. By eliminating the pressure difference between the outlet ports 42 and 43, the opening degree of the three-way proportional control valve 13 can be favorably controlled by the air pressure of the electro-pneumatic converter 35.

【0050】このキャピラリ管37は、立ち上げ運転の
時に圧力バランスをとるものでありるため、開閉弁とし
てもよく、また三方比例制御弁13内に予め設けてもよ
い。
Since the capillary tube 37 balances pressure during the start-up operation, it may be used as an on-off valve or may be provided in the three-way proportional control valve 13 in advance.

【0051】なお、上述の実施の形態においては、分岐
ライン38の分岐点に三方比例制御弁13を配置して、
再加熱器18にホットガスを分流して再加熱を行う例を
説明したが、三方比例制御弁13を吐出側配管31aと
分岐ライン38の合流点に配置し、三方合流比例制御弁
として制御することも可能である。
In the above-described embodiment, the three-way proportional control valve 13 is disposed at the branch point of the branch line 38,
The example in which the hot gas is diverted to the reheater 18 to perform reheating has been described. However, the three-way proportional control valve 13 is disposed at the junction of the discharge side pipe 31a and the branch line 38, and is controlled as a three-way merged proportional control valve. It is also possible.

【0052】次に、この再加熱を図3に示したモリエル
線図上の冷凍サイクルで説明する。
Next, this reheating will be described with reference to a refrigeration cycle on the Mollier diagram shown in FIG.

【0053】図3において、横軸は冷媒のエンタルピ
(熱量)、縦軸は圧力を示し、Gは、飽和ガス線を、L
qは飽和液線を示している。
In FIG. 3, the horizontal axis represents the enthalpy (heat amount) of the refrigerant, the vertical axis represents the pressure, G represents the saturated gas line, and L represents the saturated gas line.
q indicates a saturated liquid line.

【0054】先ず冷媒は、点aに示すように飽和ガス線
Gよりスーパヒートされた状態で、圧縮機に吸い込まれ
て圧縮され、点bまで圧縮されて凝縮器に流入し、そこ
で冷却水との熱交換で点cまで凝縮され、膨張弁で点d
まで膨張(減圧)されて蒸発器に流入し、そこでチャン
バ内空気と熱交換して蒸発されて点aに戻って圧縮−凝
縮−膨張−蒸発工程を繰り返す。
First, in a state where the refrigerant is superheated from the saturated gas line G as shown at the point a, it is sucked into the compressor and compressed, compressed to the point b and flows into the condenser, where it is mixed with the cooling water. Condensed to point c by heat exchange, point d by expansion valve
After expansion (decompression), the air flows into the evaporator, where it exchanges heat with the air in the chamber and is evaporated.

【0055】この冷凍サイクルにおいて、チャンバ外環
境はクリーンルームであり温湿度制御がなされており、
膨張弁15の開度は一定にされ、凝縮圧力と蒸発圧力
は、一定に保持されて運転される。すなわち、チャンバ
10からリターンダクト23を介して蒸発器17に導入
される循環空気の熱量は、半導体製造プロセス装置等で
生じる熱量と、チャンバ10内を陽圧に保つための外気
導入による熱量とで変動するが、蒸発圧力と凝縮圧力を
一定に保って冷凍サイクルを安定にするには、凝縮器1
4に流す冷却水量を、凝縮圧力制御弁29で調整するこ
とで制御される。
In this refrigeration cycle, the environment outside the chamber is a clean room, and the temperature and humidity are controlled.
The opening of the expansion valve 15 is kept constant, and the condensing pressure and the evaporating pressure are kept constant to operate. That is, the amount of heat of the circulating air introduced into the evaporator 17 from the chamber 10 via the return duct 23 is determined by the amount of heat generated in the semiconductor manufacturing process device or the like and the amount of heat generated by introducing outside air to maintain the inside of the chamber 10 at a positive pressure. In order to stabilize the refrigeration cycle while keeping the evaporation pressure and the condensation pressure constant, the condenser 1
4 is controlled by adjusting the amount of cooling water to flow through the condenser pressure control valve 29.

【0056】従来においては、再熱化のために電気ヒー
タを蒸発器の吹き出し側に設置し、その蒸発器からの空
調空気を再加熱しているため、チャンバ内の温度制御
は、冷凍サイクルと、再熱化のための電力との双方で精
密温度制御を行っており、しかも再熱化のための電気ヒ
ータの熱量も冷凍サイクルで放熱しており、ランニング
コストが、再熱化分も含めてかかっていた。
Conventionally, an electric heater is installed on the outlet side of the evaporator for reheating, and the conditioned air from the evaporator is reheated. In addition, precision temperature control is performed with both the power for reheating and the amount of heat of the electric heater for reheating is also radiated in the refrigeration cycle, and running costs include reheating. It was hanging.

【0057】本発明においては、チャンバ10内の精密
温度制御を冷凍サイクルのみで行うようにしたので、図
2に示した点bの熱量のホットガスを、再加熱器18に
流し、三方比例制御弁13にて、そのホットガス量を制
御することで、すなわち、点bと点c間で、且つ飽和ガ
ス線Gと飽和液線Lq間にある点をeとしたとき、点b
から点eの熱量を再熱化のために用い、点eから点c間
での熱量を凝縮器14で放熱させることで、ランニング
コストを抑えた精密温度制御が可能となる。
In the present invention, since the precise temperature control in the chamber 10 is performed only by the refrigerating cycle, the hot gas having the calorific value at the point b shown in FIG. By controlling the amount of the hot gas with the valve 13, that is, when a point between the point b and the point c and between the saturated gas line G and the saturated liquid line Lq is set to e, a point b
By using the amount of heat from the point e to the point e for reheating, and dissipating the amount of heat from the point e to the point c by the condenser 14, it is possible to perform precise temperature control with a reduced running cost.

【0058】すなわち、従来のように電気ヒータの温度
制御にて、最大出力の50%で稼動しているチャンバを
本発明のシステムにて稼動すると、電気ヒータ50%の
電気エネルギと電気ヒータ50%の冷却水の冷却負荷エ
ネルギが不要となり、工場設備としてみれば実質的に電
気ヒータ100%分のエネルギの低減が可能となる。
That is, when a chamber operating at 50% of the maximum output by the temperature control of the electric heater as in the prior art is operated by the system of the present invention, the electric energy of the electric heater 50% and the electric heater 50% The cooling load energy of the cooling water is unnecessary, and the energy can be substantially reduced by 100% of the electric heater as a factory facility.

【0059】従って、再熱化用の電気ヒータ容量が大き
くなればなるほど得られる省エネ効果も大となる。
Therefore, the greater the capacity of the electric heater for reheating, the greater the energy saving effect obtained.

【0060】この再熱化のためにホットガスを分流する
三方比例制御弁13は、温度センサ25の検出値に応じ
て温度調節計26で、分流比の制御がなされ、凝縮器1
4と再加熱器18に流すホットガスを分配することで、
点eを自在に変えて、再熱化のための熱量(点b−点
c)を制御することが可能であり、従来の電気ヒータ制
御と比べてもその精密温度制御は同じにできる。
The three-way proportional control valve 13 for splitting the hot gas for reheating is controlled by the temperature controller 26 in accordance with the value detected by the temperature sensor 25 to control the split ratio.
By distributing the hot gas flowing to 4 and the reheater 18,
The amount of heat (point b-point c) for reheating can be controlled by freely changing the point e, and the precise temperature control can be the same as compared with the conventional electric heater control.

【0061】上述したように三方分流比例制御弁13
は、従来方式と違って、空気圧でダイヤフラム弁44,
45を制御する電−空比例制御方式のもので、アクチュ
エータ単体での応答速度は数10msec、分解能は約
1/2000であり、空気圧制御のため、耐久性が高
く、早い応答速度と高精度な開度制御が可能である。
As described above, the three-way shunt proportional control valve 13
Is different from the conventional method in that the diaphragm valves 44,
45 is an electro-pneumatic proportional control system that controls the actuator 45. The response speed of the actuator alone is several tens of msec and the resolution is about 1/2000. Due to pneumatic control, the durability is high, the response speed is high, and the accuracy is high. Opening control is possible.

【0062】すなわち、従来から冷媒流量を比例制御す
るアクチュエータは存在しているが、その大半はリニア
モータを使用しており、その応答速度は数十秒と非常に
長く、ギア等の機械的な摩耗によるアクチュエータの寿
命の問題やゼロ点位置のドリフト等の問題があり、ホッ
トガス流量を正確に制御することは困難であったが、電
空比例制御方式の三方比例制御弁13を用いることで、
耐久性が高く、早い応答速度と高精度な開度制御が可能
となる。
That is, although there are actuators that proportionally control the flow rate of the refrigerant, most of them use a linear motor, the response speed of which is very long, several tens of seconds, and the mechanical speed of a gear or the like is high. Although it was difficult to accurately control the hot gas flow rate due to the problem of the life of the actuator due to wear and the drift of the zero point position, it was difficult to use the three-way proportional control valve 13 of the electro-pneumatic proportional control method. ,
High durability, quick response speed and highly accurate opening control are possible.

【0063】図4は、チャンバ内の設定温度を23℃と
し、周囲温度を24℃付近で約3℃の変動幅で略30分
周期で変化させたときのチャンバ温度の経時変化のデー
タを示したものである。
FIG. 4 shows data on the change over time of the chamber temperature when the set temperature in the chamber is 23 ° C. and the ambient temperature is changed in the range of about 3 ° C. at a cycle of about 30 minutes near 24 ° C. It is a thing.

【0064】図4に示すように、本発明においては、チ
ャンバ内設定温度23℃に対して、±0.01℃以内に
収めることができた。
As shown in FIG. 4, in the present invention, the temperature within the chamber set temperature of 23 ° C. could be kept within ± 0.01 ° C.

【0065】なお、上述の実施の形態においては、再加
熱器18にホットガスを流して再熱化を行う例を説明し
たが、チャンバ10内で空調空気を2系統に分けて、制
御する場合もあるため、電気ヒータを兼用してもよく、
また再加熱器を2基にしてそれぞれにホットガスを流す
ように構成してもよい。
In the above-described embodiment, an example has been described in which reheating is performed by flowing hot gas into the reheater 18. However, in the case where the conditioned air is divided into two systems in the chamber 10 for control. There is also an electric heater,
Alternatively, two reheaters may be used to supply hot gas to each of the two reheaters.

【0066】また、上述の実施の形態においては、流体
としてチャンバ10の空気を精密温調する例で説明した
が、この他、流体としては恒温槽の冷却水等の温度を精
密温調するようにしてもよい。
Further, in the above-described embodiment, an example in which the temperature of the air in the chamber 10 is precisely controlled as a fluid has been described. It may be.

【0067】[0067]

【発明の効果】以上要するに本発明によれば、再加熱の
ための熱源に冷凍サイクルのホットガスを用いることで
ランニングコストが低く、しかも高精度な精密温度制御
が可能となる。
In summary, according to the present invention, the use of hot gas of a refrigeration cycle as a heat source for reheating enables low running cost and high-precision precise temperature control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】図1における冷凍サイクルを示す図である。FIG. 2 is a diagram showing a refrigeration cycle in FIG.

【図3】本発明において、モリエル線図上の冷凍サイク
ルを説明する図である。
FIG. 3 is a diagram illustrating a refrigeration cycle on a Mollier diagram in the present invention.

【図4】本発明において、精密温調を行ったときの周囲
温度とチャンバ内温度の経時変化を示す図である。
FIG. 4 is a diagram showing a change with time of an ambient temperature and a temperature in a chamber when precise temperature control is performed in the present invention.

【図5】従来技術による廃熱利用型の温度制御装置の例
である。
FIG. 5 is an example of a waste heat utilization type temperature control device according to the related art.

【符号の説明】[Explanation of symbols]

10 チャンバ 12 圧縮機 13 三方比例制御弁 14 凝縮器 17 蒸発器 18 再加熱器 25 温度センサ 26 温度調節計 30 冷凍サイクル DESCRIPTION OF SYMBOLS 10 Chamber 12 Compressor 13 Three-way proportional control valve 14 Condenser 17 Evaporator 18 Reheater 25 Temperature sensor 26 Temperature controller 30 Refrigeration cycle

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルを用いて熱交換すべき流体
の精密温調を行う方法において、冷凍サイクルの蒸発器
の流体の出口側に再加熱器を設け、圧縮機から凝縮器に
至る冷媒配管を分岐させて再加熱器を接続し、その分岐
点に三方比例制御弁を設け、圧縮機からでたホットガス
を凝縮器に至る前にバイパスして再加熱器に導入し、蒸
発器で冷却された流体を再加熱器で加熱して温度制御す
ることを特徴とする精密温調方法。
1. A method for precisely controlling the temperature of a fluid to be heat-exchanged by using a refrigeration cycle, wherein a reheater is provided at an outlet side of a fluid of an evaporator of the refrigeration cycle, and refrigerant piping from the compressor to the condenser is provided. And a reheater is connected.A three-way proportional control valve is installed at the branch point.By bypassing the hot gas from the compressor before reaching the condenser, it is introduced into the reheater and cooled by the evaporator. A precise temperature control method, wherein the temperature of the fluid is controlled by heating the fluid with a reheater.
【請求項2】 チャンバ内に冷凍サイクルの蒸発器を設
置し、その蒸発器で冷却された空調空気を再加熱して精
密温調する精密温調方法において、蒸発器の空気吹き出
し側に再加熱器を設け、圧縮機から凝縮器に至るホット
ガスを、冷媒配管を分岐して再加熱器に接続し、その分
岐点に三方比例制御弁を設け、圧縮機から出たホットガ
スを凝縮器に至る前にバイパスして再加熱器に導入し、
蒸発器で冷却された空気を加熱して温度制御することを
特徴とする精密温調方法。
2. A precision temperature control method in which an evaporator of a refrigeration cycle is installed in a chamber, and the conditioned air cooled by the evaporator is reheated to precisely control the temperature. A condenser is provided, the hot gas from the compressor to the condenser is branched to the refrigerant pipe and connected to the reheater.A three-way proportional control valve is provided at the branch point, and the hot gas discharged from the compressor is supplied to the condenser. Bypass before it is introduced into the reheater,
A precision temperature control method characterized by heating air cooled by an evaporator to control the temperature.
【請求項3】 冷凍サイクルを用いて熱交換すべき流体
の精密温調を行う装置において、冷凍サイクルの蒸発器
の流体の出口側に設けられた再加熱器と、圧縮機から凝
縮器に至るホットガスを上記再加熱器にバイパスさせる
三方比例制御弁と、再加熱器で加熱された流体の温度を
検出する温度センサと、その温度センサの検出値が入力
され、その温度に応じて上記三方比例制御弁を制御する
温度調節計とを備えたことを特徴とする精密温調装置。
3. An apparatus for performing precise temperature control of a fluid to be heat-exchanged by using a refrigeration cycle, comprising: a reheater provided at a fluid outlet side of an evaporator of the refrigeration cycle; A three-way proportional control valve for bypassing the hot gas to the reheater, a temperature sensor for detecting the temperature of the fluid heated by the reheater, and a detection value of the temperature sensor being inputted, and the three-way A precision temperature controller comprising a temperature controller for controlling a proportional control valve.
【請求項4】 チャンバ内に冷凍サイクルの蒸発器を設
置し、その蒸発器で冷却された空調空気を再加熱して精
密温調するチャンバの精密温調装置において、蒸発器の
空気吹き出し側に設置された再加熱器と、圧縮機から凝
縮器に至るホットガスを上記再加熱器にバイパスさせる
三方比例制御弁と、チャンバ内に吹き込まれる温度を検
出する温度センサと、その温度センサの検出値が入力さ
れ、その温度に応じて上記三方比例制御弁を制御する温
度調節計とを備えたことを特徴とする精密温調装置。
4. A precision temperature control device for a chamber, in which an evaporator of a refrigeration cycle is installed in a chamber and air-conditioning air cooled by the evaporator is reheated to precisely control the temperature, the air is blown to the air blowing side of the evaporator. An installed reheater, a three-way proportional control valve for bypassing the hot gas from the compressor to the condenser to the reheater, a temperature sensor for detecting a temperature blown into the chamber, and a detection value of the temperature sensor And a temperature controller for controlling the three-way proportional control valve according to the temperature.
【請求項5】 三方比例制御弁は、その三方比例制御弁
の開度を調整するための空気圧源に接続された電−空変
換器を有し、温度調節計は、温度センサからの信号を設
定温度と比較してその差に応じて電気的な出力信号とし
て電−空変換器に出力し、電−空変換器は、入力された
電気信号を空気圧信号に変換し、その空気圧で三方比例
制御弁を制御する請求項4記載の精密温調装置。
5. The three-way proportional control valve has an electro-pneumatic converter connected to an air pressure source for adjusting the opening of the three-way proportional control valve, and the temperature controller receives a signal from the temperature sensor. Compared with the set temperature, the difference is output to the electro-pneumatic converter as an electric output signal according to the difference. The electro-pneumatic converter converts the input electric signal into a pneumatic signal, and the air pressure is proportional to the three-way. The precision temperature control device according to claim 4, which controls the control valve.
【請求項6】 圧縮機の吐出側に三方比例制御弁が接続
され、その三方比例制御弁の一方の出口ポートに凝縮器
が接続され、他方の出口ポートに再加熱器が接続され、
その再加熱器の出口側が凝縮器の入口側に接続されて合
流される請求項4又は5記載の精密温調装置。
6. A three-way proportional control valve is connected to the discharge side of the compressor, a condenser is connected to one outlet port of the three-way proportional control valve, and a reheater is connected to the other outlet port.
The precision temperature controller according to claim 4 or 5, wherein an outlet side of the reheater is connected to an inlet side of the condenser to be joined.
【請求項7】 再加熱器の出口と凝縮器の入口側を結ぶ
ラインに逆止弁が接続され、三方比例制御弁の入口ポー
トと再加熱器側の出口ポートとがキャピラリー管等の圧
力バランスラインで接続された請求項6記載の精密温調
装置。
7. A check valve is connected to a line connecting an outlet of the reheater and an inlet side of the condenser, and an inlet port of the three-way proportional control valve and an outlet port of the reheater are connected to a pressure balance of a capillary tube or the like. The precision temperature controller according to claim 6, which is connected by a line.
JP20199299A 1998-10-29 1999-07-15 Precision temperature controller Expired - Lifetime JP3283245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20199299A JP3283245B2 (en) 1998-10-29 1999-07-15 Precision temperature controller

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-308764 1998-10-29
JP30876498 1998-10-29
JP20199299A JP3283245B2 (en) 1998-10-29 1999-07-15 Precision temperature controller

Publications (2)

Publication Number Publication Date
JP2000199657A true JP2000199657A (en) 2000-07-18
JP3283245B2 JP3283245B2 (en) 2002-05-20

Family

ID=26513120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20199299A Expired - Lifetime JP3283245B2 (en) 1998-10-29 1999-07-15 Precision temperature controller

Country Status (1)

Country Link
JP (1) JP3283245B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395026B1 (en) * 2001-03-09 2003-08-19 (주)티이엔 An evaporative temperature compensation device and process of heat pump
JP2003302088A (en) * 2002-04-12 2003-10-24 Asahi Kogyosha Co Ltd Precision temperature/humidity control method and its device
JP2007132532A (en) * 2005-11-08 2007-05-31 Amefrec Co Ltd Temperature regulator
JP2008224163A (en) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Precision air temperature control device
JP2009236451A (en) * 2008-03-28 2009-10-15 Nippon Spindle Mfg Co Ltd Temperature adjusting device
JP2010210112A (en) * 2009-03-06 2010-09-24 Nippon Spindle Mfg Co Ltd Heat exchanger and temperature control device
JP2011075114A (en) * 2009-09-29 2011-04-14 Tokyo Rika Kikai Kk Temperature control method and device
JP2011106721A (en) * 2009-11-17 2011-06-02 Seimitsu:Kk Precise temperature control air conditioner
CN102627111A (en) * 2012-04-24 2012-08-08 上海松芝轨道车辆空调有限公司 Train air-conditioner equipped with novel air supply heater
JP2017161123A (en) * 2016-03-08 2017-09-14 日本スピンドル製造株式会社 Temperature adjustment device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100395026B1 (en) * 2001-03-09 2003-08-19 (주)티이엔 An evaporative temperature compensation device and process of heat pump
JP2003302088A (en) * 2002-04-12 2003-10-24 Asahi Kogyosha Co Ltd Precision temperature/humidity control method and its device
JP2007132532A (en) * 2005-11-08 2007-05-31 Amefrec Co Ltd Temperature regulator
JP4693114B2 (en) * 2005-11-08 2011-06-01 株式会社アメフレック Temperature control device
JP2008224163A (en) * 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Precision air temperature control device
JP2009236451A (en) * 2008-03-28 2009-10-15 Nippon Spindle Mfg Co Ltd Temperature adjusting device
JP2010210112A (en) * 2009-03-06 2010-09-24 Nippon Spindle Mfg Co Ltd Heat exchanger and temperature control device
JP2011075114A (en) * 2009-09-29 2011-04-14 Tokyo Rika Kikai Kk Temperature control method and device
JP2011106721A (en) * 2009-11-17 2011-06-02 Seimitsu:Kk Precise temperature control air conditioner
CN102627111A (en) * 2012-04-24 2012-08-08 上海松芝轨道车辆空调有限公司 Train air-conditioner equipped with novel air supply heater
JP2017161123A (en) * 2016-03-08 2017-09-14 日本スピンドル製造株式会社 Temperature adjustment device

Also Published As

Publication number Publication date
JP3283245B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
US7062930B2 (en) System and method for using hot gas re-heat for humidity control
JP3650758B2 (en) Precision temperature and humidity controller
US20230065130A1 (en) Air conditioning system
JP3283245B2 (en) Precision temperature controller
JP4583290B2 (en) Air conditioning system
KR101856737B1 (en) Outdoor air imported type constant temperature and dehumidification air conditioning system provided with evaporation pressure compensation structure
JP2000018766A (en) Air conditioner
JP3729552B2 (en) Air conditioner
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
JP2021014947A (en) Air conditioner and air conditioning system
JP2004170044A (en) Precise temperature control method and its device
JP2641058B2 (en) Three-tube water-cooled heat pump unit
JP2974381B2 (en) Air conditioner
JP4391188B2 (en) Air conditioner
JP6660873B2 (en) Heat pump type temperature controller
JP4989307B2 (en) Air conditioner
JPH04214153A (en) Refrigerating cycle device
JPH0611201A (en) Air conditioning apparatus
JPH04236062A (en) Air conditioner
JP2011085266A (en) Precision temperature control air conditioner
JPH05240486A (en) Air-conditioning machine
JPH0471139B2 (en)
JPH05332638A (en) Air conditioner
JPH07332778A (en) Method and apparatus for controlling temperature of two-stage compression refrigerator
JP2024075384A (en) Paint booth air conditioning system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020122

R150 Certificate of patent or registration of utility model

Ref document number: 3283245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140301

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term